Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the first of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library construction, and (3) secondary library construction. The first step, described here, entails design, synthesis, and cloning of four PLs. These PLs are designed with specific properties amenable to therapeutic antibody development using one universal variable heavy (VH) scaffold and four distinct variable light (VL) scaffolds. The scaffolds are diversified in positions that bind both protein and peptide targets identified in antibody-antigen complexes of known structure using the amino acid frequencies found in those positions in known human antibody sequences, avoiding residues that may lead to developability liabilities. The diversified scaffolds are combined with 90 synthetic neutral HCDR3 sequences designed with developable human diversity genes (IGHD) and joining heavy genes (IGHJ) in germline configuration, and assembled as single-chain variable fragments (scFvs) in a VL-linker-VH orientation. The four designed PLs are synthesized using trinucleotide phosphoramidites (TRIMs) and cloned independently into a phagemid vector for M13 pIII display. Quality control of the cloning of the four PLs is also described, which involves sequencing scFvs in each library.
{"title":"Semisynthetic Phage Display Library Construction: Design and Synthesis of Diversified Single-Chain Variable Fragments and Generation of Primary Libraries.","authors":"Juan C Almagro, Mary Ann Pohl","doi":"10.1101/pdb.prot108614","DOIUrl":"https://doi.org/10.1101/pdb.prot108614","url":null,"abstract":"<p><p>Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the first of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library construction, and (3) secondary library construction. The first step, described here, entails design, synthesis, and cloning of four PLs. These PLs are designed with specific properties amenable to therapeutic antibody development using one universal variable heavy (V<sub>H</sub>) scaffold and four distinct variable light (V<sub>L</sub>) scaffolds. The scaffolds are diversified in positions that bind both protein and peptide targets identified in antibody-antigen complexes of known structure using the amino acid frequencies found in those positions in known human antibody sequences, avoiding residues that may lead to developability liabilities. The diversified scaffolds are combined with 90 synthetic neutral HCDR3 sequences designed with developable human diversity genes (IGHD) and joining heavy genes (IGHJ) in germline configuration, and assembled as single-chain variable fragments (scFvs) in a V<sub>L</sub>-linker-V<sub>H</sub> orientation. The four designed PLs are synthesized using trinucleotide phosphoramidites (TRIMs) and cloned independently into a phagemid vector for M13 pIII display. Quality control of the cloning of the four PLs is also described, which involves sequencing scFvs in each library.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phage display of Fab libraries enables the de novo discovery and in vitro evolution of monoclonal antibodies. Fab libraries are collections of millions to billions of different antibodies that collectively cover a large antigen or epitope binding space. To preserve the diversity of the Fab library for repeated selection campaigns, it is recommended to use the original phage from the Fab library generation rather than reamplified phage, if practically possible. This is because reamplification will bias the Fab library for clones that are expressed at higher rates. Fab-phage, however, should only be used if they have been prepared on the same day, to avoid proteolytic cleavage of the physical linkage of phenotype (phage-displayed Fab protein) and genotype (phage-encapsulated Fab DNA). Thus, in practice, reamplification of a Fab-phage library cannot usually be avoided. Here, we describe the steps for the reamplification of an original Fab-phage library prior to its selection. The protocol can also be used to reamplify Fab-phage from the third or later panning rounds when enriched clones are unlikely to be lost by reamplification biases.
噬菌体展示 Fab 文库可以实现单克隆抗体的新发现和体外进化。Fab 文库是由数百万至数十亿种不同抗体组成的集合,它们共同覆盖了一个巨大的抗原或表位结合空间。为了保持 Fab 文库的多样性,以便进行反复筛选,建议尽可能使用 Fab 文库生成时的原始噬菌体,而不是重新扩增的噬菌体。这是因为重新扩增会使 Fab 文库偏向于表达率更高的克隆。不过,Fab-噬菌体只能在同一天制备,以避免表型(噬菌体显示的 Fab 蛋白)和基因型(噬菌体包被的 Fab DNA)的物理连接被蛋白水解。因此,在实践中,Fab-噬菌体文库的再扩增通常无法避免。在此,我们介绍了原始 Fab-噬菌体文库筛选前的再扩增步骤。当富集克隆不太可能因重新扩增的偏差而丢失时,该方案也可用于重新扩增第三轮或以后淘洗的 Fab-噬菌体。
{"title":"Generation of Antibody Libraries for Phage Display: Library Reamplification.","authors":"Haiyong Peng, Christoph Rader","doi":"10.1101/pdb.prot108601","DOIUrl":"https://doi.org/10.1101/pdb.prot108601","url":null,"abstract":"<p><p>Phage display of Fab libraries enables the de novo discovery and in vitro evolution of monoclonal antibodies. Fab libraries are collections of millions to billions of different antibodies that collectively cover a large antigen or epitope binding space. To preserve the diversity of the Fab library for repeated selection campaigns, it is recommended to use the original phage from the Fab library generation rather than reamplified phage, if practically possible. This is because reamplification will bias the Fab library for clones that are expressed at higher rates. Fab-phage, however, should only be used if they have been prepared on the same day, to avoid proteolytic cleavage of the physical linkage of phenotype (phage-displayed Fab protein) and genotype (phage-encapsulated Fab DNA). Thus, in practice, reamplification of a Fab-phage library cannot usually be avoided. Here, we describe the steps for the reamplification of an original Fab-phage library prior to its selection. The protocol can also be used to reamplify Fab-phage from the third or later panning rounds when enriched clones are unlikely to be lost by reamplification biases.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The antigen-binding fragment (Fab) is the ∼50-kDa monovalent arm of an antibody molecule. In the laboratory, the Fab can be produced via either enzymatic digestion or recombinant expression, and its use facilitates the accurate assessment of affinity and specificity of monoclonal antibodies. The high melting temperature of the Fab, together with its low tendency to aggregate and ready conversion to natural and nonnatural immunoglobulin (Ig) formats (without affecting antigen binding properties), have made it a preferred format for phage display, as well as a tool for accurate assessment of affinity, specificity, and developability of monoclonal antibodies. Here, we outline a strategy to clone, express, and purify human or chimeric nonhuman/human Fabs that have previously been selected by phage display. Fabs purified using this approach, which results in milligram amounts, enable a variety of downstream biophysical and biological assays that ultimately inform the success of phage display library generation and selection.
{"title":"Cloning, Expression, and Purification of Phage Display-Selected Fab for Biophysical and Biological Studies.","authors":"Matthew G Cyr, Haiyong Peng, Christoph Rader","doi":"10.1101/pdb.prot108604","DOIUrl":"https://doi.org/10.1101/pdb.prot108604","url":null,"abstract":"<p><p>The antigen-binding fragment (Fab) is the ∼50-kDa monovalent arm of an antibody molecule. In the laboratory, the Fab can be produced via either enzymatic digestion or recombinant expression, and its use facilitates the accurate assessment of affinity and specificity of monoclonal antibodies. The high melting temperature of the Fab, together with its low tendency to aggregate and ready conversion to natural and nonnatural immunoglobulin (Ig) formats (without affecting antigen binding properties), have made it a preferred format for phage display, as well as a tool for accurate assessment of affinity, specificity, and developability of monoclonal antibodies. Here, we outline a strategy to clone, express, and purify human or chimeric nonhuman/human Fabs that have previously been selected by phage display. Fabs purified using this approach, which results in milligram amounts, enable a variety of downstream biophysical and biological assays that ultimately inform the success of phage display library generation and selection.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rabbit monoclonal antibodies are attractive reagents for research, and have also found use in diagnostic and therapeutic applications. This is owed to their high affinity and specificity, along with their ability to recognize epitopes conserved between mouse and human antigens. Phage display is a powerful method for the de novo generation, affinity maturation, and humanization of rabbit monoclonal antibodies from naive, immune, and synthetic antibody repertoires. Using phagemid family pComb3, a preferred phage display format is chimeric rabbit/human Fab, which consists of rabbit variable domains (VH, Vκ, and Vλ) fused to human constant domains. The human constant domains, CH1 of IgG1 and CL (Cκ or Cλ), not only provide established purification and detection handles but also facilitate higher expression in Escherichia coli compared to the corresponding rabbit constant domains. Here, we describe the use of a pComb3 derivative, phagemid pC3C, for the generation of chimeric rabbit/human Fab libraries with randomly combined rabbit variable domains of high sequence diversity, starting from the preparation of total RNA from rabbit spleen and bone marrow. Depending on the complexity of the parental antibody repertoire, the protocol can be scaled for yielding a library size of 108-1011 independent chimeric rabbit/human Fab clones. As such, it can be used, for instance, for the generation of either specialized immune or large naive rabbit antibody libraries.
{"title":"Generation of Antibody Libraries for Phage Display: Chimeric Rabbit/Human Fab Format.","authors":"Haiyong Peng, Christoph Rader","doi":"10.1101/pdb.prot108598","DOIUrl":"https://doi.org/10.1101/pdb.prot108598","url":null,"abstract":"<p><p>Rabbit monoclonal antibodies are attractive reagents for research, and have also found use in diagnostic and therapeutic applications. This is owed to their high affinity and specificity, along with their ability to recognize epitopes conserved between mouse and human antigens. Phage display is a powerful method for the de novo generation, affinity maturation, and humanization of rabbit monoclonal antibodies from naive, immune, and synthetic antibody repertoires. Using phagemid family pComb3, a preferred phage display format is chimeric rabbit/human Fab, which consists of rabbit variable domains (V<sub>H</sub>, V<sub>κ</sub>, and V<sub>λ</sub>) fused to human constant domains. The human constant domains, C<sub>H</sub>1 of IgG1 and C<sub>L</sub> (C<sub>κ</sub> or C<sub>λ</sub>), not only provide established purification and detection handles but also facilitate higher expression in <i>Escherichia coli</i> compared to the corresponding rabbit constant domains. Here, we describe the use of a pComb3 derivative, phagemid pC3C, for the generation of chimeric rabbit/human Fab libraries with randomly combined rabbit variable domains of high sequence diversity, starting from the preparation of total RNA from rabbit spleen and bone marrow. Depending on the complexity of the parental antibody repertoire, the protocol can be scaled for yielding a library size of 10<sup>8</sup>-10<sup>11</sup> independent chimeric rabbit/human Fab clones. As such, it can be used, for instance, for the generation of either specialized immune or large naive rabbit antibody libraries.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The generation and selection of antibody libraries by phagemid-based phage display requires three components; namely, phagemid library, host bacterial cells, and helper phage. The use of helper phage is necessary for the selection of phagemid libraries by phage display because it provides all genes needed for production of infectious phage particles. Here, we describe the generation of high-titer helper phage preparations suitable for phagemid-based phage display. The approach is based on helper phage VCSM13, which includes a gene for kanamycin resistance and a mutated packaging signal that, in the presence of a phagemid with an unmutated packaging signal, favors the production of infectious phage particles with phagemid phenotype and genotype.
{"title":"Generation of Antibody Libraries for Phage Display: Preparation of Helper Phage.","authors":"Haiyong Peng, Christoph Rader","doi":"10.1101/pdb.prot108600","DOIUrl":"https://doi.org/10.1101/pdb.prot108600","url":null,"abstract":"<p><p>The generation and selection of antibody libraries by phagemid-based phage display requires three components; namely, phagemid library, host bacterial cells, and helper phage. The use of helper phage is necessary for the selection of phagemid libraries by phage display because it provides all genes needed for production of infectious phage particles. Here, we describe the generation of high-titer helper phage preparations suitable for phagemid-based phage display. The approach is based on helper phage VCSM13, which includes a gene for kanamycin resistance and a mutated packaging signal that, in the presence of a phagemid with an unmutated packaging signal, favors the production of infectious phage particles with phagemid phenotype and genotype.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monoclonal antibodies (mAbs) have exceptional utility as research reagents and pharmaceuticals. As a complement to both traditional and contemporary single-B-cell cloning technologies, the mining of antibody libraries via display technologies-which mimic and simplify B cells by physically linking phenotype (protein) to genotype (protein-encoding DNA or RNA)-has become an important method for mAb discovery. Among these display technologies, phage display has been particularly successful for the generation of mAbs that bind to a wide variety of antigens with exceptional specificities and affinities. Rather than multivalent whole antibodies, phage display typically uses monovalent antibody fragments, such as "fragment antigen binding" (Fab), as the format of choice. The ∼50-kDa Fab format consists of four immunoglobulin (Ig) domains on two polypeptide chains (light chain and shortened heavy chain), and exhibits its antigen binding site in a natural configuration found in bivalent IgG and other multivalent Ig molecules. The Fab fragment has a high melting temperature and a low tendency to aggregate, and can be readily converted to natural and nonnatural Ig formats without affecting antigen binding properties, which has made it a favored format for phage display for more than three decades. Here, I briefly summarize some of the approaches used for the generation and selection of phage display antibody libraries in Fab format, from human and nonhuman antibody repertoires.
单克隆抗体(mAbs)作为研究试剂和药物具有特殊的用途。作为对传统和现代单 B 细胞克隆技术的补充,通过展示技术挖掘抗体库已成为发现 mAb 的一种重要方法,这种技术通过将表型(蛋白质)与基因型(编码蛋白质的 DNA 或 RNA)物理连接来模拟和简化 B 细胞。在这些展示技术中,噬菌体展示技术在生成能与多种抗原结合并具有特殊特异性和亲和性的 mAb 方面尤为成功。噬菌体展示通常使用单价抗体片段,如 "片段抗原结合"(Fab),而不是多价的全抗体,作为首选格式。50 kDa 的 Fab 格式由两条多肽链(轻链和缩短的重链)上的四个免疫球蛋白(Ig)结构域组成,并以二价 IgG 和其他多价 Ig 分子中的自然构型显示其抗原结合位点。Fab 片段具有较高的熔化温度和较低的聚集倾向,并且可以在不影响抗原结合特性的情况下很容易地转换成天然和非天然的 Ig 格式,这使得它在三十多年来一直是噬菌体展示的首选格式。在此,我简要总结了一些从人类和非人类抗体库中生成和筛选 Fab 格式噬菌体展示抗体库的方法。
{"title":"Generation and Selection of Phage Display Antibody Libraries in Fab Format.","authors":"Christoph Rader","doi":"10.1101/pdb.top107764","DOIUrl":"https://doi.org/10.1101/pdb.top107764","url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) have exceptional utility as research reagents and pharmaceuticals. As a complement to both traditional and contemporary single-B-cell cloning technologies, the mining of antibody libraries via display technologies-which mimic and simplify B cells by physically linking phenotype (protein) to genotype (protein-encoding DNA or RNA)-has become an important method for mAb discovery. Among these display technologies, phage display has been particularly successful for the generation of mAbs that bind to a wide variety of antigens with exceptional specificities and affinities. Rather than multivalent whole antibodies, phage display typically uses monovalent antibody fragments, such as \"fragment antigen binding\" (Fab), as the format of choice. The ∼50-kDa Fab format consists of four immunoglobulin (Ig) domains on two polypeptide chains (light chain and shortened heavy chain), and exhibits its antigen binding site in a natural configuration found in bivalent IgG and other multivalent Ig molecules. The Fab fragment has a high melting temperature and a low tendency to aggregate, and can be readily converted to natural and nonnatural Ig formats without affecting antigen binding properties, which has made it a favored format for phage display for more than three decades. Here, I briefly summarize some of the approaches used for the generation and selection of phage display antibody libraries in Fab format, from human and nonhuman antibody repertoires.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phage display selection of antibody libraries is a powerful method for generating and evolving monoclonal antibodies. The pComb3 phagemid family of phage display vectors facilitates the mining of antibody libraries in Fab format from human and nonhuman antibody repertoires. Here, we describe the screening for monoclonal Fab binders after selection of a polyclonal pool of Fab binders to an antigen of interest, with the goal of identifying and sequencing monoclonal antibodies that bind the antigen with high affinity and specificity. The screening cascade involves a phage ELISA, followed by a crude Fab ELISA and DNA fingerprinting and sequencing. The protocol outlines phage and crude Fab ELISAs using purified antigen immobilized on microplates, native antigen expressed on eukaryotic cells, or both.
噬菌体展示选择抗体库是产生和进化单克隆抗体的一种有效方法。噬菌体展示载体 pComb3 phagemid 系列有助于从人类和非人类抗体库中挖掘 Fab 格式的抗体库。在这里,我们介绍了在筛选出与感兴趣的抗原结合的多克隆 Fab 结合体后筛选单克隆 Fab 结合体的方法,目的是鉴定和测序与抗原结合具有高亲和力和特异性的单克隆抗体。筛选步骤包括噬菌体酶联免疫吸附试验、粗Fab酶联免疫吸附试验、DNA指纹图谱和测序。该方案概述了使用固定在微孔板上的纯化抗原、表达在真核细胞上的原生抗原或两者的噬菌体和粗Fab ELISA。
{"title":"Phage Display Selection of Antibody Libraries: Screening of Selected Binders.","authors":"Haiyong Peng, Christoph Rader","doi":"10.1101/pdb.prot108603","DOIUrl":"https://doi.org/10.1101/pdb.prot108603","url":null,"abstract":"<p><p>Phage display selection of antibody libraries is a powerful method for generating and evolving monoclonal antibodies. The pComb3 phagemid family of phage display vectors facilitates the mining of antibody libraries in Fab format from human and nonhuman antibody repertoires. Here, we describe the screening for monoclonal Fab binders after selection of a polyclonal pool of Fab binders to an antigen of interest, with the goal of identifying and sequencing monoclonal antibodies that bind the antigen with high affinity and specificity. The screening cascade involves a phage ELISA, followed by a crude Fab ELISA and DNA fingerprinting and sequencing. The protocol outlines phage and crude Fab ELISAs using purified antigen immobilized on microplates, native antigen expressed on eukaryotic cells, or both.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The size of an antibody library, that is, the phage display-selectable diversity, is restricted mainly by its transformation into the host bacterial cells. Electroporation is the most efficient method for transforming Escherichia coli with plasmids, including phagemids. Here, we describe the preparation of electrocompetent E. coli for the generation of phagemid-encoded antibody libraries encompassing 109-1011 independent transformants. To become electrocompetent, the bacterial suspension has to have high resistance, i.e., low ionic strength, which is achieved by gradually and gently transferring bacteria grown to mid-log phase to 10% (v/v) glycerol in highly pure water. The electrocompetent E. coli must be F plasmid-harboring bacteria, referred to as F+ or male, in order to express F pili and be susceptible to infection by filamentous phage during library generation. In addition, it is necessary to apply antibiotic (e.g., tetracycline) pressure to retain the F plasmid, as it tends to segregate from bacteria. This protocol also includes assays for analyzing the prepared electrocompetent E. coli for competency, and evaluating potential contamination with helper phage, phagemid and phagemid-derived filamentous phage, and lytic phage.
抗体库(即噬菌体展示选择多样性)的大小主要受制于其在宿主细菌细胞中的转化。电穿孔是用质粒(包括噬菌体)转化大肠杆菌的最有效方法。在这里,我们介绍了如何制备具有电转化能力的大肠杆菌,以生成包含 109-1011 个独立转化子的噬菌体编码抗体库。要成为具有电活性的大肠杆菌,细菌悬浮液必须具有高抗性,即低离子强度,这可以通过将生长到中菌落期的细菌逐渐温和地转移到高纯度水中的 10% (v/v) 甘油中来实现。电泳大肠杆菌必须是携带 F 质粒的细菌,即 F+ 或雄性细菌,这样才能表达 F 绒毛,并在文库生成过程中易受丝状噬菌体感染。此外,有必要施加抗生素(如四环素)压力以保留 F 质粒,因为它往往会从细菌中分离出来。该方案还包括分析所制备的电竞争性大肠杆菌的能力,以及评估辅助噬菌体、噬菌体和噬菌体衍生的丝状噬菌体以及致死噬菌体的潜在污染。
{"title":"Generation of Antibody Libraries for Phage Display: Preparation of Electrocompetent <i>E. coli</i>.","authors":"Haiyong Peng, Christoph Rader","doi":"10.1101/pdb.prot108599","DOIUrl":"https://doi.org/10.1101/pdb.prot108599","url":null,"abstract":"<p><p>The size of an antibody library, that is, the phage display-selectable diversity, is restricted mainly by its transformation into the host bacterial cells. Electroporation is the most efficient method for transforming <i>Escherichia coli</i> with plasmids, including phagemids. Here, we describe the preparation of electrocompetent <i>E. coli</i> for the generation of phagemid-encoded antibody libraries encompassing 10<sup>9</sup>-10<sup>11</sup> independent transformants. To become electrocompetent, the bacterial suspension has to have high resistance, i.e., low ionic strength, which is achieved by gradually and gently transferring bacteria grown to mid-log phase to 10% (v/v) glycerol in highly pure water. The electrocompetent <i>E. coli</i> must be F plasmid-harboring bacteria, referred to as F<sup>+</sup> or male, in order to express F pili and be susceptible to infection by filamentous phage during library generation. In addition, it is necessary to apply antibiotic (e.g., tetracycline) pressure to retain the F plasmid, as it tends to segregate from bacteria. This protocol also includes assays for analyzing the prepared electrocompetent <i>E. coli</i> for competency, and evaluating potential contamination with helper phage, phagemid and phagemid-derived filamentous phage, and lytic phage.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mining of naive, immune, and synthetic antibody repertoires by phage display has been widely applied to the de novo generation and in vitro evolution of monoclonal antibodies from multiple species. Once built, phage display antibody libraries can be selected by a variety of different strategies tailored toward the desired antigen binding properties. Here, we describe the selection of antibody libraries generated in a phage display vector of the pComb3 phagemid family. The approach includes panning procedures for immobilized antigens, biotinylated antigens in solution, and cell surface antigens. Although the typical format of these antibody libraries is human Fab or chimeric nonhuman/human Fab, the basic selection strategies provided in this protocol are compatible with a variety of formats.
通过噬菌体展示挖掘天真抗体、免疫抗体和合成抗体库,已被广泛应用于多种物种单克隆抗体的从头生成和体外进化。噬菌体展示抗体库一旦建立,就可以根据所需的抗原结合特性,通过各种不同的策略进行筛选。在这里,我们介绍了用 pComb3 噬菌体家族的噬菌体展示载体生成的抗体库的筛选方法。该方法包括固定抗原、溶液中生物素化抗原和细胞表面抗原的筛选程序。虽然这些抗体库的典型格式是人类 Fab 或嵌合非人/人类 Fab,但本方案中提供的基本选择策略与各种格式的抗体库兼容。
{"title":"Phage Display Selection of Antibody Libraries: Panning Procedures.","authors":"Haiyong Peng, Christoph Rader","doi":"10.1101/pdb.prot108602","DOIUrl":"https://doi.org/10.1101/pdb.prot108602","url":null,"abstract":"<p><p>The mining of naive, immune, and synthetic antibody repertoires by phage display has been widely applied to the de novo generation and in vitro evolution of monoclonal antibodies from multiple species. Once built, phage display antibody libraries can be selected by a variety of different strategies tailored toward the desired antigen binding properties. Here, we describe the selection of antibody libraries generated in a phage display vector of the pComb3 phagemid family. The approach includes panning procedures for immobilized antigens, biotinylated antigens in solution, and cell surface antigens. Although the typical format of these antibody libraries is human Fab or chimeric nonhuman/human Fab, the basic selection strategies provided in this protocol are compatible with a variety of formats.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phage display is a powerful method for the de novo generation and affinity maturation of human monoclonal antibodies from naive, immune, and synthetic antibody repertoires. The pComb3 phagemid family of phage display vectors facilitates the selection of human monoclonal antibody libraries in the monovalent Fab format, which consists of human variable domains VH and VL (Vκ or Vλ), fused to the human constant domains CH1 of IgG1 and CL (Cκ or Cλ), respectively. Here, we describe the use of a pComb3 derivative, phagemid pC3C, for the generation of human Fab libraries with randomly combined human variable domains (VH, Vκ, and Vλ) of high sequence diversity, starting from the preparation of mononuclear cells from blood and bone marrow. Depending on the complexity of the parental antibody repertoire, the protocol can be scaled for yielding a library size of 108-1011 independent human Fab clones. As such, it can be used, for instance, for the generation of a large naive human Fab library from healthy individuals or for the generation of a specialized immune human Fab library from individuals with an endogenous antibody response of interest.
噬菌体展示是从天真、免疫和合成抗体库中重新生成人类单克隆抗体并使其亲和力成熟的一种强大方法。pComb3 phagemid 系列噬菌体展示载体有助于选择单价 Fab 格式的人类单克隆抗体库,它由人类可变结构域 VH 和 VL(Vκ 或 Vλ)组成,分别与人类 IgG1 和 CL 的恒定结构域 CH1(Cκ 或 Cλ)融合。在这里,我们描述了如何使用 pComb3 衍生物 phagemid pC3C 从血液和骨髓中制备单核细胞开始,生成具有高序列多样性的随机组合人类可变结构域(VH、Vκ 和 Vλ)的人类 Fab 文库。根据亲代抗体库的复杂程度,该方案可按比例生成 108-1011 个独立的人类 Fab 克隆。因此,该方案可用于从健康个体中生成大型天真人类 Fab 文库,或从具有相关内源性抗体反应的个体中生成专门的免疫人类 Fab 文库。
{"title":"Generation of Antibody Libraries for Phage Display: Human Fab Format.","authors":"Haiyong Peng, Christoph Rader","doi":"10.1101/pdb.prot108597","DOIUrl":"https://doi.org/10.1101/pdb.prot108597","url":null,"abstract":"<p><p>Phage display is a powerful method for the de novo generation and affinity maturation of human monoclonal antibodies from naive, immune, and synthetic antibody repertoires. The pComb3 phagemid family of phage display vectors facilitates the selection of human monoclonal antibody libraries in the monovalent Fab format, which consists of human variable domains V<sub>H</sub> and V<sub>L</sub> (V<sub>κ</sub> or V<sub>λ</sub>), fused to the human constant domains C<sub>H</sub>1 of IgG1 and C<sub>L</sub> (C<sub>κ</sub> or C<sub>λ</sub>), respectively. Here, we describe the use of a pComb3 derivative, phagemid pC3C, for the generation of human Fab libraries with randomly combined human variable domains (V<sub>H</sub>, V<sub>κ</sub>, and V<sub>λ</sub>) of high sequence diversity, starting from the preparation of mononuclear cells from blood and bone marrow. Depending on the complexity of the parental antibody repertoire, the protocol can be scaled for yielding a library size of 10<sup>8</sup>-10<sup>11</sup> independent human Fab clones. As such, it can be used, for instance, for the generation of a large naive human Fab library from healthy individuals or for the generation of a specialized immune human Fab library from individuals with an endogenous antibody response of interest.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}