The human immune system evolved to defend against the panoply of microbial threats. By harnessing such ability, vaccines have cumulatively saved hundreds of millions of lives. Despite such tremendous success, there have also been remarkable failures, such as the lack of a clinically proven vaccine against Staphylococcus aureus (SA), which continues to pose an urgent public health threat. In practice, it has proven challenging to identify the molecular basis for relevant epitopes for this pathogen. Here, we summarize our experience implementing an integrated approach using phage display technology for the identification of B-cell epitopes of microbial virulence factors, which we developed with a focus on SA. This approach was used to define minimal B-cell epitopes of the staphylococcal leucocidin family of pore-forming toxins (PFTs) that have been implicated in staphylococcal clinical infection. Our methodology provides proof of principle for an approach well suited for the rapid and efficient generation of modular protein-based vaccines for protection from clinical infection, which can be used to target pathogens for which no vaccine is currently available.
{"title":"Insights from the Study of B-Cell Epitopes of a Microbial Pathogen by Phage Display.","authors":"Gregg J Silverman","doi":"10.1101/pdb.top107777","DOIUrl":"https://doi.org/10.1101/pdb.top107777","url":null,"abstract":"<p><p>The human immune system evolved to defend against the panoply of microbial threats. By harnessing such ability, vaccines have cumulatively saved hundreds of millions of lives. Despite such tremendous success, there have also been remarkable failures, such as the lack of a clinically proven vaccine against <i>Staphylococcus aureus</i> (SA), which continues to pose an urgent public health threat. In practice, it has proven challenging to identify the molecular basis for relevant epitopes for this pathogen. Here, we summarize our experience implementing an integrated approach using phage display technology for the identification of B-cell epitopes of microbial virulence factors, which we developed with a focus on SA. This approach was used to define minimal B-cell epitopes of the staphylococcal leucocidin family of pore-forming toxins (PFTs) that have been implicated in staphylococcal clinical infection. Our methodology provides proof of principle for an approach well suited for the rapid and efficient generation of modular protein-based vaccines for protection from clinical infection, which can be used to target pathogens for which no vaccine is currently available.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145470632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the third and final step of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library construction, (2) filtered library (FL) construction, and (3) secondary library (SL) construction. In the third step, described here, the nucleotide sequences encoding the single-chain variable fragments (scFvs) of FLs are amplified by PCR and combined with the heavy- chain CDR3 region (HCDR3) and joining fragments (H3J) obtained from a pool of donors to maximize diversity ("natural H3J fragments"). These natural H3J fragments are amplified with a set of primers designed to capture >95% of the natural H3J repertoire. The resultant fragments replace the neutral H3J fragments of the FLs, resulting in the final semisynthetic secondary libraries. The quality of these libraries is assessed by sequencing clones chosen at random from the libraries, typically 96 clones. These libraries are then ready to be used for phage selections on targets of interest, providing a robust antibody discovery platform.
{"title":"Semisynthetic Phage Display Library Construction: Generation of Single<i>-</i>Chain Variable Fragment Secondary Libraries.","authors":"Juan C Almagro, Mary Ann Pohl","doi":"10.1101/pdb.prot108616","DOIUrl":"10.1101/pdb.prot108616","url":null,"abstract":"<p><p>Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the third and final step of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library construction, (2) filtered library (FL) construction, and (3) secondary library (SL) construction. In the third step, described here, the nucleotide sequences encoding the single-chain variable fragments (scFvs) of FLs are amplified by PCR and combined with the heavy- chain CDR3 region (HCDR3) and joining fragments (H3J) obtained from a pool of donors to maximize diversity (\"natural H3J fragments\"). These natural H3J fragments are amplified with a set of primers designed to capture >95% of the natural H3J repertoire. The resultant fragments replace the neutral H3J fragments of the FLs, resulting in the final semisynthetic secondary libraries. The quality of these libraries is assessed by sequencing clones chosen at random from the libraries, typically 96 clones. These libraries are then ready to be used for phage selections on targets of interest, providing a robust antibody discovery platform.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108616"},"PeriodicalIF":0.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minjeong Kang, Mercy K Azanu, Keunsub Lee, Kan Wang
Maize genetic transformation is a critical tool for functional genomics and crop improvement. Many laboratories, however, continue to face multiple challenges in attempting to achieve routine genetic transformation of maize inbred genotypes. Here, we describe a rapid and robust maize B104 transformation method using immature embryos as explants. This method uses an Agrobacterium ternary vector system, which includes a conventional T-DNA binary vector (pCBL101-RUBY) and a compatible ternary helper plasmid (pKL2299) that carries extra copies of essential virulence genes. The T-DNA binary vector carries the neomycin phosphotransferase II (NptII) gene for selection and a betalain biosynthesis marker, RUBY, for visual screening. We provide step-by-step instructions for immature embryo explant preparation, Agrobacterium infection, tissue culture procedures, and greenhouse care for acclimatization of regenerated plantlets.
玉米基因转化是功能基因组学和作物改良的重要工具。然而,许多实验室在尝试实现玉米近交系基因型的常规遗传转化时仍然面临着多重挑战。在这里,我们介绍了一种使用未成熟胚胎作为外植体的快速、稳健的玉米 B104 转化方法。该方法使用农杆菌三元载体系统,其中包括一个传统的 T-DNA 二元载体(pCBL101-RUBY)和一个兼容的三元辅助质粒(pKL2299),后者携带额外拷贝的重要毒力基因。T-DNA 双元载体携带用于选择的新霉素磷酸转移酶 II (NptII) 基因和用于视觉筛选的甜菜碱生物合成标记 RUBY。我们提供了关于未成熟胚外植体制备、农杆菌感染、组织培养程序以及再生小植株温室适应性养护的逐步说明。
{"title":"A Rapid <i>Agrobacterium</i>-Mediated Transformation Method Using Maize B104 Immature Embryos.","authors":"Minjeong Kang, Mercy K Azanu, Keunsub Lee, Kan Wang","doi":"10.1101/pdb.prot108595","DOIUrl":"10.1101/pdb.prot108595","url":null,"abstract":"<p><p>Maize genetic transformation is a critical tool for functional genomics and crop improvement. Many laboratories, however, continue to face multiple challenges in attempting to achieve routine genetic transformation of maize inbred genotypes. Here, we describe a rapid and robust maize B104 transformation method using immature embryos as explants. This method uses an <i>Agrobacterium</i> ternary vector system, which includes a conventional T-DNA binary vector (pCBL101-RUBY) and a compatible ternary helper plasmid (pKL2299) that carries extra copies of essential virulence genes. The T-DNA binary vector carries the <i>neomycin phosphotransferase II</i> (<i>NptII</i>) gene for selection and a betalain biosynthesis marker, <i>RUBY,</i> for visual screening. We provide step-by-step instructions for immature embryo explant preparation, <i>Agrobacterium</i> infection, tissue culture procedures, and greenhouse care for acclimatization of regenerated plantlets.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108595"},"PeriodicalIF":0.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the second of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Gold Plus Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library (FL) construction, and (3) secondary library construction. The second step, described here, involves display of the PLs as single-chain variable fragment (scFv) fusions to protein pIII of the M13 phage, as well as heat shock treatment and subsequent selection of well-folded and thermostable scFvs via protein L binding, whereas unstable and defective scFvs are removed by washing steps and centrifugation. The quality of the filtration process is assessed by sequencing clones chosen at random from the FLs. These libraries, enriched with thermostable antibodies, are then ready to be used for the third and final step of the process: generation of secondary libraries.
在 M13 丝状噬菌体表面展示抗体片段是一种行之有效的方法,可用于鉴定与感兴趣的靶点结合的抗体。在这里,我们介绍了构建治疗性抗体库(ALTHEA)Gold Plus 库的三步法中的第二步。三步法包括:(1)构建初级文库(PL);(2)构建过滤文库(FL);(3)构建次级文库。这里介绍的第二步包括将 PLs 以单链可变片段(scFv)的形式与 M13 噬菌体的蛋白 pIII 融合,并进行热休克处理,随后通过蛋白 L 结合筛选出折叠良好、热稳定性好的 scFv,而不稳定和有缺陷的 scFv 则通过洗涤步骤和离心去除。过滤过程的质量通过对从 FLs 中随机选择的克隆进行测序来评估。这些富含恒温抗体的文库可用于该过程的第三步,也是最后一步:生成二级文库。
{"title":"Semisynthetic Phage Display Library Construction: Generation of Filtered Libraries.","authors":"Juan C Almagro, Mary Ann Pohl","doi":"10.1101/pdb.prot108615","DOIUrl":"10.1101/pdb.prot108615","url":null,"abstract":"<p><p>Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the second of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Gold Plus Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library (FL) construction, and (3) secondary library construction. The second step, described here, involves display of the PLs as single-chain variable fragment (scFv) fusions to protein pIII of the M13 phage, as well as heat shock treatment and subsequent selection of well-folded and thermostable scFvs via protein L binding, whereas unstable and defective scFvs are removed by washing steps and centrifugation. The quality of the filtration process is assessed by sequencing clones chosen at random from the FLs. These libraries, enriched with thermostable antibodies, are then ready to be used for the third and final step of the process: generation of secondary libraries.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108615"},"PeriodicalIF":0.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mercy K Azanu, Minjeong Kang, Keunsub Lee, Kan Wang
The introduction of maize genetic transformation in the 1990s brought forth a powerful tool for crop improvement and a deeper understanding of plant genetics. Despite decades of genetics research, however, and the promise of CRISPR-mediated gene editing, maize transformation currently faces several challenges, such as genotype dependence and limitations in explant availability. Indeed, although the most commonly used method, immature embryo transformation, has been improved through optimization of tissue culture media composition and selection methods, the approach is only applicable to a limited number of public genotypes, including B104 and Hi II. Recently, genotype-flexible methods have been developed using coexpression cassettes of morphogenic transcription factors (MTFs) Baby boom (Bbm) and Wushel2 (Wus2), which have enabled the successful transformation of many previously recalcitrant maize lines. This MTF-based transformation method has also allowed for the use of alternate explants, such as seedling leaf whorl, whose production is cost-effective and requires only minimum controlled growth space. In this review, we summarize recent advances in Agrobacterium-mediated maize transformation methods that use immature embryos or seedling leaf whorls as starting material.
{"title":"Recent Advances in <i>Agrobacterium</i>-Mediated Maize Genetic Transformation Using Immature Embryos and Seedling Leaf Whorl Explants.","authors":"Mercy K Azanu, Minjeong Kang, Keunsub Lee, Kan Wang","doi":"10.1101/pdb.top108460","DOIUrl":"10.1101/pdb.top108460","url":null,"abstract":"<p><p>The introduction of maize genetic transformation in the 1990s brought forth a powerful tool for crop improvement and a deeper understanding of plant genetics. Despite decades of genetics research, however, and the promise of CRISPR-mediated gene editing, maize transformation currently faces several challenges, such as genotype dependence and limitations in explant availability. Indeed, although the most commonly used method, immature embryo transformation, has been improved through optimization of tissue culture media composition and selection methods, the approach is only applicable to a limited number of public genotypes, including B104 and Hi II. Recently, genotype-flexible methods have been developed using coexpression cassettes of morphogenic transcription factors (MTFs) <i>Baby boom</i> (<i>Bbm</i>) and <i>Wushel2</i> (<i>Wus2</i>), which have enabled the successful transformation of many previously recalcitrant maize lines. This MTF-based transformation method has also allowed for the use of alternate explants, such as seedling leaf whorl, whose production is cost-effective and requires only minimum controlled growth space. In this review, we summarize recent advances in <i>Agrobacterium</i>-mediated maize transformation methods that use immature embryos or seedling leaf whorls as starting material.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.top108460"},"PeriodicalIF":0.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phage display is a versatile and effective platform for the identification and engineering of biologic-based therapeutics. Using standard molecular biology laboratory techniques, one can create a highly diverse and functional antibody phage-displayed library, and rapidly identify antibody fragments that bind to a target of interest with exquisite specificity and high affinity. Here, we discuss key aspects for the development of an antibody discovery strategy to harness the power of phage display technology to obtain molecules that can successfully be developed into therapeutics, including target validation, antibody design goals, and considerations for preparing and executing phage panning campaigns. Careful design and implementation of discovery campaigns-regardless of the target-provides the best chance of identifying desirable antibody fragments for further therapeutic development, so these principles can be applied to any new discovery project.
{"title":"Considerations for Using Phage Display Technology in Therapeutic Antibody Drug Discovery.","authors":"Mary Ann Pohl, Juan C Almagro","doi":"10.1101/pdb.top107757","DOIUrl":"10.1101/pdb.top107757","url":null,"abstract":"<p><p>Phage display is a versatile and effective platform for the identification and engineering of biologic-based therapeutics. Using standard molecular biology laboratory techniques, one can create a highly diverse and functional antibody phage-displayed library, and rapidly identify antibody fragments that bind to a target of interest with exquisite specificity and high affinity. Here, we discuss key aspects for the development of an antibody discovery strategy to harness the power of phage display technology to obtain molecules that can successfully be developed into therapeutics, including target validation, antibody design goals, and considerations for preparing and executing phage panning campaigns. Careful design and implementation of discovery campaigns-regardless of the target-provides the best chance of identifying desirable antibody fragments for further therapeutic development, so these principles can be applied to any new discovery project.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.top107757"},"PeriodicalIF":0.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the first of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library construction, and (3) secondary library construction. The first step, described here, entails design, synthesis, and cloning of four PLs. These PLs are designed with specific properties amenable to therapeutic antibody development using one universal variable heavy (VH) scaffold and four distinct variable light (VL) scaffolds. The scaffolds are diversified in positions that bind both protein and peptide targets identified in antibody-antigen complexes of known structure using the amino acid frequencies found in those positions in known human antibody sequences, avoiding residues that may lead to developability liabilities. The diversified scaffolds are combined with 90 synthetic neutral HCDR3 sequences designed with developable human diversity genes (IGHD) and joining heavy genes (IGHJ) in germline configuration, and assembled as single-chain variable fragments (scFvs) in a VL-linker-VH orientation. The four designed PLs are synthesized using trinucleotide phosphoramidites (TRIMs) and cloned independently into a phagemid vector for M13 pIII display. Quality control of the cloning of the four PLs is also described, which involves sequencing scFvs in each library.
{"title":"Semisynthetic Phage Display Library Construction: Design and Synthesis of Diversified Single-Chain Variable Fragments and Generation of Primary Libraries.","authors":"Juan C Almagro, Mary Ann Pohl","doi":"10.1101/pdb.prot108614","DOIUrl":"10.1101/pdb.prot108614","url":null,"abstract":"<p><p>Display of antibody fragments on the surface of M13 filamentous bacteriophages is a well-established approach for the identification of antibodies binding to a target of interest. Here, we describe the first of a three-step method to construct Antibody Libraries for Therapeutic Antibody Discovery (ALTHEA) Libraries. The three-step method involves (1) primary library (PL) construction, (2) filtered library construction, and (3) secondary library construction. The first step, described here, entails design, synthesis, and cloning of four PLs. These PLs are designed with specific properties amenable to therapeutic antibody development using one universal variable heavy (V<sub>H</sub>) scaffold and four distinct variable light (V<sub>L</sub>) scaffolds. The scaffolds are diversified in positions that bind both protein and peptide targets identified in antibody-antigen complexes of known structure using the amino acid frequencies found in those positions in known human antibody sequences, avoiding residues that may lead to developability liabilities. The diversified scaffolds are combined with 90 synthetic neutral HCDR3 sequences designed with developable human diversity genes (IGHD) and joining heavy genes (IGHJ) in germline configuration, and assembled as single-chain variable fragments (scFvs) in a V<sub>L</sub>-linker-V<sub>H</sub> orientation. The four designed PLs are synthesized using trinucleotide phosphoramidites (TRIMs) and cloned independently into a phagemid vector for M13 pIII display. Quality control of the cloning of the four PLs is also described, which involves sequencing scFvs in each library.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108614"},"PeriodicalIF":0.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mercy K Azanu, Minjeong Kang, Keunsub Lee, Kan Wang
Conventional maize transformation has largely relied on immature embryos as explants, and is thus often hampered by the limited access to high-quality immature embryos year-round. Here, we present a detailed protocol using seedling leaf whorls as alternative explants for tropical maize inbred transformation. This approach involves the use of a cassette that drives the expression of the morphogenic transcription factors (MTFs) Baby boom (Bbm) and Wuschel2 (Wus2), which have been shown to greatly enhance transformation efficiency. We outline here the steps required for the preparation of seedling leaf whorl explants and subsequent Agrobacterium infection, and describe the tissue culture regimen that results in transgenic plant regeneration. Because constitutive expression of Bbm and Wus2 prevents normal plant regeneration and the production of fertile plants, the cassette containing these genes must be excised. As such, we include the steps for the Cre/loxP-mediated excision of the MTF gene cassette. The protocol outlines a year-round, more affordable, and efficient approach for carrying out maize transformation for crop improvement.
{"title":"<i>Agrobacterium</i>-Mediated Transformation of Tropical Maize Using Seedling Leaf Whorl Explants.","authors":"Mercy K Azanu, Minjeong Kang, Keunsub Lee, Kan Wang","doi":"10.1101/pdb.prot108596","DOIUrl":"10.1101/pdb.prot108596","url":null,"abstract":"<p><p>Conventional maize transformation has largely relied on immature embryos as explants, and is thus often hampered by the limited access to high-quality immature embryos year-round. Here, we present a detailed protocol using seedling leaf whorls as alternative explants for tropical maize inbred transformation. This approach involves the use of a cassette that drives the expression of the morphogenic transcription factors (MTFs) <i>Baby boom</i> (<i>Bbm</i>) and <i>Wuschel2</i> (<i>Wus2</i>), which have been shown to greatly enhance transformation efficiency. We outline here the steps required for the preparation of seedling leaf whorl explants and subsequent <i>Agrobacterium</i> infection, and describe the tissue culture regimen that results in transgenic plant regeneration. Because constitutive expression of <i>Bbm</i> and <i>Wus2</i> prevents normal plant regeneration and the production of fertile plants, the cassette containing these genes must be excised. As such, we include the steps for the <i>Cre</i>/<i>loxP</i>-mediated excision of the MTF gene cassette. The protocol outlines a year-round, more affordable, and efficient approach for carrying out maize transformation for crop improvement.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108596"},"PeriodicalIF":0.0,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phage display technology is enabled by genetic fusion of a foreign protein domain to a phage coat protein, without interfering with the phage's ability to replicate by infecting bacterial host cells. The displayed domain is exposed on the phage particle (virion) surface, where it can interact with molecules or other substances in the surrounding medium; in this regard, it acts like a normal protein. However, it possesses a superpower that is unavailable to ordinary proteins: It is easily replicated in great abundance because it is attached to a replicating virion whose genome includes its coding sequence. The main way this technology is exploited is construction of huge phage display "libraries," comprising billions of phage clones, each displaying a different protein domain, and each represented by thousands, millions, or billions of genetically identical virions-all mixed together in a single vessel. Surface display allows exceedingly rare virions whose displayed protein domains happen to bind a user-defined molecule or other substance-generically called the "selector"-to be isolated from such libraries by an affinity selection process. The yield of selector-binding virions is much too low to be of practical use, but their number is readily increased by many orders of magnitude by propagating the virions in host bacteria in culture. This overview is a critical review of recent developments of this technology. It does not review the entire arena of contemporary phage display; there is special emphasis on phage display's most prominent application, phage antibodies, in which the displayed domain is an antibody domain, and the selector is an antigen of interest.
{"title":"Advances in Phage Display-A Perspective.","authors":"George P Smith","doi":"10.1101/pdb.over107753","DOIUrl":"https://doi.org/10.1101/pdb.over107753","url":null,"abstract":"<p><p>Phage display technology is enabled by genetic fusion of a foreign protein domain to a phage coat protein, without interfering with the phage's ability to replicate by infecting bacterial host cells. The displayed domain is exposed on the phage particle (virion) surface, where it can interact with molecules or other substances in the surrounding medium; in this regard, it acts like a normal protein. However, it possesses a superpower that is unavailable to ordinary proteins: It is easily replicated in great abundance because it is attached to a replicating virion whose genome includes its coding sequence. The main way this technology is exploited is construction of huge phage display \"libraries,\" comprising billions of phage clones, each displaying a different protein domain, and each represented by thousands, millions, or billions of genetically identical virions-all mixed together in a single vessel. Surface display allows exceedingly rare virions whose displayed protein domains happen to bind a user-defined molecule or other substance-generically called the \"selector\"-to be isolated from such libraries by an affinity selection process. The yield of selector-binding virions is much too low to be of practical use, but their number is readily increased by many orders of magnitude by propagating the virions in host bacteria in culture. This overview is a critical review of recent developments of this technology. It does not review the entire arena of contemporary phage display; there is special emphasis on phage display's most prominent application, phage antibodies, in which the displayed domain is an antibody domain, and the selector is an antigen of interest.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145343774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irene I Ikiriko, Ashley N Hostetler, Erin E Sparks
The mechanical properties of individual roots and entire root systems play key roles in essential root functions such as water and nutrient acquisition, defense against soil microorganisms, and plant anchorage. However, relatively few studies have quantified the mechanics (e.g., stiffness and strength) of individual and entire root systems, or explored the link between root mechanics and root functions. This limitation is likely due to a lack of standardized methods for quantifying root mechanical properties, and has created a gap in our understanding of how root mechanical traits contribute to root functions. To date, most of our knowledge comes from studies in maize, where mechanical failure (i.e., root lodging) has detrimental impacts on crop yield. Here, we review the importance of root mechanics for maize production and discuss methods used to measure individual and entire root system mechanics.
{"title":"Experimental Approaches for Assessing Root Mechanical Properties in Maize.","authors":"Irene I Ikiriko, Ashley N Hostetler, Erin E Sparks","doi":"10.1101/pdb.top108439","DOIUrl":"https://doi.org/10.1101/pdb.top108439","url":null,"abstract":"<p><p>The mechanical properties of individual roots and entire root systems play key roles in essential root functions such as water and nutrient acquisition, defense against soil microorganisms, and plant anchorage. However, relatively few studies have quantified the mechanics (e.g., stiffness and strength) of individual and entire root systems, or explored the link between root mechanics and root functions. This limitation is likely due to a lack of standardized methods for quantifying root mechanical properties, and has created a gap in our understanding of how root mechanical traits contribute to root functions. To date, most of our knowledge comes from studies in maize, where mechanical failure (i.e., root lodging) has detrimental impacts on crop yield. Here, we review the importance of root mechanics for maize production and discuss methods used to measure individual and entire root system mechanics.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145299065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}