首页 > 最新文献

Comput. Vis. Image Underst.最新文献

英文 中文
Transformer-based Image Generation from Scene Graphs 从场景图生成基于变压器的图像
Pub Date : 2023-03-08 DOI: 10.48550/arXiv.2303.04634
Renato Sortino, S. Palazzo, C. Spampinato
Graph-structured scene descriptions can be efficiently used in generative models to control the composition of the generated image. Previous approaches are based on the combination of graph convolutional networks and adversarial methods for layout prediction and image generation, respectively. In this work, we show how employing multi-head attention to encode the graph information, as well as using a transformer-based model in the latent space for image generation can improve the quality of the sampled data, without the need to employ adversarial models with the subsequent advantage in terms of training stability. The proposed approach, specifically, is entirely based on transformer architectures both for encoding scene graphs into intermediate object layouts and for decoding these layouts into images, passing through a lower dimensional space learned by a vector-quantized variational autoencoder. Our approach shows an improved image quality with respect to state-of-the-art methods as well as a higher degree of diversity among multiple generations from the same scene graph. We evaluate our approach on three public datasets: Visual Genome, COCO, and CLEVR. We achieve an Inception Score of 13.7 and 12.8, and an FID of 52.3 and 60.3, on COCO and Visual Genome, respectively. We perform ablation studies on our contributions to assess the impact of each component. Code is available at https://github.com/perceivelab/trf-sg2im
图结构场景描述可以有效地用于生成模型,以控制生成图像的组成。以前的方法是基于图卷积网络和对抗方法的结合,分别用于布局预测和图像生成。在这项工作中,我们展示了如何使用多头注意力来编码图信息,以及在潜在空间中使用基于变压器的模型来生成图像,可以提高采样数据的质量,而不需要使用对抗性模型,从而在训练稳定性方面具有优势。具体来说,所提出的方法完全基于转换器架构,既可以将场景图编码为中间对象布局,也可以将这些布局解码为图像,通过矢量量化变分自编码器学习的低维空间。我们的方法显示了相对于最先进的方法的改进的图像质量,以及来自同一场景图的多代之间更高程度的多样性。我们在三个公共数据集上评估了我们的方法:Visual Genome, COCO和CLEVR。我们在COCO和Visual Genome上分别获得了13.7和12.8的Inception Score,以及52.3和60.3的FID。我们对我们的贡献进行消融研究,以评估每个组成部分的影响。代码可从https://github.com/perceivelab/trf-sg2im获得
{"title":"Transformer-based Image Generation from Scene Graphs","authors":"Renato Sortino, S. Palazzo, C. Spampinato","doi":"10.48550/arXiv.2303.04634","DOIUrl":"https://doi.org/10.48550/arXiv.2303.04634","url":null,"abstract":"Graph-structured scene descriptions can be efficiently used in generative models to control the composition of the generated image. Previous approaches are based on the combination of graph convolutional networks and adversarial methods for layout prediction and image generation, respectively. In this work, we show how employing multi-head attention to encode the graph information, as well as using a transformer-based model in the latent space for image generation can improve the quality of the sampled data, without the need to employ adversarial models with the subsequent advantage in terms of training stability. The proposed approach, specifically, is entirely based on transformer architectures both for encoding scene graphs into intermediate object layouts and for decoding these layouts into images, passing through a lower dimensional space learned by a vector-quantized variational autoencoder. Our approach shows an improved image quality with respect to state-of-the-art methods as well as a higher degree of diversity among multiple generations from the same scene graph. We evaluate our approach on three public datasets: Visual Genome, COCO, and CLEVR. We achieve an Inception Score of 13.7 and 12.8, and an FID of 52.3 and 60.3, on COCO and Visual Genome, respectively. We perform ablation studies on our contributions to assess the impact of each component. Code is available at https://github.com/perceivelab/trf-sg2im","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80333562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Low-light image enhancement by deep learning network for improved illumination map 基于深度学习网络的低照度图像增强
Pub Date : 2023-03-01 DOI: 10.2139/ssrn.4327727
Manli Wang, Jiayue Li, Changsen Zhang
{"title":"Low-light image enhancement by deep learning network for improved illumination map","authors":"Manli Wang, Jiayue Li, Changsen Zhang","doi":"10.2139/ssrn.4327727","DOIUrl":"https://doi.org/10.2139/ssrn.4327727","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91381384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Region selection for occluded person re-identification via policy gradient 基于策略梯度的闭塞人再识别区域选择
Pub Date : 2023-02-01 DOI: 10.2139/ssrn.4253486
Bolei Xu
{"title":"Region selection for occluded person re-identification via policy gradient","authors":"Bolei Xu","doi":"10.2139/ssrn.4253486","DOIUrl":"https://doi.org/10.2139/ssrn.4253486","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78435177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Improved domain adaptive object detector via adversarial feature learning 基于对抗特征学习的改进域自适应目标检测器
Pub Date : 2023-02-01 DOI: 10.2139/ssrn.4013261
M. Marnissi, H. Fradi, A. Sahbani, N. Amara
{"title":"Improved domain adaptive object detector via adversarial feature learning","authors":"M. Marnissi, H. Fradi, A. Sahbani, N. Amara","doi":"10.2139/ssrn.4013261","DOIUrl":"https://doi.org/10.2139/ssrn.4013261","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76780497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Siamese Graph Attention Networks for robust visual object tracking 稳健视觉目标跟踪的Siamese图注意网络
Pub Date : 2023-02-01 DOI: 10.2139/ssrn.4067301
Junjie Lu, Shengyang Li, Weilong Guo, Manqi Zhao, Jian Yang, Yunfei Liu, Zhuang Zhou
{"title":"Siamese Graph Attention Networks for robust visual object tracking","authors":"Junjie Lu, Shengyang Li, Weilong Guo, Manqi Zhao, Jian Yang, Yunfei Liu, Zhuang Zhou","doi":"10.2139/ssrn.4067301","DOIUrl":"https://doi.org/10.2139/ssrn.4067301","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80693348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-domain multi-style merge for image captioning 图像字幕的跨域多样式合并
Pub Date : 2023-02-01 DOI: 10.2139/ssrn.4162675
Yiqun Duan, Zhen Wang, Li Yi, Jingya Wang
{"title":"Cross-domain multi-style merge for image captioning","authors":"Yiqun Duan, Zhen Wang, Li Yi, Jingya Wang","doi":"10.2139/ssrn.4162675","DOIUrl":"https://doi.org/10.2139/ssrn.4162675","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76136341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A unified RGB-T crowd counting learning framework 统一的RGB-T人群计数学习框架
Pub Date : 2023-01-01 DOI: 10.2139/ssrn.4098530
Siqi Gu, Z. Lian
{"title":"A unified RGB-T crowd counting learning framework","authors":"Siqi Gu, Z. Lian","doi":"10.2139/ssrn.4098530","DOIUrl":"https://doi.org/10.2139/ssrn.4098530","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91513628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Foreground discovery in streaming videos with dynamic construction of content graphs 动态构建内容图的流媒体视频前景发现
Pub Date : 2022-12-01 DOI: 10.2139/ssrn.4194725
Sepehr Farhand, G. Tsechpenakis
{"title":"Foreground discovery in streaming videos with dynamic construction of content graphs","authors":"Sepehr Farhand, G. Tsechpenakis","doi":"10.2139/ssrn.4194725","DOIUrl":"https://doi.org/10.2139/ssrn.4194725","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84519320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SSDA-YOLO: Semi-supervised Domain Adaptive YOLO for Cross-Domain Object Detection SSDA-YOLO:半监督域自适应YOLO跨域目标检测
Pub Date : 2022-11-04 DOI: 10.48550/arXiv.2211.02213
Huayi Zhou, Fei Jiang, Hongtao Lu
Domain adaptive object detection (DAOD) aims to alleviate transfer performance degradation caused by the cross-domain discrepancy. However, most existing DAOD methods are dominated by outdated and computationally intensive two-stage Faster R-CNN, which is not the first choice for industrial applications. In this paper, we propose a novel semi-supervised domain adaptive YOLO (SSDA-YOLO) based method to improve cross-domain detection performance by integrating the compact one-stage stronger detector YOLOv5 with domain adaptation. Specifically, we adapt the knowledge distillation framework with the Mean Teacher model to assist the student model in obtaining instance-level features of the unlabeled target domain. We also utilize the scene style transfer to cross-generate pseudo images in different domains for remedying image-level differences. In addition, an intuitive consistency loss is proposed to further align cross-domain predictions. We evaluate SSDA-YOLO on public benchmarks including PascalVOC, Clipart1k, Cityscapes, and Foggy Cityscapes. Moreover, to verify its generalization, we conduct experiments on yawning detection datasets collected from various real classrooms. The results show considerable improvements of our method in these DAOD tasks, which reveals both the effectiveness of proposed adaptive modules and the urgency of applying more advanced detectors in DAOD. Our code is available on url{https://github.com/hnuzhy/SSDA-YOLO}.
域自适应目标检测(Domain adaptive object detection, DAOD)旨在缓解由于跨域差异而导致的传输性能下降。然而,大多数现有的DAOD方法以过时且计算密集型的两级Faster R-CNN为主,这不是工业应用的首选。本文提出了一种新的基于半监督域自适应YOLO (SSDA-YOLO)的方法,通过将紧凑的一级强检测器YOLOv5与域自适应相结合来提高跨域检测性能。具体而言,我们将知识蒸馏框架与平均教师模型相结合,以帮助学生模型获得未标记目标域的实例级特征。我们还利用场景风格转移来交叉生成不同域的伪图像,以弥补图像级别的差异。此外,提出了一种直观的一致性损失来进一步对齐跨域预测。我们在公共基准上评估SSDA-YOLO,包括PascalVOC, Clipart1k, cityscape和大雾城市景观。此外,为了验证其泛化性,我们对来自各个真实教室的打哈欠检测数据集进行了实验。结果表明我们的方法在这些DAOD任务中有很大的改进,这表明了所提出的自适应模块的有效性以及在DAOD中应用更先进检测器的紧迫性。我们的代码可以在url{https://github.com/hnuzhy/SSDA-YOLO}上找到。
{"title":"SSDA-YOLO: Semi-supervised Domain Adaptive YOLO for Cross-Domain Object Detection","authors":"Huayi Zhou, Fei Jiang, Hongtao Lu","doi":"10.48550/arXiv.2211.02213","DOIUrl":"https://doi.org/10.48550/arXiv.2211.02213","url":null,"abstract":"Domain adaptive object detection (DAOD) aims to alleviate transfer performance degradation caused by the cross-domain discrepancy. However, most existing DAOD methods are dominated by outdated and computationally intensive two-stage Faster R-CNN, which is not the first choice for industrial applications. In this paper, we propose a novel semi-supervised domain adaptive YOLO (SSDA-YOLO) based method to improve cross-domain detection performance by integrating the compact one-stage stronger detector YOLOv5 with domain adaptation. Specifically, we adapt the knowledge distillation framework with the Mean Teacher model to assist the student model in obtaining instance-level features of the unlabeled target domain. We also utilize the scene style transfer to cross-generate pseudo images in different domains for remedying image-level differences. In addition, an intuitive consistency loss is proposed to further align cross-domain predictions. We evaluate SSDA-YOLO on public benchmarks including PascalVOC, Clipart1k, Cityscapes, and Foggy Cityscapes. Moreover, to verify its generalization, we conduct experiments on yawning detection datasets collected from various real classrooms. The results show considerable improvements of our method in these DAOD tasks, which reveals both the effectiveness of proposed adaptive modules and the urgency of applying more advanced detectors in DAOD. Our code is available on url{https://github.com/hnuzhy/SSDA-YOLO}.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84102224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Feature reconstruction and metric based network for few-shot object detection 基于特征重构和度量的小目标检测网络
Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4013260
Yuewen Li, W. Feng, Shuchang Lyu, Q. Zhao
{"title":"Feature reconstruction and metric based network for few-shot object detection","authors":"Yuewen Li, W. Feng, Shuchang Lyu, Q. Zhao","doi":"10.2139/ssrn.4013260","DOIUrl":"https://doi.org/10.2139/ssrn.4013260","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74988624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Comput. Vis. Image Underst.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1