首页 > 最新文献

Comput. Vis. Image Underst.最新文献

英文 中文
DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds daf3d:用于点云的双特征感知无锚单级3D探测器
Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4195234
Qingsong Tang, Xinyu Bai, Jinting Guo, Bolin Pan, Wuming Jiang
{"title":"DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds","authors":"Qingsong Tang, Xinyu Bai, Jinting Guo, Bolin Pan, Wuming Jiang","doi":"10.2139/ssrn.4195234","DOIUrl":"https://doi.org/10.2139/ssrn.4195234","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73336753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
RGB-T tracking by modality difference reduction and feature re-selection 基于模态差约简和特征重选择的RGB-T跟踪
Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4137009
Qian Zhang, Xueru Liu, Tianlu Zhang
{"title":"RGB-T tracking by modality difference reduction and feature re-selection","authors":"Qian Zhang, Xueru Liu, Tianlu Zhang","doi":"10.2139/ssrn.4137009","DOIUrl":"https://doi.org/10.2139/ssrn.4137009","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76276055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Multistage temporal convolution transformer for action segmentation 动作分割的多级时间卷积变压器
Pub Date : 2022-10-01 DOI: 10.2139/ssrn.4217347
Nicolas Aziere, S. Todorovic
{"title":"Multistage temporal convolution transformer for action segmentation","authors":"Nicolas Aziere, S. Todorovic","doi":"10.2139/ssrn.4217347","DOIUrl":"https://doi.org/10.2139/ssrn.4217347","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82895984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Appropriate grape color estimation based on metric learning for judging harvest timing 基于度量学习的适当的葡萄颜色估计用于判断收获时间
Pub Date : 2022-09-28 DOI: 10.1007/s00371-022-02666-0
Tatsuyoshi Amemiya, Chee Siang Leow, Prawit Buayai, Koji Makino, Xiaoyang Mao, H. Nishizaki
{"title":"Appropriate grape color estimation based on metric learning for judging harvest timing","authors":"Tatsuyoshi Amemiya, Chee Siang Leow, Prawit Buayai, Koji Makino, Xiaoyang Mao, H. Nishizaki","doi":"10.1007/s00371-022-02666-0","DOIUrl":"https://doi.org/10.1007/s00371-022-02666-0","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73349626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain MECCANO:用于工业领域人类行为理解的多模态自我中心数据集
Pub Date : 2022-09-19 DOI: 10.1016/S1077-3142(23)00144-3
F. Ragusa, Antonino Furnari, G. Farinella
{"title":"MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain","authors":"F. Ragusa, Antonino Furnari, G. Farinella","doi":"10.1016/S1077-3142(23)00144-3","DOIUrl":"https://doi.org/10.1016/S1077-3142(23)00144-3","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81075983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Revisiting Crowd Counting: State-of-the-art, Trends, and Future Perspectives 重访人群计数:最新技术、趋势和未来展望
Pub Date : 2022-09-14 DOI: 10.48550/arXiv.2209.07271
Muhammad Asif Khan, H. Menouar, R. Hamila
Crowd counting is an effective tool for situational awareness in public places. Automated crowd counting using images and videos is an interesting yet challenging problem that has gained significant attention in computer vision. Over the past few years, various deep learning methods have been developed to achieve state-of-the-art performance. The methods evolved over time vary in many aspects such as model architecture, input pipeline, learning paradigm, computational complexity, and accuracy gains etc. In this paper, we present a systematic and comprehensive review of the most significant contributions in the area of crowd counting. Although few surveys exist on the topic, our survey is most up-to date and different in several aspects. First, it provides a more meaningful categorization of the most significant contributions by model architectures, learning methods (i.e., loss functions), and evaluation methods (i.e., evaluation metrics). We chose prominent and distinct works and excluded similar works. We also sort the well-known crowd counting models by their performance over benchmark datasets. We believe that this survey can be a good resource for novice researchers to understand the progressive developments and contributions over time and the current state-of-the-art.
人群统计是公共场所态势感知的有效工具。利用图像和视频进行自动人群计数是计算机视觉领域中一个有趣而又具有挑战性的问题。在过去的几年里,各种深度学习方法已经被开发出来,以达到最先进的性能。随着时间的推移,这些方法在模型架构、输入管道、学习范式、计算复杂性和准确性增益等方面发生了变化。在本文中,我们对人群计数领域中最重要的贡献进行了系统和全面的回顾。虽然关于这个话题的调查很少,但我们的调查是最新的,在几个方面是不同的。首先,它通过模型架构、学习方法(即损失函数)和评估方法(即评估度量)对最重要的贡献提供了更有意义的分类。我们选择了突出和独特的作品,排除了相似的作品。我们还根据基准数据集上的性能对著名的人群计数模型进行了排序。我们相信这项调查可以为新手研究人员提供一个很好的资源,以了解随着时间的推移和当前的最新技术的进步发展和贡献。
{"title":"Revisiting Crowd Counting: State-of-the-art, Trends, and Future Perspectives","authors":"Muhammad Asif Khan, H. Menouar, R. Hamila","doi":"10.48550/arXiv.2209.07271","DOIUrl":"https://doi.org/10.48550/arXiv.2209.07271","url":null,"abstract":"Crowd counting is an effective tool for situational awareness in public places. Automated crowd counting using images and videos is an interesting yet challenging problem that has gained significant attention in computer vision. Over the past few years, various deep learning methods have been developed to achieve state-of-the-art performance. The methods evolved over time vary in many aspects such as model architecture, input pipeline, learning paradigm, computational complexity, and accuracy gains etc. In this paper, we present a systematic and comprehensive review of the most significant contributions in the area of crowd counting. Although few surveys exist on the topic, our survey is most up-to date and different in several aspects. First, it provides a more meaningful categorization of the most significant contributions by model architectures, learning methods (i.e., loss functions), and evaluation methods (i.e., evaluation metrics). We chose prominent and distinct works and excluded similar works. We also sort the well-known crowd counting models by their performance over benchmark datasets. We believe that this survey can be a good resource for novice researchers to understand the progressive developments and contributions over time and the current state-of-the-art.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73221761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
A novel fast combine-and-conquer object detector based on only one-level feature map 一种新的基于单级特征映射的快速组合征服目标检测器
Pub Date : 2022-09-01 DOI: 10.2139/ssrn.4003831
Jianhua Yang, Ke Wang, Ruifeng Li, Zhong Qin, P. Perner
{"title":"A novel fast combine-and-conquer object detector based on only one-level feature map","authors":"Jianhua Yang, Ke Wang, Ruifeng Li, Zhong Qin, P. Perner","doi":"10.2139/ssrn.4003831","DOIUrl":"https://doi.org/10.2139/ssrn.4003831","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90265176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multi-label out-of-distribution detection via exploiting sparsity and co-occurrence of labels 利用标签的稀疏性和共现性进行多标签超分布检测
Pub Date : 2022-09-01 DOI: 10.2139/ssrn.4151266
Lei Wang, Shengyue Huang, Luwen Huangfu, Bo Liu, Xiaohong Zhang
{"title":"Multi-label out-of-distribution detection via exploiting sparsity and co-occurrence of labels","authors":"Lei Wang, Shengyue Huang, Luwen Huangfu, Bo Liu, Xiaohong Zhang","doi":"10.2139/ssrn.4151266","DOIUrl":"https://doi.org/10.2139/ssrn.4151266","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85119390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
ST-VTON: Self-supervised vision transformer for image-based virtual try-on ST-VTON:用于基于图像的虚拟试戴的自监督视觉转换器
Pub Date : 2022-09-01 DOI: 10.2139/ssrn.4140115
Zheng Chong, L. Mo
{"title":"ST-VTON: Self-supervised vision transformer for image-based virtual try-on","authors":"Zheng Chong, L. Mo","doi":"10.2139/ssrn.4140115","DOIUrl":"https://doi.org/10.2139/ssrn.4140115","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87555131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Defending against attacks tailored to transfer learning via feature distancing 通过特征距离防御针对迁移学习的攻击
Pub Date : 2022-08-01 DOI: 10.2139/ssrn.3993063
Sangwoo Ji, N. Park, Dongbin Na, Bin Zhu, Jong Kim
{"title":"Defending against attacks tailored to transfer learning via feature distancing","authors":"Sangwoo Ji, N. Park, Dongbin Na, Bin Zhu, Jong Kim","doi":"10.2139/ssrn.3993063","DOIUrl":"https://doi.org/10.2139/ssrn.3993063","url":null,"abstract":"","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87477450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Comput. Vis. Image Underst.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1