首页 > 最新文献

Computing in Science & Engineering最新文献

英文 中文
An Intuitive Tutorial to Gaussian Process Regression 高斯过程回归直观教程
IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-14 DOI: 10.1109/mcse.2023.3342149
Jie Wang
This tutorial aims to provide an intuitive introduction to Gaussian process regression (GPR). GPR models have been widely used in machine learning applications due to their representation flexibility and inherent capability to quantify uncertainty over predictions. The tutorial starts with explaining the basic concepts that a Gaussian process is built on, including multivariate normal distribution, kernels, nonparametric models, and joint and conditional probability. It then provides a concise description of GPR and an implementation of a standard GPR algorithm. In addition, the tutorial reviews packages for implementing state-of-the-art Gaussian process algorithms. This tutorial is accessible to a broad audience, including those new to machine learning, ensuring a clear understanding of GPR fundamentals.
本教程旨在直观地介绍高斯过程回归(GPR)。由于高斯过程模型表示灵活,而且具有量化预测不确定性的内在能力,因此在机器学习应用中得到了广泛应用。教程首先解释了高斯过程的基本概念,包括多元正态分布、核、非参数模型以及联合概率和条件概率。然后,它简要介绍了 GPR 和标准 GPR 算法的实现。此外,本教程还评述了实现最先进高斯过程算法的软件包。本教程面向广大读者,包括机器学习新手,确保他们能够清晰地理解 GPR 的基本原理。
{"title":"An Intuitive Tutorial to Gaussian Process Regression","authors":"Jie Wang","doi":"10.1109/mcse.2023.3342149","DOIUrl":"https://doi.org/10.1109/mcse.2023.3342149","url":null,"abstract":"This tutorial aims to provide an intuitive introduction to Gaussian process regression (GPR). GPR models have been widely used in machine learning applications due to their representation flexibility and inherent capability to quantify uncertainty over predictions. The tutorial starts with explaining the basic concepts that a Gaussian process is built on, including multivariate normal distribution, kernels, nonparametric models, and joint and conditional probability. It then provides a concise description of GPR and an implementation of a standard GPR algorithm. In addition, the tutorial reviews packages for implementing state-of-the-art Gaussian process algorithms. This tutorial is accessible to a broad audience, including those new to machine learning, ensuring a clear understanding of GPR fundamentals.","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"12 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139767504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensorlab+: A Case Study on Reproducibility in Tensor Research Tensorlab+:张量研究可重复性案例研究
IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-11 DOI: 10.1109/mcse.2023.3340434
Stijn Hendrikx, Raphaël Widdershoven, Nico Vervliet, Lieven De Lathauwer
Tensor methods emerge as an important class of basic techniques, generalizing matrix methods to multiway data and models. We have recently released Tensorlab+, which is a downloadable archive of code and data that allows peers to reproduce the experiments reported in our publications on tensor decompositions and applications. We briefly discuss the basic tensor tools and give an introduction to the contents of Tensorlab+. We elaborate on the steps that were taken to ensure the reproducibility of the experiments and the quality of the code.
张量方法是一类重要的基本技术,它将矩阵方法推广到多向数据和模型中。我们最近发布了 Tensorlab+,这是一个可下载的代码和数据档案库,允许同行重现我们在张量分解和应用方面的出版物中报道的实验。我们将简要讨论基本的张量工具,并介绍 Tensorlab+ 的内容。我们将详细介绍为确保实验的可重复性和代码质量所采取的步骤。
{"title":"Tensorlab+: A Case Study on Reproducibility in Tensor Research","authors":"Stijn Hendrikx, Raphaël Widdershoven, Nico Vervliet, Lieven De Lathauwer","doi":"10.1109/mcse.2023.3340434","DOIUrl":"https://doi.org/10.1109/mcse.2023.3340434","url":null,"abstract":"Tensor methods emerge as an important class of basic techniques, generalizing matrix methods to multiway data and models. We have recently released Tensorlab+, which is a downloadable archive of code and data that allows peers to reproduce the experiments reported in our publications on tensor decompositions and applications. We briefly discuss the basic tensor tools and give an introduction to the contents of Tensorlab+. We elaborate on the steps that were taken to ensure the reproducibility of the experiments and the quality of the code.","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"17 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Earth Virtualization Engines: A Technical Perspective 地球虚拟化引擎:技术视角
4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-05-01 DOI: 10.1109/mcse.2023.3311148
Torsten Hoefler, Bjorn Stevens, Andreas F. Prein, Johanna Baehr, Thomas Schulthess, Thomas F. Stocker, John Taylor, Daniel Klocke, Pekka Manninen, Piers M. Forster, Tobias Kölling, Nicolas Gruber, Hartwig Anzt, Claudia Frauen, Florian Ziemen, Milan Klöwer, Karthik Kashinath, Christoph Schär, Oliver Fuhrer, Bryan N. Lawrence
Participants of the Berlin Summit on Earth Virtualization Engines (EVEs) discussed ideas and concepts to improve our ability to cope with climate change. EVEs aim to provide interactive and accessible climate simulations and data for a wide range of users. They combine high-resolution physics-based models with machine learning techniques to improve the fidelity, efficiency, and interpretability of climate projections. At its core, EVEs offer a federated data layer that enables simple and fast access to exabyte-sized climate data through simple interfaces. In this article, we summarize the technical challenges and opportunities for developing EVEs, and argue that they are essential for addressing the consequences of climate change.
柏林地球虚拟化引擎峰会(eve)的与会者讨论了提高我们应对气候变化能力的想法和概念。EVEs旨在为广大用户提供交互式和可访问的气候模拟和数据。他们将高分辨率物理模型与机器学习技术相结合,以提高气候预测的保真度、效率和可解释性。在其核心,EVEs提供了一个联邦数据层,可以通过简单的接口简单快速地访问亿字节大小的气候数据。在本文中,我们总结了开发ev的技术挑战和机遇,并认为它们对于解决气候变化的后果至关重要。
{"title":"Earth Virtualization Engines: A Technical Perspective","authors":"Torsten Hoefler, Bjorn Stevens, Andreas F. Prein, Johanna Baehr, Thomas Schulthess, Thomas F. Stocker, John Taylor, Daniel Klocke, Pekka Manninen, Piers M. Forster, Tobias Kölling, Nicolas Gruber, Hartwig Anzt, Claudia Frauen, Florian Ziemen, Milan Klöwer, Karthik Kashinath, Christoph Schär, Oliver Fuhrer, Bryan N. Lawrence","doi":"10.1109/mcse.2023.3311148","DOIUrl":"https://doi.org/10.1109/mcse.2023.3311148","url":null,"abstract":"Participants of the Berlin Summit on Earth Virtualization Engines (EVEs) discussed ideas and concepts to improve our ability to cope with climate change. EVEs aim to provide interactive and accessible climate simulations and data for a wide range of users. They combine high-resolution physics-based models with machine learning techniques to improve the fidelity, efficiency, and interpretability of climate projections. At its core, EVEs offer a federated data layer that enables simple and fast access to exabyte-sized climate data through simple interfaces. In this article, we summarize the technical challenges and opportunities for developing EVEs, and argue that they are essential for addressing the consequences of climate change.","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building on Communities to Further Software Sustainability 以社区为基础,进一步提高软件的可持续性
4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-05-01 DOI: 10.1109/mcse.2023.3318749
Anne Fouilloux, Jean Iaquinta, Alok Kumar Gupta, Hamish Struthers, Oskar Landgren, Prashanth Dwarakanath, Tommi Bergman, Yanchun He
The Nordic e-Infrastructure Collaboration on Earth System Modeling Tools is a small community comprising members with diverse backgrounds, skills, and interests. Largely dependent on temporary staff to develop, operate, and maintain large scientific codes, this community devised strategies to enhance software reusability and sustainability. These strategies include collaborating with other communities for support, adopting Open Science as well as findable, accessible, interoperable, and reusable principles to optimize resource usage, growing essential knowledge within the community, and setting up a community of practice to facilitate onboarding and offboarding. The strategies also promote inclusiveness, foster external collaboration, and recognize technical contributions.
地球系统建模工具北欧电子基础设施协作是一个由不同背景、技能和兴趣的成员组成的小社区。很大程度上依赖于临时人员来开发、操作和维护大型科学代码,这个社区设计了策略来增强软件的可重用性和可持续性。这些策略包括与其他社区合作以获得支持,采用开放科学以及可查找、可访问、可互操作和可重用的原则来优化资源使用,在社区内增长基本知识,并建立一个实践社区以促进入职和离职。这些战略还促进包容性,促进外部合作,并承认技术贡献。
{"title":"Building on Communities to Further Software Sustainability","authors":"Anne Fouilloux, Jean Iaquinta, Alok Kumar Gupta, Hamish Struthers, Oskar Landgren, Prashanth Dwarakanath, Tommi Bergman, Yanchun He","doi":"10.1109/mcse.2023.3318749","DOIUrl":"https://doi.org/10.1109/mcse.2023.3318749","url":null,"abstract":"The Nordic e-Infrastructure Collaboration on Earth System Modeling Tools is a small community comprising members with diverse backgrounds, skills, and interests. Largely dependent on temporary staff to develop, operate, and maintain large scientific codes, this community devised strategies to enhance software reusability and sustainability. These strategies include collaborating with other communities for support, adopting Open Science as well as findable, accessible, interoperable, and reusable principles to optimize resource usage, growing essential knowledge within the community, and setting up a community of practice to facilitate onboarding and offboarding. The strategies also promote inclusiveness, foster external collaboration, and recognize technical contributions.","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Sustainable Computing IEEE可持续计算汇刊
4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-05-01 DOI: 10.1109/mcse.2023.3324157
{"title":"IEEE Transactions on Sustainable Computing","authors":"","doi":"10.1109/mcse.2023.3324157","DOIUrl":"https://doi.org/10.1109/mcse.2023.3324157","url":null,"abstract":"","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"194 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publications Seek: 2025 Editors in Chief 出版物招聘:2025年主编
4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-05-01 DOI: 10.1109/mcse.2023.3324165
{"title":"Publications Seek: 2025 Editors in Chief","authors":"","doi":"10.1109/mcse.2023.3324165","DOIUrl":"https://doi.org/10.1109/mcse.2023.3324165","url":null,"abstract":"","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Computer Society Call for Papers IEEE计算机学会征文
4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-05-01 DOI: 10.1109/mcse.2023.3324161
{"title":"IEEE Computer Society Call for Papers","authors":"","doi":"10.1109/mcse.2023.3324161","DOIUrl":"https://doi.org/10.1109/mcse.2023.3324161","url":null,"abstract":"","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Python multiprocessing approach for fast geostatistical simulations of subglacial topography 冰下地形快速地质统计模拟的Python多处理方法
4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-05-01 DOI: 10.1109/mcse.2023.3317773
Nathan W. Schoedl, Emma J. MacKie, Michael J. Field, Eric A. Stubbs, Allan Zhang, Matthew Hibbs, Mathieu Gravey
Realistically rough stochastic realizations of subglacial bed topography are crucial for improving our understanding of basal processes and quantifying uncertainty in sea-level rise projections with respect to topographic uncertainty. This can be achieved with Sequential Gaussian Simulation (SGS), which is used to generate multiple non-unique realizations of geological phenomena that sample the uncertainty space. However, SGS is very CPU intensive with a computational complexity of O( Nk 3 ), where N is the number of grid cells to simulate, and k is the number of neighboring points used for conditioning. This complexity makes SGS prohibitively time-consuming to implement at ice-sheet scales or fine resolutions. To reduce the time-cost, we implement and test a multiprocess version of SGS using Python’s multiprocessing module. By parallelizing the calculation of the weight parameters used in SGS, we achieve a speedup of 9.5 running on 16 processors for an N of 128,097. This speedup, as well as the speedup from using multiple processors, increases with N . This speed improvement makes SGS viable for large-scale topography mapping and ensemble ice-sheet modeling. Additionally, we have made our code repository and user tutorials publicly available (GitHub, Zenodo that others can use our multiprocess implementation of SGS on different datasets.
实际上,冰下床地形的粗略随机实现对于提高我们对基础过程的理解和量化海平面上升预测中与地形不确定性相关的不确定性至关重要。这可以通过顺序高斯模拟(SGS)来实现,该方法用于生成采样不确定性空间的地质现象的多个非唯一实现。然而,SGS是非常CPU密集的,其计算复杂度为0 (Nk 3),其中N是要模拟的网格单元的数量,k是用于条件反射的邻近点的数量。这种复杂性使得SGS在冰盖尺度或精细分辨率下的执行非常耗时。为了减少时间成本,我们使用Python的多进程模块实现并测试了SGS的多进程版本。通过并行计算SGS中使用的权重参数,我们在16个处理器上实现了9.5的加速,N为128,097。这个加速,以及使用多个处理器的加速,随着N的增加而增加。这种速度的提高使SGS能够用于大规模地形测绘和整体冰盖建模。此外,我们已经公开了我们的代码库和用户教程(GitHub, Zenodo),以便其他人可以在不同的数据集上使用我们的多进程SGS实现。
{"title":"A Python multiprocessing approach for fast geostatistical simulations of subglacial topography","authors":"Nathan W. Schoedl, Emma J. MacKie, Michael J. Field, Eric A. Stubbs, Allan Zhang, Matthew Hibbs, Mathieu Gravey","doi":"10.1109/mcse.2023.3317773","DOIUrl":"https://doi.org/10.1109/mcse.2023.3317773","url":null,"abstract":"Realistically rough stochastic realizations of subglacial bed topography are crucial for improving our understanding of basal processes and quantifying uncertainty in sea-level rise projections with respect to topographic uncertainty. This can be achieved with Sequential Gaussian Simulation (SGS), which is used to generate multiple non-unique realizations of geological phenomena that sample the uncertainty space. However, SGS is very CPU intensive with a computational complexity of O( <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">Nk</i> <sup xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">3</sup> ), where <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">N</i> is the number of grid cells to simulate, and <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">k</i> is the number of neighboring points used for conditioning. This complexity makes SGS prohibitively time-consuming to implement at ice-sheet scales or fine resolutions. To reduce the time-cost, we implement and test a multiprocess version of SGS using Python’s multiprocessing module. By parallelizing the calculation of the weight parameters used in SGS, we achieve a speedup of 9.5 running on 16 processors for an <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">N</i> of 128,097. This speedup, as well as the speedup from using multiple processors, increases with <italic xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">N</i> . This speed improvement makes SGS viable for large-scale topography mapping and ensemble ice-sheet modeling. Additionally, we have made our code repository and user tutorials publicly available (GitHub, Zenodo that others can use our multiprocess implementation of SGS on different datasets.","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135516489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Over the Rainbow: 21st Century Security & Privacy Podcast 彩虹之上:21世纪的安全隐私的播客
4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-05-01 DOI: 10.1109/mcse.2023.3324155
{"title":"Over the Rainbow: 21st Century Security &amp; Privacy Podcast","authors":"","doi":"10.1109/mcse.2023.3324155","DOIUrl":"https://doi.org/10.1109/mcse.2023.3324155","url":null,"abstract":"","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A finite-element-based cohesive zone model of water-filled surface crevasse propagation in floating ice tongues 浮冰舌充水表面裂缝扩展的有限元黏结带模型
4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-05-01 DOI: 10.1109/mcse.2023.3315661
Yuxiang Gao, Gourab Ghosh, Stephen Jiménez, Ravindra Duddu
{"title":"A finite-element-based cohesive zone model of water-filled surface crevasse propagation in floating ice tongues","authors":"Yuxiang Gao, Gourab Ghosh, Stephen Jiménez, Ravindra Duddu","doi":"10.1109/mcse.2023.3315661","DOIUrl":"https://doi.org/10.1109/mcse.2023.3315661","url":null,"abstract":"","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135563362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computing in Science & Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1