FELASA and AALAS established a joint working group to advise on good practices for the exchange of fish for research. In a first manuscript, the working group made recommendations for health monitoring and reporting of monitoring results. The focus of this second related manuscript is biosecurity in fish facilities. First, we define the risk of contamination of personnel by zoonotic pathogens from fish or from system water, including human mycobacteriosis. Preventive measures are recommended, such as wearing task-specific personal protective equipment. Then we discuss biosecurity, highlighting the establishment of biosecurity barriers to preserve the health status of a facility. A functional biosecurity program relies on integration of the entire animal facility organization, including the flow of staff and animals, water treatments, and equipment sanitation. Finally, we propose 4 steps for introducing new fish colonies: consideration of international trade and national restrictions; assessing risk according to fish source and developmental stage; establishing quarantine barriers; and the triage, screening, and treatment of newly imported fish. We then provide 3 realistic sample scenarios to illustrate practical biosecurity risk assessments and mitigation measures based on considerations of health status and quarantine conditions.
As the use of zebrafish (Danio rerio) as a research model continues to rise, so too will the shipping and sharing of zebrafish strains across collaborating institutions. If done incorrectly, shipping can result in significant mortality, welfare concerns, and loss of valuable resources for researchers and research institutions. Here we introduce a novel method to track temperatures of zebrafish containers during shipping and show that internal packaging temperatures are directly affected by the external temperatures. We used temperature logging Thermochron iButtons to track the temperatures of 2 packages containing adult zebrafish that were shipped overnight from Dallas, TX to Columbus, OH during winter following recommended fish shipping guidelines. We found that the external packaging of both boxes of fish were exposed to temperatures that had previously been shown to be lethal to zebrafish. However, internal temperatures and, more specifically, water temperature, stayed within 24.0 to 26.5°C during shipment, resulting in 100% survival of adult zebrafish. This novel method of tracking packaging temperatures of live fish during shipping can help to inform fish health status on arrival.
The exchange of fish for research may expose an aquatic laboratory to pathogen contamination as incoming fish can introduce bacteria, fungi, parasites, and viruses capable of affecting both experimental results and fish and personnel health and welfare. To develop risk mitigation strategies, FELASA and AALAS established a joint working group to recommend good practices for health monitoring of laboratory fish. The recommendations address all fish species used for research, with a particular focus on zebrafish (Danio rerio). First, the background of the working group and key definitions are provided. Next, fish diseases of high impact are described. Third, recommendations are made for health monitoring of laboratory fishes. The recommendations emphasize the importance of daily observation of the fish and strategies to determine fish colony health status. Finally, report templates are proposed for historical screening data and aquatic facility description to facilitate biohazard risk assessment when exchanging fish.
Otitis externa (OE) is a condition that involves inflammation of the external ear canal. OE is a commonly reported condition in humans and some veterinary species (for example, dogs, cats), but has not been reported in the literature in macaques. Here, we present a case series of acute and chronic OE likely precipitated by abrasion of the ear canal with a tympanic membrane electrode in 7 adult male rhesus macaques (Macaca mulatta). All animals displayed purulent, mucinous discharge from 1 or both ears with 3 macaques also displaying signs of an upper respiratory tract (URT) infection during the same period. A variety of diagnostic and treatment options were pursued including consultation with an otolaryngologist necessitated by the differences in response to treatment in macaques as compared with other common veterinary species. Due to the nature of the studies in which these macaques were enrolled, standard audiological testing was performed before and after OE, including tympanometry, auditory brainstem responses (ABRs), and distortion product otoacoustic emissions (DPOAEs). After completion of study procedures, relevant tissues were collected for necropsy and histopathology. Impaired hearing was found in all macaques even after apparent resolution of OE signs. Necropsy findings included abnormalities in the tympanic membrane, ossicular chain, and middle ear cavity, suggesting that the hearing impairment was at least partly conductive in nature. We concluded that OE likely resulted from mechanical disruption of the epithelial lining of the ear canal by the ABR electrode, thereby allowing the development of opportunistic infections. OE, while uncommon in macaques, can affect them and should be included as a differential diagnosis of any macaque presenting with otic discharge and/or auricular discomfort.
The Yorkshire-cross swine model is a valuable translational model commonly used to study cardiovascular physiology and response to insult. Although the effects of vasoactive medications have been well described in healthy swine, the effects of these medications during hemorrhagic shock are less studied. In this study, we sought to expand the utility of the swine model by characterizing the hemodynamic changes that occurred after the administration of commonly available vasoactive medications during euvolemic and hypovolemic states. To this end, we anesthetized and established femoral arterial, central venous, and pulmonary arterial access in 15 juvenile Yorkshire-cross pigs. The pigs then received a series of rapidly metabolized but highly vasoactive medications in a standard dosing sequence. After completion of this sequence, each pig underwent a 30-mL/kg hemorrhage over 10 min, and the standard dosing sequence was repeated. We then used standard sta- tistical techniques to compare the effects of these vasoactive medications on a variety of hemodynamic parameters between the euvolemic and hemorrhagic states. All subjects completed the study protocol. The responses in the hemorrhagic state were often attenuated or even opposite of those in the euvolemic state. For example, phenylephrine decreased the mean arterial blood pressure during the euvolemic state but increased it in the hemorrhagic state. These results clarify previously poorly defined responses to commonly used vasoactive agents during the hemorrhagic state in swine. Our findings also demonstrate the need to consider the complex and dynamic physiologic state of hemorrhage when anticipating the effects of vasoactive drugs and planning study protocols.