Background: Low back pain is a common symptom of intervertebral disc degeneration (IDD), which seriously affects the quality of life of patients. The abnormal apoptosis and senescence of nucleus pulposus (NP) cells play important roles in the pathogenesis of IDD. Proanthocyanidins (PACs) are polyphenolic compounds with anti-apoptosis and anti-aging effects. However, their functions in NP cells are not yet clear. Therefore, this study was performed to explore the effects of PACs on NP cell apoptosis and aging and the underlying mechanisms of action.
Methods: Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined TUNEL assays. Levels of apoptosis-associated molecules (Bcl-2, Bax, C-caspase-3 and Caspase-9) were evaluated via western blot. The senescence was observed through SA-β-gal staining and western blotting analysis was performed to observe the expression of senescence-related molecules (p-P53, P53, P21 and P16).
Results: Pretreatment with PACs exhibited protective effects against IL-1β-induced NP cell apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. PACs could also alleviate the increase of p-p53, P21, and P16 in IL-1β-treated NP cells. SA-β-gal staining showed that IL-1β-induced senescence of NP cells was prevented by PACs pertreatment. In addition, PACs activated PI3K/Akt pathway in IL-1β-stimulated NP cells. However, these protected effects were inhibited after LY294002 treatment.
Conclusion: The results of the present study showed that PACs inhibit IL-1β-induced apoptosis and aging of NP cells by activating the PI3K/Akt pathway, and suggested that PACs have therapeutic potential for IDD.
{"title":"Proanthocyanidins inhibit the apoptosis and aging of nucleus pulposus cells through the PI3K/Akt pathway delaying intervertebral disc degeneration.","authors":"Hai-Wei Chen, Ming-Qiang Liu, Guang-Zhi Zhang, Cang-Yu Zhang, Zhao-Heng Wang, Ai-Xin Lin, Ji-He Kang, Wen-Zhao Liu, Xu-Dong Guo, Yi-Dian Wang, Xue-Wen Kang","doi":"10.1080/03008207.2022.2063121","DOIUrl":"https://doi.org/10.1080/03008207.2022.2063121","url":null,"abstract":"<p><strong>Background: </strong>Low back pain is a common symptom of intervertebral disc degeneration (IDD), which seriously affects the quality of life of patients. The abnormal apoptosis and senescence of nucleus pulposus (NP) cells play important roles in the pathogenesis of IDD. Proanthocyanidins (PACs) are polyphenolic compounds with anti-apoptosis and anti-aging effects. However, their functions in NP cells are not yet clear. Therefore, this study was performed to explore the effects of PACs on NP cell apoptosis and aging and the underlying mechanisms of action.</p><p><strong>Methods: </strong>Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. The apoptosis rate was determined TUNEL assays. Levels of apoptosis-associated molecules (Bcl-2, Bax, C-caspase-3 and Caspase-9) were evaluated via western blot. The senescence was observed through SA-β-gal staining and western blotting analysis was performed to observe the expression of senescence-related molecules (p-P53, P53, P21 and P16).</p><p><strong>Results: </strong>Pretreatment with PACs exhibited protective effects against IL-1β-induced NP cell apoptosis including apoptosis rate, expressions of proapoptosis and antiapoptosis related genes and protein. PACs could also alleviate the increase of p-p53, P21, and P16 in IL-1β-treated NP cells. SA-β-gal staining showed that IL-1β-induced senescence of NP cells was prevented by PACs pertreatment. In addition, PACs activated PI3K/Akt pathway in IL-1β-stimulated NP cells. However, these protected effects were inhibited after LY294002 treatment.</p><p><strong>Conclusion: </strong>The results of the present study showed that PACs inhibit IL-1β-induced apoptosis and aging of NP cells by activating the PI3K/Akt pathway, and suggested that PACs have therapeutic potential for IDD.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 6","pages":"650-662"},"PeriodicalIF":2.9,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10219820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Mesenchymal stromal cells (MSCs) injection has been proposed as an innovative treatment for knee osteoarthritis (KOA). Since, allogeneic MSCs can be available as off-the-shelf products, they are preferable in regenerative medicine. Among different sources for MSCs, adipose-derived MSCs (AD-MSCs) appear to be more available.
Methods: Three patients with KOA were enrolled in this study. A total number of 100 × 106 AD-MSCs was injected intra-articularly, per affected knee. They were followed up for 6 months by the assessment of clinical outcomes, magnetic resonance imaging (MRI), and serum inflammatory biomarkers.
Results: The primary outcome of this study was safety and feasibility of allogeneic AD-MSCs injection during the 6 months follow-up. Fortunately, no serious adverse events (SAEs) were reported. Assessment of secondary outcomes of visual analogue scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and knee osteoarthritis outcome score (KOOS) indicated improvement in all patients. Comparison between baseline and endpoint findings of MRI demonstrated a slight improvement in two patients. In addition, decrease in serum cartilage oligomeric matrix protein (COMP) and hyaluronic acid (HA) indicated the possibility of reduced cartilage degeneration. Moreover, quantification of serum interleukin-10 (IL-10) and interleukin-6 (IL-6) levels indicated that the host immune system immunomodulated after infusion of AD-MSCs.
Conclusion: Intra-articular injection of AD-MSCs is safe and could be effective in cartilage regeneration in KOA. Preliminary assessment after six-month follow-up suggests the potential efficacy of this intervention which would need to be confirmed in randomized controlled trials on a larger population.
Trial registration: This study was registered in the Iranian registry of clinical trials (https://en.irct.ir/trial/46) in 24 April 2018 with identifier IRCT20080728001031N23.
{"title":"Clinical and laboratory findings following transplantation of allogeneic adipose-derived mesenchymal stromal cells in knee osteoarthritis, a brief report.","authors":"Bahareh Sadri, Atena Tamimi, Shirin Nouraein, Abolfazl Bagheri Fard, Javad Mohammadi, Mehdi Mohammadpour, Mohammad Hassanzadeh, Amir Bajouri, Hoda Madani, Maryam Barekat, Shahedeh Karimi Torshizi, Mahrooz Malek, Maede Ghorbani Liastani, Alireza Beheshti Maal, Maryam Niknejadi, Massoud Vosough","doi":"10.1080/03008207.2022.2074841","DOIUrl":"https://doi.org/10.1080/03008207.2022.2074841","url":null,"abstract":"<p><strong>Background: </strong>Mesenchymal stromal cells (MSCs) injection has been proposed as an innovative treatment for knee osteoarthritis (KOA). Since, allogeneic MSCs can be available as off-the-shelf products, they are preferable in regenerative medicine. Among different sources for MSCs, adipose-derived MSCs (AD-MSCs) appear to be more available.</p><p><strong>Methods: </strong>Three patients with KOA were enrolled in this study. A total number of 100 × 10<sup>6</sup> AD-MSCs was injected intra-articularly, per affected knee. They were followed up for 6 months by the assessment of clinical outcomes, magnetic resonance imaging (MRI), and serum inflammatory biomarkers.</p><p><strong>Results: </strong>The primary outcome of this study was safety and feasibility of allogeneic AD-MSCs injection during the 6 months follow-up. Fortunately, no serious adverse events (SAEs) were reported. Assessment of secondary outcomes of visual analogue scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and knee osteoarthritis outcome score (KOOS) indicated improvement in all patients. Comparison between baseline and endpoint findings of MRI demonstrated a slight improvement in two patients. In addition, decrease in serum cartilage oligomeric matrix protein (COMP) and hyaluronic acid (HA) indicated the possibility of reduced cartilage degeneration. Moreover, quantification of serum interleukin-10 (IL-10) and interleukin-6 (IL-6) levels indicated that the host immune system immunomodulated after infusion of AD-MSCs.</p><p><strong>Conclusion: </strong>Intra-articular injection of AD-MSCs is safe and could be effective in cartilage regeneration in KOA. Preliminary assessment after six-month follow-up suggests the potential efficacy of this intervention which would need to be confirmed in randomized controlled trials on a larger population.</p><p><strong>Trial registration: </strong>This study was registered in the Iranian registry of clinical trials (https://en.irct.ir/trial/46) in 24 April 2018 with identifier IRCT20080728001031N23.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 6","pages":"663-674"},"PeriodicalIF":2.9,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10469267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Mechanical stimuli are essential for the maintenance of tendon tissue homeostasis. The study aims to elucidate the mechanobiological mechanisms underlying the maintenance of tenocyte homeostasis by cyclic mechanical stretch under high-glucose (HG) condition.
Materials and methods: Primary tenocytes were isolated from rat Achilles tendon and 2D-cultured under HG condition. The in vitro effects of a single bout, 2-h cyclic biaxial stretch session (1 Hz, 8%) on primary rat tenocytes were explored through Flexcell system. Cell viability, tenogenic gene expression, intracellular calcium concentration, focal adhesion kinase (FAK) expression, and signaling pathway activation were analyzed in tenocytes with or without mechanical stretch.
Results: Mechanical stretch increased tenocyte proliferation and upregulated early growth response protein 1 (Egr1) expression. An increase in intracellular calcium was observed after 30 min of stretching. Mechanical stretch phosphorylated FAK, calmodulin-dependent protein kinase kinase 2 (CaMKK2), and 5' adenosine monophosphate-activated protein kinase (AMPK) in a time-dependent manner, and these effects were abrogated after blocking intracellular calcium. Inhibition of FAK, CaMKK2, and AMPK downregulated the expression of Egr1. In addition, mechanical stretch reinforced cytoskeletal organization via calcium (Ca2+)/FAK signaling.
Conclusions: Our study demonstrated that mechanical stretch-induced calcium influx activated CaMKK2/AMPK signaling and FAK-cytoskeleton reorganization, thereby promoting the expression of Egr1, which may help maintain tendon cell characteristics and homeostasis in the context of diabetic tendinopathy.
{"title":"Cyclic mechanical stretch regulates the AMPK/Egr1 pathway in tenocytes via Ca2+-mediated mechanosensing.","authors":"Yu-Ting Huang, Yu-Fu Wu, Hsing-Kuo Wang, Chung-Chen Jane Yao, Yi-Heng Chiu, Jui-Sheng Sun, Yuan-Hung Chao","doi":"10.1080/03008207.2022.2044321","DOIUrl":"https://doi.org/10.1080/03008207.2022.2044321","url":null,"abstract":"<p><strong>Purpose: </strong>Mechanical stimuli are essential for the maintenance of tendon tissue homeostasis. The study aims to elucidate the mechanobiological mechanisms underlying the maintenance of tenocyte homeostasis by cyclic mechanical stretch under high-glucose (HG) condition.</p><p><strong>Materials and methods: </strong>Primary tenocytes were isolated from rat Achilles tendon and 2D-cultured under HG condition. The <i>in vitro</i> effects of a single bout, 2-h cyclic biaxial stretch session (1 Hz, 8%) on primary rat tenocytes were explored through Flexcell system. Cell viability, tenogenic gene expression, intracellular calcium concentration, focal adhesion kinase (FAK) expression, and signaling pathway activation were analyzed in tenocytes with or without mechanical stretch.</p><p><strong>Results: </strong>Mechanical stretch increased tenocyte proliferation and upregulated early growth response protein 1 (Egr1) expression. An increase in intracellular calcium was observed after 30 min of stretching. Mechanical stretch phosphorylated FAK, calmodulin-dependent protein kinase kinase 2 (CaMKK2), and 5' adenosine monophosphate-activated protein kinase (AMPK) in a time-dependent manner, and these effects were abrogated after blocking intracellular calcium. Inhibition of FAK, CaMKK2, and AMPK downregulated the expression of Egr1. In addition, mechanical stretch reinforced cytoskeletal organization via calcium (Ca2+)/FAK signaling.</p><p><strong>Conclusions: </strong>Our study demonstrated that mechanical stretch-induced calcium influx activated CaMKK2/AMPK signaling and FAK-cytoskeleton reorganization, thereby promoting the expression of Egr1, which may help maintain tendon cell characteristics and homeostasis in the context of diabetic tendinopathy.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 6","pages":"590-602"},"PeriodicalIF":2.9,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10757517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01Epub Date: 2022-03-24DOI: 10.1080/03008207.2022.2048827
Kalle Karjalainen, Petri Tanska, Scott C Sibole, Santtu Mikkonen, Walter Herzog, Rami K Korhonen, Eng Kuan Moo
Objective: Histochemical characterization of proteoglycan content in articular cartilage is important for the understanding of osteoarthritis pathogenesis. However, cartilage cells may interfere with the measurement of matrix proteoglycan content in small animal models (e.g. mice and rats) due to the high cell volume fraction (38%) in mice compared to human tissue (~1%). We investigated whether excluding the cells from image analysis affects the histochemically measured proteoglycan content of rat knee joint cartilage and assessed the effectiveness of a deep learning algorithm-based tool named U-Net in cell segmentation.
Design: Histological sections were stained with Safranin-O, after which optical densities were measured using digital densitometry to estimate proteoglycan content. U-Net was trained with 600 annotated Safranin-O cartilage images for exclusion of cells from the cartilage extracellular matrix. Optical densities of the ECM with and without cells were compared as a function of normalized tissue depth.
Results: U-Net cell segmentation was accurate, with the measured cell area fraction following largely that of ground-truth images (average difference: 4.3%). Cell area fraction varied as a function of tissue depth and took up 8-21% of the tissue area. The exclusion of cells from the analysis led to an increase in the analyzed depth-dependent optical density of cartilage by approximately 0.6-1.8% (p < 0.01).
Conclusions: Although the effect of cells on the analyzed proteoglycan content is small, it should be considered for improved sensitivity, especially at the onset of the disease during which cells may proliferate in small animals.
{"title":"Effect of cells on spatial quantification of proteoglycans in articular cartilage of small animals.","authors":"Kalle Karjalainen, Petri Tanska, Scott C Sibole, Santtu Mikkonen, Walter Herzog, Rami K Korhonen, Eng Kuan Moo","doi":"10.1080/03008207.2022.2048827","DOIUrl":"10.1080/03008207.2022.2048827","url":null,"abstract":"<p><strong>Objective: </strong>Histochemical characterization of proteoglycan content in articular cartilage is important for the understanding of osteoarthritis pathogenesis. However, cartilage cells may interfere with the measurement of matrix proteoglycan content in small animal models (e.g. mice and rats) due to the high cell volume fraction (38%) in mice compared to human tissue (~1%). We investigated whether excluding the cells from image analysis affects the histochemically measured proteoglycan content of rat knee joint cartilage and assessed the effectiveness of a deep learning algorithm-based tool named U-Net in cell segmentation.</p><p><strong>Design: </strong>Histological sections were stained with Safranin-O, after which optical densities were measured using digital densitometry to estimate proteoglycan content. U-Net was trained with 600 annotated Safranin-O cartilage images for exclusion of cells from the cartilage extracellular matrix. Optical densities of the ECM with and without cells were compared as a function of normalized tissue depth.</p><p><strong>Results: </strong>U-Net cell segmentation was accurate, with the measured cell area fraction following largely that of ground-truth images (average difference: 4.3%). Cell area fraction varied as a function of tissue depth and took up 8-21% of the tissue area. The exclusion of cells from the analysis led to an increase in the analyzed depth-dependent optical density of cartilage by approximately 0.6-1.8% (<i>p</i> < 0.01).</p><p><strong>Conclusions: </strong>Although the effect of cells on the analyzed proteoglycan content is small, it should be considered for improved sensitivity, especially at the onset of the disease during which cells may proliferate in small animals.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 6","pages":"603-614"},"PeriodicalIF":2.9,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10774449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01Epub Date: 2022-02-08DOI: 10.1080/03008207.2022.2035375
Daniela S Masson-Meyers, Luiz E Bertassoni, Lobat Tayebi
Background: Oral mucosa equivalents (OMEs) have been used as in vitro models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs.
Purpose: The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and in vitro and clinical potential applications.
Study selection: Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs.
Conclusions: Several studies have reported the development and in vitro and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.
{"title":"Oral mucosa equivalents, prevascularization approaches, and potential applications.","authors":"Daniela S Masson-Meyers, Luiz E Bertassoni, Lobat Tayebi","doi":"10.1080/03008207.2022.2035375","DOIUrl":"10.1080/03008207.2022.2035375","url":null,"abstract":"<p><strong>Background: </strong>Oral mucosa equivalents (OMEs) have been used as <i>in vitro</i> models (eg, for studies of human oral mucosa biology and pathology, toxicological and pharmacological tests of oral care products), and clinically to treat oral defects. However, the human oral mucosa is a highly vascularized tissue and implantation of large OMEs can fail due to a lack of vascularization. To develop equivalents that better resemble the human oral mucosa and increase the success of implantation to repair large-sized defects, efforts have been made to prevascularize these constructs.</p><p><strong>Purpose: </strong>The aim of this narrative review is to provide an overview of the human oral mucosa structure, common approaches for its reconstruction, and the development of OMEs, their prevascularization, and <i>in vitro</i> and clinical potential applications.</p><p><strong>Study selection: </strong>Articles on non-prevascularized and prevascularized OMEs were included, since the development and applications of non-prevascularized OMEs are a foundation for the design, fabrication, and optimization of prevascularized OMEs.</p><p><strong>Conclusions: </strong>Several studies have reported the development and <i>in vitro</i> and clinical applications of OMEs and only a few were found on prevascularized OMEs using different approaches of fabrication and incorporation of endothelial cells, indicating a lack of standardized protocols to obtain these equivalents. However, these studies have shown the feasibility of prevascularizing OMEs and their implantation in animal models resulted in enhanced integration and healing. Vascularization in tissue equivalents is still a challenge, and optimization of cell culture conditions, biomaterials, and fabrication techniques along with clinical studies is required.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 5","pages":"514-529"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357199/pdf/nihms-1823920.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10131613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1080/03008207.2022.2036732
B Walia, T M Li, G Crosio, A M Montero, A H Huang
Purpose: Tendon injuries are a challenging clinical problem with few treatment options. Identifying the molecular regulators of tendon is required for the development of new therapies. While the Wnt pathway is critical for the maintenance and differentiation of many tissues, the role of Wnt signaling in tendon cell biology remains largely unexplored.
Methods: The effects of Wnt activation were tested in vitro using neonatal tendon-derived cells cultured in 2D and 3D conditions. The inducible Axin2CreERT2 was then used to label Axin2+ cells in vivo and cells were traced during neonatal tendon regeneration.
Results: We showed that activation of Wnt signaling results in proliferation of neonatal tendon cells. While tendon marker expression was inhibited by Wnt activation under 2D conditions, Scx expression was not affected under 3D uniaxial tension, suggesting that the microenvironment contextualizes tendon cell response to Wnt signaling. Using an in vivo model of neonatal tendon regeneration, we further showed that Wnt signaling cells comprise a subpopulation of tenocyte and epitenon cells that proliferate after injury and are recruited during regeneration.
Discussion: Collectively, these studies suggest that Wnt signaling may play a role in tendon cell proliferation, differentiation, and regeneration.
{"title":"Axin2-lineage cells contribute to neonatal tendon regeneration.","authors":"B Walia, T M Li, G Crosio, A M Montero, A H Huang","doi":"10.1080/03008207.2022.2036732","DOIUrl":"https://doi.org/10.1080/03008207.2022.2036732","url":null,"abstract":"<p><strong>Purpose: </strong>Tendon injuries are a challenging clinical problem with few treatment options. Identifying the molecular regulators of tendon is required for the development of new therapies. While the Wnt pathway is critical for the maintenance and differentiation of many tissues, the role of Wnt signaling in tendon cell biology remains largely unexplored.</p><p><strong>Methods: </strong>The effects of Wnt activation were tested <i>in vitro</i> using neonatal tendon-derived cells cultured in 2D and 3D conditions. The inducible Axin2CreERT2 was then used to label Axin2+ cells <i>in vivo</i> and cells were traced during neonatal tendon regeneration.</p><p><strong>Results: </strong>We showed that activation of Wnt signaling results in proliferation of neonatal tendon cells. While tendon marker expression was inhibited by Wnt activation under 2D conditions, <i>Scx</i> expression was not affected under 3D uniaxial tension, suggesting that the microenvironment contextualizes tendon cell response to Wnt signaling. Using an <i>in vivo</i> model of neonatal tendon regeneration, we further showed that Wnt signaling cells comprise a subpopulation of tenocyte and epitenon cells that proliferate after injury and are recruited during regeneration.</p><p><strong>Discussion: </strong>Collectively, these studies suggest that Wnt signaling may play a role in tendon cell proliferation, differentiation, and regeneration.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 5","pages":"530-543"},"PeriodicalIF":2.9,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491382/pdf/nihms-1835287.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10134216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1080/03008207.2021.1924696
Ryan Pasiewicz, Yessenia Valverde, Raghuvaran Narayanan, Ji-Hyun Kim, Muhammad Irfan, Nam-Seob Lee, Anne George, Lyndon F Cooper, Satish B Alapati, Seung Chung
Aim: Alterations in the microenvironment change the phenotypes of dental pulp stem cells (DPSCs). The role of complement component C5a in the differentiation of DPSCs is unknown, especially under oxygen-deprived conditions. The aim of this study was to determine the effect of C5a on the odontogenic differentiation of DPSCs under normoxia and hypoxia.
Material and methods: Human DPSCs were subjected to odontogenic differentiation in osteogenic media and treated with the C5a receptor antagonist-W54011 under normal and hypoxic conditions (2% oxygen). Immunochemistry, western blot, and PCR analysis for the various odontogenic differentiation genes/proteins were performed.
Results: Our results demonstrated that C5a plays a positive role in the odontogenic differentiation of DPSCs. C5a receptor inhibition resulted in a significant decrease in odontogenic differentiation genes, such as DMP1, ON, RUNX2, DSPP compared with the control. This observation was further supported by the Western blot data for DSPP and DMP1 and immunohistochemical analysis. The hypoxic condition reversed this effect.
Conclusions: Our results demonstrate that C5a regulates the odontogenic DPSC differentiation under normoxia. Under hypoxia, C5a exerts a reversed function for DPSC differentiation. Taken together, we identified that C5a and oxygen levels are key initial signals during pulp inflammation to control the odontogenic differentiation of DPSCs, thereby, providing a mechanism for potential therapeutic interventions for dentin repair and vital tooth preservation.
{"title":"C5a complement receptor modulates odontogenic dental pulp stem cell differentiation under hypoxia.","authors":"Ryan Pasiewicz, Yessenia Valverde, Raghuvaran Narayanan, Ji-Hyun Kim, Muhammad Irfan, Nam-Seob Lee, Anne George, Lyndon F Cooper, Satish B Alapati, Seung Chung","doi":"10.1080/03008207.2021.1924696","DOIUrl":"https://doi.org/10.1080/03008207.2021.1924696","url":null,"abstract":"<p><strong>Aim: </strong>Alterations in the microenvironment change the phenotypes of dental pulp stem cells (DPSCs). The role of complement component C5a in the differentiation of DPSCs is unknown, especially under oxygen-deprived conditions. The aim of this study was to determine the effect of C5a on the odontogenic differentiation of DPSCs under normoxia and hypoxia.</p><p><strong>Material and methods: </strong>Human DPSCs were subjected to odontogenic differentiation in osteogenic media and treated with the C5a receptor antagonist-W54011 under normal and hypoxic conditions (2% oxygen). Immunochemistry, western blot, and PCR analysis for the various odontogenic differentiation genes/proteins were performed.</p><p><strong>Results: </strong>Our results demonstrated that C5a plays a positive role in the odontogenic differentiation of DPSCs. C5a receptor inhibition resulted in a significant decrease in odontogenic differentiation genes, such as DMP1, ON, RUNX2, DSPP compared with the control. This observation was further supported by the Western blot data for DSPP and DMP1 and immunohistochemical analysis. The hypoxic condition reversed this effect.</p><p><strong>Conclusions: </strong>Our results demonstrate that C5a regulates the odontogenic DPSC differentiation under normoxia. Under hypoxia, C5a exerts a reversed function for DPSC differentiation. Taken together, we identified that C5a and oxygen levels are key initial signals during pulp inflammation to control the odontogenic differentiation of DPSCs, thereby, providing a mechanism for potential therapeutic interventions for dentin repair and vital tooth preservation.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 4","pages":"339-348"},"PeriodicalIF":2.9,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03008207.2021.1924696","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9727007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-22DOI: 10.1080/03008207.2022.2060826
Xiao Xiao, Weiwei Li, Zhenchao Xu, Zhicheng Sun, Hongru Ye, Yunqi Wu, Yilu Zhang, L. Xie, Dingyu Jiang, Runze Jia, Xiyang Wang
ABSTRACT Objective This study investigated the molecular mechanism of whether hUC-MSCs-EVs repressed PTEN expression and activated the PI3K/AKT pathway through miR-29b-3p, thus inhibiting LPS-induced neuronal injury. Methods hUC-MSCs were cultured and then identified. Cell morphology was observed. Alizarin red, oil red O, and alcian blue staining were used for inducing osteogenesis, adipogenesis, and chondrogenesis. EVs were extracted from hUC-MSCs and identified by transmission electron microscope observation and Western blot. SCI neuron model was established by 24h lipopolysaccharide (LPS) induction. After the cells were cultured with EVs without any treatment, uptake of EVs by SCI neurons, miR-29b-3p expression, cell viability, apoptosis, caspase-3, cleaved caspase-3, caspase 9, Bcl-2, PTEN, PI3K, AKT, and p-Akt protein levels, caspase 3 and caspase 9 activities, and inflammatory factors IL-6 and IL-1β levels were detected by immunofluorescence labeling, RT-qPCR, MTT, flow cytometry, Western blot, caspase 3 and caspase 9 activity detection kits, and ELISA. The binding sites between PTEN and miR-29b-3p were predicted by the database and verified by dual-luciferase assay. Results LPS-induced SCI cell model was successfully established, and hUC-MSCs-EVs inhibited LPS-induced apoptosis of injured spinal cord neurons. EVs transferred miR-29b-3p into LPS-induced injured neurons. miR-29b-3p silencing reversed EV effects on reducing LPS-induced neuronal apoptosis. miR-29b-3p reduced LPS-induced neuronal apoptosis by targeting PTEN. After EVs-miR-inhi and si-PTEN treatment, inhibition of the PI3K/AKT pathway reversed hUC-MSCs-EVs effects on reducing LPS-induced neuronal apoptosis. Conclusion hUC-MSCs-EVs activated the PI3K/AKT pathway by carrying miR-29b-3p into SCI neurons and silencing PTEN, thus reducing neuronal apoptosis.
{"title":"Extracellular vesicles from human umbilical cord mesenchymal stem cells reduce lipopolysaccharide-induced spinal cord injury neuronal apoptosis by mediating miR-29b-3p/PTEN","authors":"Xiao Xiao, Weiwei Li, Zhenchao Xu, Zhicheng Sun, Hongru Ye, Yunqi Wu, Yilu Zhang, L. Xie, Dingyu Jiang, Runze Jia, Xiyang Wang","doi":"10.1080/03008207.2022.2060826","DOIUrl":"https://doi.org/10.1080/03008207.2022.2060826","url":null,"abstract":"ABSTRACT Objective This study investigated the molecular mechanism of whether hUC-MSCs-EVs repressed PTEN expression and activated the PI3K/AKT pathway through miR-29b-3p, thus inhibiting LPS-induced neuronal injury. Methods hUC-MSCs were cultured and then identified. Cell morphology was observed. Alizarin red, oil red O, and alcian blue staining were used for inducing osteogenesis, adipogenesis, and chondrogenesis. EVs were extracted from hUC-MSCs and identified by transmission electron microscope observation and Western blot. SCI neuron model was established by 24h lipopolysaccharide (LPS) induction. After the cells were cultured with EVs without any treatment, uptake of EVs by SCI neurons, miR-29b-3p expression, cell viability, apoptosis, caspase-3, cleaved caspase-3, caspase 9, Bcl-2, PTEN, PI3K, AKT, and p-Akt protein levels, caspase 3 and caspase 9 activities, and inflammatory factors IL-6 and IL-1β levels were detected by immunofluorescence labeling, RT-qPCR, MTT, flow cytometry, Western blot, caspase 3 and caspase 9 activity detection kits, and ELISA. The binding sites between PTEN and miR-29b-3p were predicted by the database and verified by dual-luciferase assay. Results LPS-induced SCI cell model was successfully established, and hUC-MSCs-EVs inhibited LPS-induced apoptosis of injured spinal cord neurons. EVs transferred miR-29b-3p into LPS-induced injured neurons. miR-29b-3p silencing reversed EV effects on reducing LPS-induced neuronal apoptosis. miR-29b-3p reduced LPS-induced neuronal apoptosis by targeting PTEN. After EVs-miR-inhi and si-PTEN treatment, inhibition of the PI3K/AKT pathway reversed hUC-MSCs-EVs effects on reducing LPS-induced neuronal apoptosis. Conclusion hUC-MSCs-EVs activated the PI3K/AKT pathway by carrying miR-29b-3p into SCI neurons and silencing PTEN, thus reducing neuronal apoptosis.","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 1","pages":"634 - 649"},"PeriodicalIF":2.9,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49123930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01DOI: 10.1080/03008207.2022.2041002
Kylie E Nash, Keat Ghee Ong, Robert E Guldberg
Purpose: A healthy musculoskeletal system requires complex functional integration of bone, muscle, cartilage, and connective tissues responsible for bodily support, motion, and the protection of vital organs. Conditions or injuries to musculoskeeltal tissues can devastate an individual's quality of life. Some conditions that are particularly disabling include severe bone and muscle injuries to the extremities and amputations resulting from unmanageable musculoskeletal conditions or injuries. Monitoring and managing musculoskeletal health is intricate because of the complex mechanobiology of these interconnected tissues.
Methods: For this article, we reviewed literature on implantable biosensors related to clinical data of the musculoskeletal system, therapeutics for complex bone injuries, and osseointegrated prosthetics as example applications.
Results: As a result, a brief summary of biosensors technologies is provided along with review of noteworthy biosensors and future developments needed to fully realize the translational benefit of biosensors for musculoskeletal health.
Conclusions: Novel implantable biosensors capable of tracking biophysical parameters in vivo are highly relevant to musculoskeletal health because of their ability to collect clinical data relevant to medical decisions, complex trauma treatment, and the performance of osseointegrated prostheses.
{"title":"Implantable biosensors for musculoskeletal health.","authors":"Kylie E Nash, Keat Ghee Ong, Robert E Guldberg","doi":"10.1080/03008207.2022.2041002","DOIUrl":"https://doi.org/10.1080/03008207.2022.2041002","url":null,"abstract":"<p><strong>Purpose: </strong>A healthy musculoskeletal system requires complex functional integration of bone, muscle, cartilage, and connective tissues responsible for bodily support, motion, and the protection of vital organs. Conditions or injuries to musculoskeeltal tissues can devastate an individual's quality of life. Some conditions that are particularly disabling include severe bone and muscle injuries to the extremities and amputations resulting from unmanageable musculoskeletal conditions or injuries. Monitoring and managing musculoskeletal health is intricate because of the complex mechanobiology of these interconnected tissues.</p><p><strong>Methods: </strong>For this article, we reviewed literature on implantable biosensors related to clinical data of the musculoskeletal system, therapeutics for complex bone injuries, and osseointegrated prosthetics as example applications.</p><p><strong>Results: </strong>As a result, a brief summary of biosensors technologies is provided along with review of noteworthy biosensors and future developments needed to fully realize the translational benefit of biosensors for musculoskeletal health.</p><p><strong>Conclusions: </strong>Novel implantable biosensors capable of tracking biophysical parameters in vivo are highly relevant to musculoskeletal health because of their ability to collect clinical data relevant to medical decisions, complex trauma treatment, and the performance of osseointegrated prostheses.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 3","pages":"228-242"},"PeriodicalIF":2.9,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977250/pdf/nihms-1780342.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9378247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-01DOI: 10.1080/03008207.2022.2036735
John F Bateman, Matthew D Shoulders, Shireen R Lamandé
Mutations in collagen genes cause a broad range of connective tissue pathologies. Structural mutations that impact procollagen assembly or triple helix formation and stability are a common and important mutation class. How misfolded procollagens engage with the cellular proteostasis machinery and whether they can elicit a cytotoxic unfolded protein response (UPR) is a topic of considerable research interest. Such interest is well justified since modulating the UPR could offer a new approach to treat collagenopathies for which there are no current disease mechanism-targeting therapies. This review scrutinizes the evidence underpinning the view that endoplasmic reticulum stress and chronic UPR activation contributes significantly to the pathophysiology of the collagenopathies. While there is strong evidence that the UPR contributes to the pathology for collagen X misfolding mutations, the evidence that misfolding mutations in other collagen types induce a canonical, cytotoxic UPR is incomplete. To gain a more comprehensive understanding about how the UPR amplifies to pathology, and thus what types of manipulations of the UPR might have therapeutic relevance, much more information is needed about how specific misfolding mutation types engage differentially with the UPR and downstream signaling responses. Most importantly, since the capacity of the proteostasis machinery to respond to collagen misfolding is likely to vary between cell types, reflecting their functional roles in collagen and extracellular matrix biosynthesis, detailed studies on the UPR should focus as much as possible on the actual target cells involved in the collagen pathologies.
{"title":"Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology.","authors":"John F Bateman, Matthew D Shoulders, Shireen R Lamandé","doi":"10.1080/03008207.2022.2036735","DOIUrl":"https://doi.org/10.1080/03008207.2022.2036735","url":null,"abstract":"<p><p>Mutations in collagen genes cause a broad range of connective tissue pathologies. Structural mutations that impact procollagen assembly or triple helix formation and stability are a common and important mutation class. How misfolded procollagens engage with the cellular proteostasis machinery and whether they can elicit a cytotoxic unfolded protein response (UPR) is a topic of considerable research interest. Such interest is well justified since modulating the UPR could offer a new approach to treat collagenopathies for which there are no current disease mechanism-targeting therapies. This review scrutinizes the evidence underpinning the view that endoplasmic reticulum stress and chronic UPR activation contributes significantly to the pathophysiology of the collagenopathies. While there is strong evidence that the UPR contributes to the pathology for collagen X misfolding mutations, the evidence that misfolding mutations in other collagen types induce a canonical, cytotoxic UPR is incomplete. To gain a more comprehensive understanding about how the UPR amplifies to pathology, and thus what types of manipulations of the UPR might have therapeutic relevance, much more information is needed about how specific misfolding mutation types engage differentially with the UPR and downstream signaling responses. Most importantly, since the capacity of the proteostasis machinery to respond to collagen misfolding is likely to vary between cell types, reflecting their functional roles in collagen and extracellular matrix biosynthesis, detailed studies on the UPR should focus as much as possible on the actual target cells involved in the collagen pathologies.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"63 3","pages":"210-227"},"PeriodicalIF":2.9,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977234/pdf/nihms-1776496.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9384007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}