首页 > 最新文献

Connective Tissue Research最新文献

英文 中文
Correction. 修正。
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2021.2010945
{"title":"Correction.","authors":"","doi":"10.1080/03008207.2021.2010945","DOIUrl":"https://doi.org/10.1080/03008207.2021.2010945","url":null,"abstract":"","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"517"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10403089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of extracorporeal shock wave on joint capsule fibrosis in rats with knee extension contracture: a preliminary study. 体外冲击波对膝关节挛缩大鼠关节囊纤维化影响的初步研究。
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2023.2217254
Chao Hu, Quan Bing Zhang, Feng Wang, Hua Wang, Yun Zhou

The purpose of this study was to observe the therapeutic effect of extracorporeal shock wave (ESW) on extensional joint contracture of knee joint in rats and its mechanism on articular capsule fibrosis. Thirty-two SD rats were randomly divided into blank control, immobilization, natural recovery, and ESW intervention groups. Except for the control group, the left knee joints of other rats were fixed with external fixation brace for 4 weeks when they were fully extended to form joint contracture. The effect of intervention was assessed by evaluating joint contracture, total cell count and collagen deposition in joint capsule, and protein expression levels of TGF-β1, p-Smad2/3, Smad2/3, p-JNK, JNK, I and III collagen in joint capsule. ESW can effectively reduce arthrogenic contracture, improve the histopathological changes of anterior joint capsule, inhibit the high expression of target protein and the excessive activation of TGF-β1/Smad2/3/JNK signal pathway. Inhibition of excessive activation of TGF-β1/Smad2/3/JNK pathway may be one of the potential molecular mechanisms by which extracorporeal shock wave can play a role.

本研究旨在观察体外冲击波(ESW)对大鼠膝关节外张性关节挛缩的治疗作用及其对关节囊纤维化的作用机制。将32只SD大鼠随机分为空白对照组、固定组、自然恢复组和ESW干预组。除对照组外,其余大鼠左膝关节充分伸直形成关节挛缩后,采用外固定支架固定4周。通过观察关节挛缩、关节囊内总细胞计数、胶原沉积、关节囊内TGF-β1、p-Smad2/3、Smad2/3、p-JNK、JNK、I、III胶原蛋白表达水平来评价干预效果。ESW能有效减轻关节源性挛缩,改善关节前囊组织病理改变,抑制靶蛋白高表达和TGF-β1/Smad2/3/JNK信号通路的过度激活。抑制TGF-β1/Smad2/3/JNK通路的过度激活可能是体外冲击波发挥作用的潜在分子机制之一。
{"title":"The effect of extracorporeal shock wave on joint capsule fibrosis in rats with knee extension contracture: a preliminary study.","authors":"Chao Hu,&nbsp;Quan Bing Zhang,&nbsp;Feng Wang,&nbsp;Hua Wang,&nbsp;Yun Zhou","doi":"10.1080/03008207.2023.2217254","DOIUrl":"https://doi.org/10.1080/03008207.2023.2217254","url":null,"abstract":"<p><p>The purpose of this study was to observe the therapeutic effect of extracorporeal shock wave (ESW) on extensional joint contracture of knee joint in rats and its mechanism on articular capsule fibrosis. Thirty-two SD rats were randomly divided into blank control, immobilization, natural recovery, and ESW intervention groups. Except for the control group, the left knee joints of other rats were fixed with external fixation brace for 4 weeks when they were fully extended to form joint contracture. The effect of intervention was assessed by evaluating joint contracture, total cell count and collagen deposition in joint capsule, and protein expression levels of TGF-β1, p-Smad2/3, Smad2/3, p-JNK, JNK, I and III collagen in joint capsule. ESW can effectively reduce arthrogenic contracture, improve the histopathological changes of anterior joint capsule, inhibit the high expression of target protein and the excessive activation of TGF-β1/Smad2/3/JNK signal pathway. Inhibition of excessive activation of TGF-β1/Smad2/3/JNK pathway may be one of the potential molecular mechanisms by which extracorporeal shock wave can play a role.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"469-478"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10429530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current status and future trends of reconstructing a vascularized tissue-engineered trachea. 血管化组织工程气管重建的现状及未来趋势。
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2023.2212052
Ziqing Shen, Tian Xia, Jun Zhao, Shu Pan

Alternative treatment of long tracheal defects remains one of the challenges faced by thoracic surgeons. Tissue engineering has shown great potential in addressing this regenerative medicine conundrum and the technology to make tracheal grafts using this technique is rapidly maturing, leading to unique therapeutic approaches. However, the clinical application of tissue-engineered tracheal implants is limited by insufficient revascularization. Among them, realizing the vascularization of a tissue-engineered trachea is the most challenging problem to overcome. To achieve long-term survival after tracheal transplantation, an effective blood supply must be formed to support the metabolism of seeded cells and promote tissue healing and regeneration. Otherwise, repeated infection, tissue necrosis, lumen stenosis lack of effective epithelialization, need for repeated bronchoscopy after surgery, and other complications will be inevitable and lead to graft failure and a poor outcome. Here we review and analyze various tissue engineering studies promoting angiogenesis in recent years. The general situation of reconstructing a vascularized tissue-engineered trachea, including current problems and future development trends, is elaborated from the perspectives of seed cells, scaffold materials, growth factors and signaling pathways, surgical interventions in animal models and clinical applications. This review also provides ideas and methods for the further development of better biocompatible tracheal substitutes in the future.

长气管缺损的替代治疗仍然是胸外科医生面临的挑战之一。组织工程在解决再生医学难题方面显示出巨大的潜力,使用该技术制造气管移植物的技术正在迅速成熟,导致独特的治疗方法。然而,组织工程气管植入物的临床应用受到血运重建不足的限制。其中,实现组织工程气管的血管化是最具挑战性的问题。为了实现气管移植后的长期存活,必须形成有效的血液供应来支持种子细胞的代谢,促进组织的愈合和再生。否则,反复感染、组织坏死、管腔狭窄缺乏有效上皮化、术后需要反复支气管镜检查等并发症将不可避免,导致移植物失败和预后不良。本文对近年来促进血管生成的各种组织工程研究进行综述和分析。从种子细胞、支架材料、生长因子及信号通路、动物模型手术干预及临床应用等方面阐述了血管化组织工程气管重建的概况,包括目前存在的问题和未来的发展趋势。为今后进一步开发具有良好生物相容性的气管代用品提供思路和方法。
{"title":"Current status and future trends of reconstructing a vascularized tissue-engineered trachea.","authors":"Ziqing Shen,&nbsp;Tian Xia,&nbsp;Jun Zhao,&nbsp;Shu Pan","doi":"10.1080/03008207.2023.2212052","DOIUrl":"https://doi.org/10.1080/03008207.2023.2212052","url":null,"abstract":"<p><p>Alternative treatment of long tracheal defects remains one of the challenges faced by thoracic surgeons. Tissue engineering has shown great potential in addressing this regenerative medicine conundrum and the technology to make tracheal grafts using this technique is rapidly maturing, leading to unique therapeutic approaches. However, the clinical application of tissue-engineered tracheal implants is limited by insufficient revascularization. Among them, realizing the vascularization of a tissue-engineered trachea is the most challenging problem to overcome. To achieve long-term survival after tracheal transplantation, an effective blood supply must be formed to support the metabolism of seeded cells and promote tissue healing and regeneration. Otherwise, repeated infection, tissue necrosis, lumen stenosis lack of effective epithelialization, need for repeated bronchoscopy after surgery, and other complications will be inevitable and lead to graft failure and a poor outcome. Here we review and analyze various tissue engineering studies promoting angiogenesis in recent years. The general situation of reconstructing a vascularized tissue-engineered trachea, including current problems and future development trends, is elaborated from the perspectives of seed cells, scaffold materials, growth factors and signaling pathways, surgical interventions in animal models and clinical applications. This review also provides ideas and methods for the further development of better biocompatible tracheal substitutes in the future.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"428-444"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10072339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Concentration-dependent effects of leptin on osteoarthritis-associated changes in phenotype of human chondrocytes. 瘦素对人软骨细胞表型骨关节炎相关变化的浓度依赖性影响。
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2023.2214249
Julia Gb Primrose, Lekha Jain, Scott M Bolam, A Paul Monk, Jacob T Munro, Nicola Dalbeth, Raewyn C Poulsen

Metabolic syndrome is a risk factor for osteoarthritis. Elevated leptin levels have been implicated as a potential cause of this association. Previous studies have shown that supra-physiological leptin concentrations can induce osteoarthritis-like changes in chondrocyte phenotype. Here, we tested the effects of leptin in the concentration range found in synovial fluid on chondrocyte phenotype. Chondrocytes isolated from macroscopically normal regions of cartilage within osteoarthritic joints from patients undergoing knee arthroplasty, all with body mass index >30 kg/m2 were treated with 2-40 ng/ml leptin for 24 h. Chondrocyte phenotype marker expression was measured by RT-qPCR and western blot. The role of HES1 in mediating the effects of leptin was determined by gene knockdown using RNAi and over-expression using adenoviral-mediated gene delivery. Treatment of chondrocytes with 20 or 40 ng/ml leptin resulted in decreased SOX9 levels and decreased levels of the SOX9-target genes COL2A1 and ACAN. Levels of HES1 were lower and ADAMTS5 higher in chondrocytes treated with 20 or 40 ng/ml leptin. HES1 knockdown resulted in increased ADAMTS5 expression whereas over-expression of HES1 prevented the leptin-induced increase in ADAMTS5. An increase in MMP13 expression was only evident in chondrocytes treated with 40 ng/ml leptin and was not mediated by HES1 activity. High concentrations of leptin can cause changes in chondrocyte phenotype consistent with those seen in osteoarthritis. Synovial fluid leptin concentrations of this level are typically observed in patients with metabolic syndrome and/or women, suggesting elevated leptin levels may form part of the multifactorial network that leads to osteoarthritis development in these patients.

代谢综合征是骨关节炎的一个危险因素。瘦素水平升高被认为是这种关联的潜在原因。先前的研究表明,超生理的瘦素浓度可以诱导骨关节炎样软骨细胞表型的变化。在这里,我们测试了在滑液中发现的瘦素浓度范围内对软骨细胞表型的影响。所有体重指数>30 kg/m2的膝关节置换术患者骨性关节炎关节内软骨宏观正常区分离软骨细胞,用2-40 ng/ml瘦素治疗24小时。采用RT-qPCR和western blot检测软骨细胞表型标志物的表达。HES1介导瘦素的作用是通过RNAi基因敲低和腺病毒介导基因传递的过表达来确定的。用20或40 ng/ml瘦素处理软骨细胞导致SOX9水平降低,SOX9靶基因COL2A1和ACAN水平降低。20或40 ng/ml瘦素处理的软骨细胞HES1水平较低,ADAMTS5水平较高。HES1敲低导致ADAMTS5表达增加,而HES1过表达则阻止瘦素诱导的ADAMTS5表达增加。MMP13表达的增加仅在40 ng/ml瘦素处理的软骨细胞中明显,并且不受HES1活性的介导。高浓度瘦素可引起软骨细胞表型的改变,与骨关节炎一致。这种水平的滑液瘦素浓度通常见于代谢综合征和/或女性患者,提示瘦素水平升高可能是导致这些患者骨关节炎发展的多因素网络的一部分。
{"title":"Concentration-dependent effects of leptin on osteoarthritis-associated changes in phenotype of human chondrocytes.","authors":"Julia Gb Primrose,&nbsp;Lekha Jain,&nbsp;Scott M Bolam,&nbsp;A Paul Monk,&nbsp;Jacob T Munro,&nbsp;Nicola Dalbeth,&nbsp;Raewyn C Poulsen","doi":"10.1080/03008207.2023.2214249","DOIUrl":"https://doi.org/10.1080/03008207.2023.2214249","url":null,"abstract":"<p><p>Metabolic syndrome is a risk factor for osteoarthritis. Elevated leptin levels have been implicated as a potential cause of this association. Previous studies have shown that supra-physiological leptin concentrations can induce osteoarthritis-like changes in chondrocyte phenotype. Here, we tested the effects of leptin in the concentration range found in synovial fluid on chondrocyte phenotype. Chondrocytes isolated from macroscopically normal regions of cartilage within osteoarthritic joints from patients undergoing knee arthroplasty, all with body mass index >30 kg/m<sup>2</sup> were treated with 2-40 ng/ml leptin for 24 h. Chondrocyte phenotype marker expression was measured by RT-qPCR and western blot. The role of HES1 in mediating the effects of leptin was determined by gene knockdown using RNAi and over-expression using adenoviral-mediated gene delivery. Treatment of chondrocytes with 20 or 40 ng/ml leptin resulted in decreased SOX9 levels and decreased levels of the SOX9-target genes COL2A1 and ACAN. Levels of HES1 were lower and ADAMTS5 higher in chondrocytes treated with 20 or 40 ng/ml leptin. HES1 knockdown resulted in increased ADAMTS5 expression whereas over-expression of HES1 prevented the leptin-induced increase in ADAMTS5. An increase in MMP13 expression was only evident in chondrocytes treated with 40 ng/ml leptin and was not mediated by HES1 activity. High concentrations of leptin can cause changes in chondrocyte phenotype consistent with those seen in osteoarthritis. Synovial fluid leptin concentrations of this level are typically observed in patients with metabolic syndrome and/or women, suggesting elevated leptin levels may form part of the multifactorial network that leads to osteoarthritis development in these patients.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"457-468"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10072334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Correction. 修正。
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2021.1890344
{"title":"Correction.","authors":"","doi":"10.1080/03008207.2021.1890344","DOIUrl":"https://doi.org/10.1080/03008207.2021.1890344","url":null,"abstract":"","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"516"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03008207.2021.1890344","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10034610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A biphasic calcium phosphate/acylated methacrylate gelatin composite hydrogel promotes osteogenesis and bone repair. 一种双相磷酸钙/酰化甲基丙烯酸酯明胶复合水凝胶促进骨生成和骨修复。
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2023.2212067
Ren-Jie Xu, Jin-Jin Ma, Xiao Yu, Xiao-Qiang Zhou, Jing-Yu Zhang, Ya-Dong Li, Hui-Lin Yang, Saijilafu, Guang-Xiang Chen

Purpose/aim: Bone defects caused by trauma, tumors, congenital malformation, or inflammation are very common in orthopedics. In recent years, mimicking the composition and structure of natural bone tissue has become a hot topic in biomaterial research, with the aim of developing an ideal biomaterial for bone defect transplantation. Here, the feasibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel to repair bone defects was evaluated in vitro and in rats.

Materials and methods: The biocompatibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel was evaluated by cytoskeleton staining, live/dead cell staining and cell proliferation assays. The in vitro osteogenic activities of the composite hydrogel were evaluated by alkaline phosphatase and alizarin red staining, as well as osteogenic gene expression analysis at both transcript and protein levels. The in vivo bone repair activities were evaluated using the rat skull defect model.

Results: The BCP/GelMA composite hydrogel displayed excellent biocompatibility and promoted osteogenesis of bone marrow mesenchymal stem cells in vitro. In addition, the BCP/GelMA composite hydrogel markedly promoted new bone formation in the rat skull-defect model.

Conclusions: BCP/GelMA composite hydrogel may be an effective artificial material for bone tissue engineering.

目的:创伤、肿瘤、先天性畸形或炎症引起的骨缺损在骨科中非常常见。近年来,模拟天然骨组织的组成和结构已成为生物材料研究的热点,旨在开发一种理想的骨缺损移植生物材料。本研究在体外和大鼠体内对双相磷酸钙(BCP)/酰化甲基丙烯酸酯明胶(GelMA)复合水凝胶修复骨缺损的可行性进行了评价。材料与方法:采用细胞骨架染色、活/死细胞染色和细胞增殖试验评价双相磷酸钙(BCP)/酰化甲基丙烯酸明胶(GelMA)复合水凝胶的生物相容性。通过碱性磷酸酶和茜素红染色评价复合水凝胶的体外成骨活性,并在转录物和蛋白水平上分析成骨基因的表达。采用大鼠颅骨缺损模型,评价其体内骨修复活性。结果:BCP/GelMA复合水凝胶具有良好的生物相容性,能促进骨髓间充质干细胞的体外成骨。此外,BCP/GelMA复合水凝胶可显著促进大鼠颅骨缺损模型的新骨形成。结论:BCP/GelMA复合水凝胶可能是一种有效的骨组织工程人工材料。
{"title":"A biphasic calcium phosphate/acylated methacrylate gelatin composite hydrogel promotes osteogenesis and bone repair.","authors":"Ren-Jie Xu,&nbsp;Jin-Jin Ma,&nbsp;Xiao Yu,&nbsp;Xiao-Qiang Zhou,&nbsp;Jing-Yu Zhang,&nbsp;Ya-Dong Li,&nbsp;Hui-Lin Yang,&nbsp;Saijilafu,&nbsp;Guang-Xiang Chen","doi":"10.1080/03008207.2023.2212067","DOIUrl":"https://doi.org/10.1080/03008207.2023.2212067","url":null,"abstract":"<p><strong>Purpose/aim: </strong>Bone defects caused by trauma, tumors, congenital malformation, or inflammation are very common in orthopedics. In recent years, mimicking the composition and structure of natural bone tissue has become a hot topic in biomaterial research, with the aim of developing an ideal biomaterial for bone defect transplantation. Here, the feasibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel to repair bone defects was evaluated in vitro and in rats.</p><p><strong>Materials and methods: </strong>The biocompatibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel was evaluated by cytoskeleton staining, live/dead cell staining and cell proliferation assays. The in vitro osteogenic activities of the composite hydrogel were evaluated by alkaline phosphatase and alizarin red staining, as well as osteogenic gene expression analysis at both transcript and protein levels. The in vivo bone repair activities were evaluated using the rat skull defect model.</p><p><strong>Results: </strong>The BCP/GelMA composite hydrogel displayed excellent biocompatibility and promoted osteogenesis of bone marrow mesenchymal stem cells in vitro. In addition, the BCP/GelMA composite hydrogel markedly promoted new bone formation in the rat skull-defect model.</p><p><strong>Conclusions: </strong>BCP/GelMA composite hydrogel may be an effective artificial material for bone tissue engineering.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"445-456"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10072337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tenogenic differentiation of human tendon-derived stem cells induced by long non-coding RNA LINCMD1 via miR-342-3p/EGR1 axis. 长链非编码RNA LINCMD1通过miR-342-3p/EGR1轴诱导人肌腱源性干细胞的肌腱分化
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2023.2217258
Feng Qu, Xuezhen Shen, Ketao Wang, Chengyi Sun, Pengfei Li

Background: Tendon-derived stem cells (TDSCs) are proposed as a potential cell-seed for the treatment of tendon injury due to their tenogenic differentiation potential. In this work, we defined the action of long non-coding RNA (lncRNA) muscle differentiation 1 (LINCMD1) in tenogenic differentiation of human TDSCs (hTDSCs).

Methods: Quantitative real-time PCR (qRT-PCR) was used to assess the levels of LINCMD1, microRNA (miR)-342-3p, and early growth response-1 (EGR1) mRNA. Cell proliferation was detected by the XTT colorimetric assay. Protein expression was quantified by western blot. hTDSCs were grown in an osteogenic medium to induce osteogenic differentiation, and the extent of osteogenic differentiation was assessed by Alizarin Red Staining (ARS). The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-342-3p and LINCMD1 or EGR1.

Results: Our results showed that enforced expression of LINCMD1 or suppression of miR-342-3p accelerated the proliferation and tenogenic differentiation and reduced osteogenic differentiation of hTDSCs. LINCMD1 regulated miR-342-3p expression by binding to miR-342-3p. EGR1 was identified as a direct and functional target of miR-342-3p, and knockdown of EGR1 reversed the effects of miR-342-3p suppression on cell proliferation and tenogenic and osteogenic differentiation. Furthermore, the miR-342-3p/EGR1 axis mediated the regulation of LINCMD1 on hTDSC proliferation and tenogenic and osteogenic differentiation.

Conclusion: Our study suggests the induction of LINCMD1 in tenogenic differentiation of hTDSCs through miR-342-3p/EGR1 axis.

背景:肌腱源性干细胞(tdsc)因其具有肌腱分化潜能而被认为是治疗肌腱损伤的潜在细胞种子。在这项工作中,我们定义了长链非编码RNA (lncRNA)肌肉分化1 (LINCMD1)在人tdsc (htdsc)的肌腱分化中的作用。方法:采用实时荧光定量PCR (Quantitative real-time PCR, qRT-PCR)检测小鼠外周血LINCMD1、microRNA (miR)-342-3p、早期生长反应-1 (early growth response-1, EGR1) mRNA表达水平。用XTT比色法检测细胞增殖。western blot检测蛋白表达。htdsc在成骨培养基中培养,诱导成骨分化,茜素红染色(ARS)评估成骨分化程度。采用碱性磷酸酶活性测定试剂盒测定碱性磷酸酶(ALP)活性。采用双荧光素酶报告基因和RNA免疫沉淀(RIP)检测来评估miR-342-3p与LINCMD1或EGR1之间的直接关系。结果:我们的研究结果表明,强化表达LINCMD1或抑制miR-342-3p加速htdsc的增殖和成骨分化,降低成骨分化。LINCMD1通过结合miR-342-3p调节miR-342-3p的表达。EGR1被认为是miR-342-3p的直接和功能性靶点,EGR1的敲低逆转了miR-342-3p抑制对细胞增殖和成骨分化的影响。此外,miR-342-3p/EGR1轴介导了LINCMD1对hTDSC增殖和成骨质分化的调节。结论:我们的研究提示LINCMD1通过miR-342-3p/EGR1轴诱导htdsc的成腱分化。
{"title":"Tenogenic differentiation of human tendon-derived stem cells induced by long non-coding RNA LINCMD1 via miR-342-3p/EGR1 axis.","authors":"Feng Qu,&nbsp;Xuezhen Shen,&nbsp;Ketao Wang,&nbsp;Chengyi Sun,&nbsp;Pengfei Li","doi":"10.1080/03008207.2023.2217258","DOIUrl":"https://doi.org/10.1080/03008207.2023.2217258","url":null,"abstract":"<p><strong>Background: </strong>Tendon-derived stem cells (TDSCs) are proposed as a potential cell-seed for the treatment of tendon injury due to their tenogenic differentiation potential. In this work, we defined the action of long non-coding RNA (lncRNA) muscle differentiation 1 (LINCMD1) in tenogenic differentiation of human TDSCs (hTDSCs).</p><p><strong>Methods: </strong>Quantitative real-time PCR (qRT-PCR) was used to assess the levels of LINCMD1, microRNA (miR)-342-3p, and early growth response-1 (EGR1) mRNA. Cell proliferation was detected by the XTT colorimetric assay. Protein expression was quantified by western blot. hTDSCs were grown in an osteogenic medium to induce osteogenic differentiation, and the extent of osteogenic differentiation was assessed by Alizarin Red Staining (ARS). The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-342-3p and LINCMD1 or EGR1.</p><p><strong>Results: </strong>Our results showed that enforced expression of LINCMD1 or suppression of miR-342-3p accelerated the proliferation and tenogenic differentiation and reduced osteogenic differentiation of hTDSCs. LINCMD1 regulated miR-342-3p expression by binding to miR-342-3p. EGR1 was identified as a direct and functional target of miR-342-3p, and knockdown of EGR1 reversed the effects of miR-342-3p suppression on cell proliferation and tenogenic and osteogenic differentiation. Furthermore, the miR-342-3p/EGR1 axis mediated the regulation of LINCMD1 on hTDSC proliferation and tenogenic and osteogenic differentiation.</p><p><strong>Conclusion: </strong>Our study suggests the induction of LINCMD1 in tenogenic differentiation of hTDSCs through miR-342-3p/EGR1 axis.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"479-490"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10130003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Notch1 is a marker for in situ resting osteocytes in a 3-dimensional gel culture model. Notch1是三维凝胶培养模型中原位静息骨细胞的标记物。
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2023.2217271
Ying-Hui Zhou, Jia-Yu Zhu, Yue Guo, Hao-Neng Tang, Fang Wang, Junaid Iqbal, Hui-Xuan Wu, Nan Hu, Fen Xiao, Ting Wang, Long Li, Hou-De Zhou

Purpose: Osteocytes in vivo exhibit different functional states, but no specific marker to distinguish these is currently available.

Materials and methods: To simulate the differentiation process of pre-osteoblasts to osteocytes in vitro, MC3T3-E1 cells were cultured on type I collagen gel and a three-dimensional (3D) culture system was established. The Notch expression of osteocyte-like cells in 3D culture system was compared with that of in situ osteocytes in bone tissues.

Results: Immunohistochemistry demonstrated that Notch1 was not detected in "resting" in situ osteocytes, but was detected in normal cultured osteocyte-like cell line MLO-Y4. Osteocytes obtained from conventional osteogenic-induced osteoblasts and long-term cultured MLO-Y4 cells could not replicate the Notch1 expression pattern from in situ osteocytes. From day 14-35 of osteogenic induction, osteoblasts in 3D culture system gradually migrated into the gel to form canaliculus-like structures similar to bone canaliculus. On day 35, stellate-shaped osteocyte-like cells were observed, and expression of DMP1 and SOST, but not Runx2, was detected. Notch1 was not detected by immunohistochemistry, and Notch1 mRNA level was not significantly different from that of in situ osteocytes. In MC3T3-E1 cells, down-regulation of Notch2 increased Notch1, Notch downstream genes (β-catenin and Nfatc1), and Dmp1. In MLO-Y4 cells, Notch2 decreased after Notch1 siRNA transfection. Downregulation of Notch1 or Notch2 decreased Nfatc1, β-catenin, and Dmp1, and increased Sost.

Conclusions: We established "resting state" osteocytes using an in vitro 3D model. Notch1 can be a useful marker to help differentiate the functional states of osteocytes (activated vs. resting state).

目的:骨细胞在体内表现出不同的功能状态,但目前还没有特异性的标志物来区分它们。材料与方法:采用I型胶原凝胶培养MC3T3-E1细胞,模拟体外成骨前细胞向骨细胞的分化过程,建立三维(3D)培养体系。将骨细胞样细胞在三维培养体系中的Notch表达与骨组织原位骨细胞的Notch表达进行比较。结果:免疫组化显示,Notch1在“静息”原位骨细胞中未检测到,但在正常培养的骨细胞样细胞系MLO-Y4中检测到。从常规成骨诱导成骨细胞和长期培养的MLO-Y4细胞获得的骨细胞不能复制原位骨细胞的Notch1表达模式。从成骨诱导的第14-35天,3D培养系统中的成骨细胞逐渐迁移到凝胶中,形成类似骨小管的小管样结构。第35天,观察到星状骨细胞样细胞,检测到DMP1和SOST的表达,但未检测到Runx2。免疫组化未检测到Notch1, Notch1 mRNA水平与原位骨细胞无显著差异。在MC3T3-E1细胞中,Notch2的下调增加了Notch1、Notch下游基因(β-catenin和Nfatc1)和Dmp1。在MLO-Y4细胞中,Notch1 siRNA转染后,Notch2降低。Notch1或Notch2的下调使Nfatc1、β-catenin和Dmp1降低,Sost升高。结论:我们利用体外3D模型建立了“静息状态”骨细胞。Notch1可以作为一个有用的标志物,帮助区分骨细胞的功能状态(激活状态和静息状态)。
{"title":"Notch1 is a marker for <i>in situ</i> resting osteocytes in a 3-dimensional gel culture model.","authors":"Ying-Hui Zhou,&nbsp;Jia-Yu Zhu,&nbsp;Yue Guo,&nbsp;Hao-Neng Tang,&nbsp;Fang Wang,&nbsp;Junaid Iqbal,&nbsp;Hui-Xuan Wu,&nbsp;Nan Hu,&nbsp;Fen Xiao,&nbsp;Ting Wang,&nbsp;Long Li,&nbsp;Hou-De Zhou","doi":"10.1080/03008207.2023.2217271","DOIUrl":"https://doi.org/10.1080/03008207.2023.2217271","url":null,"abstract":"<p><strong>Purpose: </strong>Osteocytes <i>in</i> <i>vivo</i> exhibit different functional states, but no specific marker to distinguish these is currently available.</p><p><strong>Materials and methods: </strong>To simulate the differentiation process of pre-osteoblasts to osteocytes <i>in</i> <i>vitro</i>, MC3T3-E1 cells were cultured on type I collagen gel and a three-dimensional (3D) culture system was established. The Notch expression of osteocyte-like cells in 3D culture system was compared with that of <i>in situ</i> osteocytes in bone tissues.</p><p><strong>Results: </strong>Immunohistochemistry demonstrated that Notch1 was not detected in \"resting\" <i>in</i> <i>situ</i> osteocytes, but was detected in normal cultured osteocyte-like cell line MLO-Y4. Osteocytes obtained from conventional osteogenic-induced osteoblasts and long-term cultured MLO-Y4 cells could not replicate the Notch1 expression pattern from <i>in</i> <i>situ</i> osteocytes. From day 14-35 of osteogenic induction, osteoblasts in 3D culture system gradually migrated into the gel to form canaliculus-like structures similar to bone canaliculus. On day 35, stellate-shaped osteocyte-like cells were observed, and expression of DMP1 and SOST, but not Runx2, was detected. Notch1 was not detected by immunohistochemistry, and <i>Notch1</i> mRNA level was not significantly different from that of <i>in</i> <i>situ</i> osteocytes. In MC3T3-E1 cells, down-regulation of <i>Notch2</i> increased <i>Notch1</i>, Notch downstream genes (<i>β-catenin</i> and <i>Nfatc1</i>), and <i>Dmp1</i>. In MLO-Y4 cells, Notch2 decreased after <i>Notch1</i> siRNA transfection. Downregulation of <i>Notch1</i> or <i>Notch2</i> decreased <i>Nfatc1</i>, <i>β-catenin</i>, and <i>Dmp1</i>, and increased <i>Sost</i>.</p><p><strong>Conclusions: </strong>We established \"resting state\" osteocytes using an <i>in</i> <i>vitro</i> 3D model. Notch1 can be a useful marker to help differentiate the functional states of osteocytes (activated vs. resting state).</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"491-504"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10449885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
LPS-induced inflammation potentiates dental pulp stem cell odontogenic differentiation through C5aR and p38. LPS诱导的炎症通过C5aR和p38增强牙髓干细胞的牙源性分化。
IF 2.8 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 Epub Date: 2023-05-29 DOI: 10.1080/03008207.2023.2218944
Ji-Hyun Kim, Muhammad Irfan, Md Akil Hossain, Susie Shin, Anne George, Seung Chung

Aim: Inflammation is a complex host response to harmful infection or injury, and it seems to play a crucial role in tissue regeneration both positively and negatively. We have previously demonstrated that the activation of the complement C5a pathway affects dentin-pulp regeneration. However, limited information is available to understand the role of the complement C5a system related to inflammation-mediated dentinogenesis. The aim of this study was to determine the role of complement C5a receptor (C5aR) in regulating lipopolysaccharide (LPS)-induced odontogenic differentiation of dental pulp stem cells (DPSCs).

Material and methods: Human DPSCs were subjected to LPS-stimulated odontogenic differentiation in dentinogenic media treated with the C5aR agonist and antagonist. A putative downstream pathway of the C5aR was examined using a p38 mitogen-activated protein kinase (p38) inhibitor (SB203580).

Results: Our data demonstrated that inflammation induced by the LPS treatment potentiated DPSC odontogenic differentiation and that this is C5aR dependent. C5aR signaling controlled the LPS-stimulated dentinogenesis by regulating the expression of odontogenic lineage markers like dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1). Moreover, the LPS treatment increased the total p38, and the active form of p38 expression, and treatment with SB203580 abolished the LPS-induced DSPP and DMP-1 increase.

Conclusions: These data suggest a significant role of C5aR and its putative downstream molecule p38 in the LPS-induced odontogenic DPSCs differentiation. This study highlights the regulatory pathway of complement C5aR/p38 and a possible therapeutic approach for improving the efficiency of dentin regeneration during inflammation.

目的:炎症是宿主对有害感染或损伤的复杂反应,它似乎在组织再生中起着积极和消极的关键作用。我们之前已经证明补体C5a通路的激活影响牙本质牙髓再生。然而,了解补体C5a系统在炎症介导的牙本质形成中的作用的信息有限。本研究旨在确定补体C5a受体(C5aR)在脂多糖(LPS)诱导的牙髓干细胞(DPSCs)牙源性分化中的调节作用。使用p38丝裂原活化蛋白激酶(p38)抑制剂(SB203580)检测了C5aR的假定下游通路。结果:我们的数据表明,LPS处理诱导的炎症增强了DPSC的牙源性分化,这是C5aR依赖性的。C5aR信号通过调节牙源性谱系标记物如牙本质唾液磷蛋白(DSPP)和牙本质基质蛋白1(DMP-1)的表达来控制LPS刺激的牙本质形成。此外,LPS处理增加了总p38和p38的活性形式表达,SB203580处理消除了LPS诱导的DSPP和DMP-1的增加。结论:这些数据表明C5aR及其假定的下游分子p38在LPS诱导的牙源性DPSCs分化中具有重要作用。这项研究强调了补体C5aR/p38的调节途径,以及提高炎症过程中牙本质再生效率的可能治疗方法。
{"title":"LPS-induced inflammation potentiates dental pulp stem cell odontogenic differentiation through C5aR and p38.","authors":"Ji-Hyun Kim, Muhammad Irfan, Md Akil Hossain, Susie Shin, Anne George, Seung Chung","doi":"10.1080/03008207.2023.2218944","DOIUrl":"10.1080/03008207.2023.2218944","url":null,"abstract":"<p><strong>Aim: </strong>Inflammation is a complex host response to harmful infection or injury, and it seems to play a crucial role in tissue regeneration both positively and negatively. We have previously demonstrated that the activation of the complement C5a pathway affects dentin-pulp regeneration. However, limited information is available to understand the role of the complement C5a system related to inflammation-mediated dentinogenesis. The aim of this study was to determine the role of complement C5a receptor (C5aR) in regulating lipopolysaccharide (LPS)-induced odontogenic differentiation of dental pulp stem cells (DPSCs).</p><p><strong>Material and methods: </strong>Human DPSCs were subjected to LPS-stimulated odontogenic differentiation in dentinogenic media treated with the C5aR agonist and antagonist. A putative downstream pathway of the C5aR was examined using a p38 mitogen-activated protein kinase (p38) inhibitor (SB203580).</p><p><strong>Results: </strong>Our data demonstrated that inflammation induced by the LPS treatment potentiated DPSC odontogenic differentiation and that this is C5aR dependent. C5aR signaling controlled the LPS-stimulated dentinogenesis by regulating the expression of odontogenic lineage markers like dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1). Moreover, the LPS treatment increased the total p38, and the active form of p38 expression, and treatment with SB203580 abolished the LPS-induced DSPP and DMP-1 increase.</p><p><strong>Conclusions: </strong>These data suggest a significant role of C5aR and its putative downstream molecule p38 in the LPS-induced odontogenic DPSCs differentiation. This study highlights the regulatory pathway of complement C5aR/p38 and a possible therapeutic approach for improving the efficiency of dentin regeneration during inflammation.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"505-515"},"PeriodicalIF":2.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10449891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of immune cells to intervertebral disc degeneration and the potential of immunotherapy. 免疫细胞在椎间盘退变中的作用及免疫治疗的潜力。
IF 2.9 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-09-01 DOI: 10.1080/03008207.2023.2212051
Hao Xu, Juan Li, Qinming Fei, Libo Jiang

Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.

大量证据支持慢性腰痛与椎间盘退变(IDD)相关,并伴有细胞活性降低和基质降解。免疫细胞,特别是巨噬细胞在多种疾病中的作用已被广泛研究;因此,它们在IDD中的作用自然引起了广泛的学术兴趣。由于存在物理和生物障碍,包括无血管微环境、高蛋白多糖浓度、高物理压力、凋亡诱导剂(如Fas配体)和脊髓细胞的存在,IVD被认为是一个具有免疫优势的部位。然而,在IDD期间,在IVD中出现具有明显特征的免疫细胞。其中一些免疫细胞释放因子促进椎间盘的炎症反应和血管生成,因此是IDD的重要驱动因素。虽然一些研究已经阐明了免疫细胞的作用,但没有提出与全身免疫治疗相关的具体策略。在此,我们总结了目前关于免疫细胞在IDD中的存在和作用的知识,并认为针对免疫细胞的免疫治疗可能是缓解IDD症状的新策略。
{"title":"Contribution of immune cells to intervertebral disc degeneration and the potential of immunotherapy.","authors":"Hao Xu,&nbsp;Juan Li,&nbsp;Qinming Fei,&nbsp;Libo Jiang","doi":"10.1080/03008207.2023.2212051","DOIUrl":"https://doi.org/10.1080/03008207.2023.2212051","url":null,"abstract":"<p><p>Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"413-427"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10077417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Connective Tissue Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1