The purpose of this study was to observe the therapeutic effect of extracorporeal shock wave (ESW) on extensional joint contracture of knee joint in rats and its mechanism on articular capsule fibrosis. Thirty-two SD rats were randomly divided into blank control, immobilization, natural recovery, and ESW intervention groups. Except for the control group, the left knee joints of other rats were fixed with external fixation brace for 4 weeks when they were fully extended to form joint contracture. The effect of intervention was assessed by evaluating joint contracture, total cell count and collagen deposition in joint capsule, and protein expression levels of TGF-β1, p-Smad2/3, Smad2/3, p-JNK, JNK, I and III collagen in joint capsule. ESW can effectively reduce arthrogenic contracture, improve the histopathological changes of anterior joint capsule, inhibit the high expression of target protein and the excessive activation of TGF-β1/Smad2/3/JNK signal pathway. Inhibition of excessive activation of TGF-β1/Smad2/3/JNK pathway may be one of the potential molecular mechanisms by which extracorporeal shock wave can play a role.
{"title":"The effect of extracorporeal shock wave on joint capsule fibrosis in rats with knee extension contracture: a preliminary study.","authors":"Chao Hu, Quan Bing Zhang, Feng Wang, Hua Wang, Yun Zhou","doi":"10.1080/03008207.2023.2217254","DOIUrl":"https://doi.org/10.1080/03008207.2023.2217254","url":null,"abstract":"<p><p>The purpose of this study was to observe the therapeutic effect of extracorporeal shock wave (ESW) on extensional joint contracture of knee joint in rats and its mechanism on articular capsule fibrosis. Thirty-two SD rats were randomly divided into blank control, immobilization, natural recovery, and ESW intervention groups. Except for the control group, the left knee joints of other rats were fixed with external fixation brace for 4 weeks when they were fully extended to form joint contracture. The effect of intervention was assessed by evaluating joint contracture, total cell count and collagen deposition in joint capsule, and protein expression levels of TGF-β1, p-Smad2/3, Smad2/3, p-JNK, JNK, I and III collagen in joint capsule. ESW can effectively reduce arthrogenic contracture, improve the histopathological changes of anterior joint capsule, inhibit the high expression of target protein and the excessive activation of TGF-β1/Smad2/3/JNK signal pathway. Inhibition of excessive activation of TGF-β1/Smad2/3/JNK pathway may be one of the potential molecular mechanisms by which extracorporeal shock wave can play a role.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"469-478"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10429530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/03008207.2023.2212052
Ziqing Shen, Tian Xia, Jun Zhao, Shu Pan
Alternative treatment of long tracheal defects remains one of the challenges faced by thoracic surgeons. Tissue engineering has shown great potential in addressing this regenerative medicine conundrum and the technology to make tracheal grafts using this technique is rapidly maturing, leading to unique therapeutic approaches. However, the clinical application of tissue-engineered tracheal implants is limited by insufficient revascularization. Among them, realizing the vascularization of a tissue-engineered trachea is the most challenging problem to overcome. To achieve long-term survival after tracheal transplantation, an effective blood supply must be formed to support the metabolism of seeded cells and promote tissue healing and regeneration. Otherwise, repeated infection, tissue necrosis, lumen stenosis lack of effective epithelialization, need for repeated bronchoscopy after surgery, and other complications will be inevitable and lead to graft failure and a poor outcome. Here we review and analyze various tissue engineering studies promoting angiogenesis in recent years. The general situation of reconstructing a vascularized tissue-engineered trachea, including current problems and future development trends, is elaborated from the perspectives of seed cells, scaffold materials, growth factors and signaling pathways, surgical interventions in animal models and clinical applications. This review also provides ideas and methods for the further development of better biocompatible tracheal substitutes in the future.
{"title":"Current status and future trends of reconstructing a vascularized tissue-engineered trachea.","authors":"Ziqing Shen, Tian Xia, Jun Zhao, Shu Pan","doi":"10.1080/03008207.2023.2212052","DOIUrl":"https://doi.org/10.1080/03008207.2023.2212052","url":null,"abstract":"<p><p>Alternative treatment of long tracheal defects remains one of the challenges faced by thoracic surgeons. Tissue engineering has shown great potential in addressing this regenerative medicine conundrum and the technology to make tracheal grafts using this technique is rapidly maturing, leading to unique therapeutic approaches. However, the clinical application of tissue-engineered tracheal implants is limited by insufficient revascularization. Among them, realizing the vascularization of a tissue-engineered trachea is the most challenging problem to overcome. To achieve long-term survival after tracheal transplantation, an effective blood supply must be formed to support the metabolism of seeded cells and promote tissue healing and regeneration. Otherwise, repeated infection, tissue necrosis, lumen stenosis lack of effective epithelialization, need for repeated bronchoscopy after surgery, and other complications will be inevitable and lead to graft failure and a poor outcome. Here we review and analyze various tissue engineering studies promoting angiogenesis in recent years. The general situation of reconstructing a vascularized tissue-engineered trachea, including current problems and future development trends, is elaborated from the perspectives of seed cells, scaffold materials, growth factors and signaling pathways, surgical interventions in animal models and clinical applications. This review also provides ideas and methods for the further development of better biocompatible tracheal substitutes in the future.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"428-444"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10072339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/03008207.2023.2214249
Julia Gb Primrose, Lekha Jain, Scott M Bolam, A Paul Monk, Jacob T Munro, Nicola Dalbeth, Raewyn C Poulsen
Metabolic syndrome is a risk factor for osteoarthritis. Elevated leptin levels have been implicated as a potential cause of this association. Previous studies have shown that supra-physiological leptin concentrations can induce osteoarthritis-like changes in chondrocyte phenotype. Here, we tested the effects of leptin in the concentration range found in synovial fluid on chondrocyte phenotype. Chondrocytes isolated from macroscopically normal regions of cartilage within osteoarthritic joints from patients undergoing knee arthroplasty, all with body mass index >30 kg/m2 were treated with 2-40 ng/ml leptin for 24 h. Chondrocyte phenotype marker expression was measured by RT-qPCR and western blot. The role of HES1 in mediating the effects of leptin was determined by gene knockdown using RNAi and over-expression using adenoviral-mediated gene delivery. Treatment of chondrocytes with 20 or 40 ng/ml leptin resulted in decreased SOX9 levels and decreased levels of the SOX9-target genes COL2A1 and ACAN. Levels of HES1 were lower and ADAMTS5 higher in chondrocytes treated with 20 or 40 ng/ml leptin. HES1 knockdown resulted in increased ADAMTS5 expression whereas over-expression of HES1 prevented the leptin-induced increase in ADAMTS5. An increase in MMP13 expression was only evident in chondrocytes treated with 40 ng/ml leptin and was not mediated by HES1 activity. High concentrations of leptin can cause changes in chondrocyte phenotype consistent with those seen in osteoarthritis. Synovial fluid leptin concentrations of this level are typically observed in patients with metabolic syndrome and/or women, suggesting elevated leptin levels may form part of the multifactorial network that leads to osteoarthritis development in these patients.
{"title":"Concentration-dependent effects of leptin on osteoarthritis-associated changes in phenotype of human chondrocytes.","authors":"Julia Gb Primrose, Lekha Jain, Scott M Bolam, A Paul Monk, Jacob T Munro, Nicola Dalbeth, Raewyn C Poulsen","doi":"10.1080/03008207.2023.2214249","DOIUrl":"https://doi.org/10.1080/03008207.2023.2214249","url":null,"abstract":"<p><p>Metabolic syndrome is a risk factor for osteoarthritis. Elevated leptin levels have been implicated as a potential cause of this association. Previous studies have shown that supra-physiological leptin concentrations can induce osteoarthritis-like changes in chondrocyte phenotype. Here, we tested the effects of leptin in the concentration range found in synovial fluid on chondrocyte phenotype. Chondrocytes isolated from macroscopically normal regions of cartilage within osteoarthritic joints from patients undergoing knee arthroplasty, all with body mass index >30 kg/m<sup>2</sup> were treated with 2-40 ng/ml leptin for 24 h. Chondrocyte phenotype marker expression was measured by RT-qPCR and western blot. The role of HES1 in mediating the effects of leptin was determined by gene knockdown using RNAi and over-expression using adenoviral-mediated gene delivery. Treatment of chondrocytes with 20 or 40 ng/ml leptin resulted in decreased SOX9 levels and decreased levels of the SOX9-target genes COL2A1 and ACAN. Levels of HES1 were lower and ADAMTS5 higher in chondrocytes treated with 20 or 40 ng/ml leptin. HES1 knockdown resulted in increased ADAMTS5 expression whereas over-expression of HES1 prevented the leptin-induced increase in ADAMTS5. An increase in MMP13 expression was only evident in chondrocytes treated with 40 ng/ml leptin and was not mediated by HES1 activity. High concentrations of leptin can cause changes in chondrocyte phenotype consistent with those seen in osteoarthritis. Synovial fluid leptin concentrations of this level are typically observed in patients with metabolic syndrome and/or women, suggesting elevated leptin levels may form part of the multifactorial network that leads to osteoarthritis development in these patients.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"457-468"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10072334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose/aim: Bone defects caused by trauma, tumors, congenital malformation, or inflammation are very common in orthopedics. In recent years, mimicking the composition and structure of natural bone tissue has become a hot topic in biomaterial research, with the aim of developing an ideal biomaterial for bone defect transplantation. Here, the feasibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel to repair bone defects was evaluated in vitro and in rats.
Materials and methods: The biocompatibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel was evaluated by cytoskeleton staining, live/dead cell staining and cell proliferation assays. The in vitro osteogenic activities of the composite hydrogel were evaluated by alkaline phosphatase and alizarin red staining, as well as osteogenic gene expression analysis at both transcript and protein levels. The in vivo bone repair activities were evaluated using the rat skull defect model.
Results: The BCP/GelMA composite hydrogel displayed excellent biocompatibility and promoted osteogenesis of bone marrow mesenchymal stem cells in vitro. In addition, the BCP/GelMA composite hydrogel markedly promoted new bone formation in the rat skull-defect model.
Conclusions: BCP/GelMA composite hydrogel may be an effective artificial material for bone tissue engineering.
{"title":"A biphasic calcium phosphate/acylated methacrylate gelatin composite hydrogel promotes osteogenesis and bone repair.","authors":"Ren-Jie Xu, Jin-Jin Ma, Xiao Yu, Xiao-Qiang Zhou, Jing-Yu Zhang, Ya-Dong Li, Hui-Lin Yang, Saijilafu, Guang-Xiang Chen","doi":"10.1080/03008207.2023.2212067","DOIUrl":"https://doi.org/10.1080/03008207.2023.2212067","url":null,"abstract":"<p><strong>Purpose/aim: </strong>Bone defects caused by trauma, tumors, congenital malformation, or inflammation are very common in orthopedics. In recent years, mimicking the composition and structure of natural bone tissue has become a hot topic in biomaterial research, with the aim of developing an ideal biomaterial for bone defect transplantation. Here, the feasibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel to repair bone defects was evaluated in vitro and in rats.</p><p><strong>Materials and methods: </strong>The biocompatibility of a biphasic calcium phosphate (BCP)/acylated methacrylate gelatin (GelMA) composite hydrogel was evaluated by cytoskeleton staining, live/dead cell staining and cell proliferation assays. The in vitro osteogenic activities of the composite hydrogel were evaluated by alkaline phosphatase and alizarin red staining, as well as osteogenic gene expression analysis at both transcript and protein levels. The in vivo bone repair activities were evaluated using the rat skull defect model.</p><p><strong>Results: </strong>The BCP/GelMA composite hydrogel displayed excellent biocompatibility and promoted osteogenesis of bone marrow mesenchymal stem cells in vitro. In addition, the BCP/GelMA composite hydrogel markedly promoted new bone formation in the rat skull-defect model.</p><p><strong>Conclusions: </strong>BCP/GelMA composite hydrogel may be an effective artificial material for bone tissue engineering.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"445-456"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10072337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/03008207.2023.2217258
Feng Qu, Xuezhen Shen, Ketao Wang, Chengyi Sun, Pengfei Li
Background: Tendon-derived stem cells (TDSCs) are proposed as a potential cell-seed for the treatment of tendon injury due to their tenogenic differentiation potential. In this work, we defined the action of long non-coding RNA (lncRNA) muscle differentiation 1 (LINCMD1) in tenogenic differentiation of human TDSCs (hTDSCs).
Methods: Quantitative real-time PCR (qRT-PCR) was used to assess the levels of LINCMD1, microRNA (miR)-342-3p, and early growth response-1 (EGR1) mRNA. Cell proliferation was detected by the XTT colorimetric assay. Protein expression was quantified by western blot. hTDSCs were grown in an osteogenic medium to induce osteogenic differentiation, and the extent of osteogenic differentiation was assessed by Alizarin Red Staining (ARS). The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-342-3p and LINCMD1 or EGR1.
Results: Our results showed that enforced expression of LINCMD1 or suppression of miR-342-3p accelerated the proliferation and tenogenic differentiation and reduced osteogenic differentiation of hTDSCs. LINCMD1 regulated miR-342-3p expression by binding to miR-342-3p. EGR1 was identified as a direct and functional target of miR-342-3p, and knockdown of EGR1 reversed the effects of miR-342-3p suppression on cell proliferation and tenogenic and osteogenic differentiation. Furthermore, the miR-342-3p/EGR1 axis mediated the regulation of LINCMD1 on hTDSC proliferation and tenogenic and osteogenic differentiation.
Conclusion: Our study suggests the induction of LINCMD1 in tenogenic differentiation of hTDSCs through miR-342-3p/EGR1 axis.
{"title":"Tenogenic differentiation of human tendon-derived stem cells induced by long non-coding RNA LINCMD1 via miR-342-3p/EGR1 axis.","authors":"Feng Qu, Xuezhen Shen, Ketao Wang, Chengyi Sun, Pengfei Li","doi":"10.1080/03008207.2023.2217258","DOIUrl":"https://doi.org/10.1080/03008207.2023.2217258","url":null,"abstract":"<p><strong>Background: </strong>Tendon-derived stem cells (TDSCs) are proposed as a potential cell-seed for the treatment of tendon injury due to their tenogenic differentiation potential. In this work, we defined the action of long non-coding RNA (lncRNA) muscle differentiation 1 (LINCMD1) in tenogenic differentiation of human TDSCs (hTDSCs).</p><p><strong>Methods: </strong>Quantitative real-time PCR (qRT-PCR) was used to assess the levels of LINCMD1, microRNA (miR)-342-3p, and early growth response-1 (EGR1) mRNA. Cell proliferation was detected by the XTT colorimetric assay. Protein expression was quantified by western blot. hTDSCs were grown in an osteogenic medium to induce osteogenic differentiation, and the extent of osteogenic differentiation was assessed by Alizarin Red Staining (ARS). The activity of alkaline phosphatase (ALP) was measured by the ALP Activity Assay Kit. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-342-3p and LINCMD1 or EGR1.</p><p><strong>Results: </strong>Our results showed that enforced expression of LINCMD1 or suppression of miR-342-3p accelerated the proliferation and tenogenic differentiation and reduced osteogenic differentiation of hTDSCs. LINCMD1 regulated miR-342-3p expression by binding to miR-342-3p. EGR1 was identified as a direct and functional target of miR-342-3p, and knockdown of EGR1 reversed the effects of miR-342-3p suppression on cell proliferation and tenogenic and osteogenic differentiation. Furthermore, the miR-342-3p/EGR1 axis mediated the regulation of LINCMD1 on hTDSC proliferation and tenogenic and osteogenic differentiation.</p><p><strong>Conclusion: </strong>Our study suggests the induction of LINCMD1 in tenogenic differentiation of hTDSCs through miR-342-3p/EGR1 axis.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"479-490"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10130003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Osteocytes invivo exhibit different functional states, but no specific marker to distinguish these is currently available.
Materials and methods: To simulate the differentiation process of pre-osteoblasts to osteocytes invitro, MC3T3-E1 cells were cultured on type I collagen gel and a three-dimensional (3D) culture system was established. The Notch expression of osteocyte-like cells in 3D culture system was compared with that of in situ osteocytes in bone tissues.
Results: Immunohistochemistry demonstrated that Notch1 was not detected in "resting" insitu osteocytes, but was detected in normal cultured osteocyte-like cell line MLO-Y4. Osteocytes obtained from conventional osteogenic-induced osteoblasts and long-term cultured MLO-Y4 cells could not replicate the Notch1 expression pattern from insitu osteocytes. From day 14-35 of osteogenic induction, osteoblasts in 3D culture system gradually migrated into the gel to form canaliculus-like structures similar to bone canaliculus. On day 35, stellate-shaped osteocyte-like cells were observed, and expression of DMP1 and SOST, but not Runx2, was detected. Notch1 was not detected by immunohistochemistry, and Notch1 mRNA level was not significantly different from that of insitu osteocytes. In MC3T3-E1 cells, down-regulation of Notch2 increased Notch1, Notch downstream genes (β-catenin and Nfatc1), and Dmp1. In MLO-Y4 cells, Notch2 decreased after Notch1 siRNA transfection. Downregulation of Notch1 or Notch2 decreased Nfatc1, β-catenin, and Dmp1, and increased Sost.
Conclusions: We established "resting state" osteocytes using an invitro 3D model. Notch1 can be a useful marker to help differentiate the functional states of osteocytes (activated vs. resting state).
{"title":"Notch1 is a marker for <i>in situ</i> resting osteocytes in a 3-dimensional gel culture model.","authors":"Ying-Hui Zhou, Jia-Yu Zhu, Yue Guo, Hao-Neng Tang, Fang Wang, Junaid Iqbal, Hui-Xuan Wu, Nan Hu, Fen Xiao, Ting Wang, Long Li, Hou-De Zhou","doi":"10.1080/03008207.2023.2217271","DOIUrl":"https://doi.org/10.1080/03008207.2023.2217271","url":null,"abstract":"<p><strong>Purpose: </strong>Osteocytes <i>in</i> <i>vivo</i> exhibit different functional states, but no specific marker to distinguish these is currently available.</p><p><strong>Materials and methods: </strong>To simulate the differentiation process of pre-osteoblasts to osteocytes <i>in</i> <i>vitro</i>, MC3T3-E1 cells were cultured on type I collagen gel and a three-dimensional (3D) culture system was established. The Notch expression of osteocyte-like cells in 3D culture system was compared with that of <i>in situ</i> osteocytes in bone tissues.</p><p><strong>Results: </strong>Immunohistochemistry demonstrated that Notch1 was not detected in \"resting\" <i>in</i> <i>situ</i> osteocytes, but was detected in normal cultured osteocyte-like cell line MLO-Y4. Osteocytes obtained from conventional osteogenic-induced osteoblasts and long-term cultured MLO-Y4 cells could not replicate the Notch1 expression pattern from <i>in</i> <i>situ</i> osteocytes. From day 14-35 of osteogenic induction, osteoblasts in 3D culture system gradually migrated into the gel to form canaliculus-like structures similar to bone canaliculus. On day 35, stellate-shaped osteocyte-like cells were observed, and expression of DMP1 and SOST, but not Runx2, was detected. Notch1 was not detected by immunohistochemistry, and <i>Notch1</i> mRNA level was not significantly different from that of <i>in</i> <i>situ</i> osteocytes. In MC3T3-E1 cells, down-regulation of <i>Notch2</i> increased <i>Notch1</i>, Notch downstream genes (<i>β-catenin</i> and <i>Nfatc1</i>), and <i>Dmp1</i>. In MLO-Y4 cells, Notch2 decreased after <i>Notch1</i> siRNA transfection. Downregulation of <i>Notch1</i> or <i>Notch2</i> decreased <i>Nfatc1</i>, <i>β-catenin</i>, and <i>Dmp1</i>, and increased <i>Sost</i>.</p><p><strong>Conclusions: </strong>We established \"resting state\" osteocytes using an <i>in</i> <i>vitro</i> 3D model. Notch1 can be a useful marker to help differentiate the functional states of osteocytes (activated vs. resting state).</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"491-504"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10449885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-05-29DOI: 10.1080/03008207.2023.2218944
Ji-Hyun Kim, Muhammad Irfan, Md Akil Hossain, Susie Shin, Anne George, Seung Chung
Aim: Inflammation is a complex host response to harmful infection or injury, and it seems to play a crucial role in tissue regeneration both positively and negatively. We have previously demonstrated that the activation of the complement C5a pathway affects dentin-pulp regeneration. However, limited information is available to understand the role of the complement C5a system related to inflammation-mediated dentinogenesis. The aim of this study was to determine the role of complement C5a receptor (C5aR) in regulating lipopolysaccharide (LPS)-induced odontogenic differentiation of dental pulp stem cells (DPSCs).
Material and methods: Human DPSCs were subjected to LPS-stimulated odontogenic differentiation in dentinogenic media treated with the C5aR agonist and antagonist. A putative downstream pathway of the C5aR was examined using a p38 mitogen-activated protein kinase (p38) inhibitor (SB203580).
Results: Our data demonstrated that inflammation induced by the LPS treatment potentiated DPSC odontogenic differentiation and that this is C5aR dependent. C5aR signaling controlled the LPS-stimulated dentinogenesis by regulating the expression of odontogenic lineage markers like dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1). Moreover, the LPS treatment increased the total p38, and the active form of p38 expression, and treatment with SB203580 abolished the LPS-induced DSPP and DMP-1 increase.
Conclusions: These data suggest a significant role of C5aR and its putative downstream molecule p38 in the LPS-induced odontogenic DPSCs differentiation. This study highlights the regulatory pathway of complement C5aR/p38 and a possible therapeutic approach for improving the efficiency of dentin regeneration during inflammation.
{"title":"LPS-induced inflammation potentiates dental pulp stem cell odontogenic differentiation through C5aR and p38.","authors":"Ji-Hyun Kim, Muhammad Irfan, Md Akil Hossain, Susie Shin, Anne George, Seung Chung","doi":"10.1080/03008207.2023.2218944","DOIUrl":"10.1080/03008207.2023.2218944","url":null,"abstract":"<p><strong>Aim: </strong>Inflammation is a complex host response to harmful infection or injury, and it seems to play a crucial role in tissue regeneration both positively and negatively. We have previously demonstrated that the activation of the complement C5a pathway affects dentin-pulp regeneration. However, limited information is available to understand the role of the complement C5a system related to inflammation-mediated dentinogenesis. The aim of this study was to determine the role of complement C5a receptor (C5aR) in regulating lipopolysaccharide (LPS)-induced odontogenic differentiation of dental pulp stem cells (DPSCs).</p><p><strong>Material and methods: </strong>Human DPSCs were subjected to LPS-stimulated odontogenic differentiation in dentinogenic media treated with the C5aR agonist and antagonist. A putative downstream pathway of the C5aR was examined using a p38 mitogen-activated protein kinase (p38) inhibitor (SB203580).</p><p><strong>Results: </strong>Our data demonstrated that inflammation induced by the LPS treatment potentiated DPSC odontogenic differentiation and that this is C5aR dependent. C5aR signaling controlled the LPS-stimulated dentinogenesis by regulating the expression of odontogenic lineage markers like dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1). Moreover, the LPS treatment increased the total p38, and the active form of p38 expression, and treatment with SB203580 abolished the LPS-induced DSPP and DMP-1 increase.</p><p><strong>Conclusions: </strong>These data suggest a significant role of C5aR and its putative downstream molecule p38 in the LPS-induced odontogenic DPSCs differentiation. This study highlights the regulatory pathway of complement C5aR/p38 and a possible therapeutic approach for improving the efficiency of dentin regeneration during inflammation.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"505-515"},"PeriodicalIF":2.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10449891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/03008207.2023.2212051
Hao Xu, Juan Li, Qinming Fei, Libo Jiang
Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.
{"title":"Contribution of immune cells to intervertebral disc degeneration and the potential of immunotherapy.","authors":"Hao Xu, Juan Li, Qinming Fei, Libo Jiang","doi":"10.1080/03008207.2023.2212051","DOIUrl":"https://doi.org/10.1080/03008207.2023.2212051","url":null,"abstract":"<p><p>Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":"64 5","pages":"413-427"},"PeriodicalIF":2.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10077417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}