首页 > 最新文献

Computational Geosciences最新文献

英文 中文
A mineral precipitation model based on the volume of fluid method 基于流体体积法的矿物沉淀模型
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-04-01 DOI: 10.1007/s10596-024-10280-3
Ziyan Wang, Ilenia Battiato

A novel volume of fluid method is presented for mineral precipitation coupled with fluid flow and reactive transport. The approach describes the fluid-solid interface as a smooth transitional region, which is designed to provide the same precipitation rate and viscous drag force as a sharp interface. Specifically, the governing equation of mineral precipitation is discretized by an upwind scheme, and a rigorous effective viscosity model is derived around the interface. The model is validated against analytical solutions for mineral precipitation in channel and ring-shaped structures. It also compares well with interface tracking simulations of advection-diffusion-reaction problems. The methodology is finally employed to model mineral precipitation in fracture networks, which is challenging due to the low porosity and complex geometry. Compared to other approaches, the proposed model has a concise algorithm and contains no free parameters. In the modeling, only the pore space requires meshing, which improves the computational efficiency especially for low-porosity media.

针对矿物沉淀与流体流动和反应传输的耦合,提出了一种新颖的流体体积法。该方法将流固界面描述为一个光滑的过渡区域,旨在提供与尖锐界面相同的析出率和粘性阻力。具体来说,矿物析出的控制方程采用上风方案离散化,并在界面周围推导出严格的有效粘度模型。该模型与通道和环形结构中矿物析出的分析解进行了验证。该模型还与平流-扩散-反应问题的界面跟踪模拟结果进行了比较。该方法最后被用于模拟断裂网络中的矿物沉淀,由于断裂网络孔隙率低、几何形状复杂,因此具有挑战性。与其他方法相比,所提出的模型算法简洁,不包含自由参数。在建模过程中,只需要对孔隙空间进行网格划分,从而提高了计算效率,特别是对于低孔隙率介质。
{"title":"A mineral precipitation model based on the volume of fluid method","authors":"Ziyan Wang, Ilenia Battiato","doi":"10.1007/s10596-024-10280-3","DOIUrl":"https://doi.org/10.1007/s10596-024-10280-3","url":null,"abstract":"<p>A novel volume of fluid method is presented for mineral precipitation coupled with fluid flow and reactive transport. The approach describes the fluid-solid interface as a smooth transitional region, which is designed to provide the same precipitation rate and viscous drag force as a sharp interface. Specifically, the governing equation of mineral precipitation is discretized by an upwind scheme, and a rigorous effective viscosity model is derived around the interface. The model is validated against analytical solutions for mineral precipitation in channel and ring-shaped structures. It also compares well with interface tracking simulations of advection-diffusion-reaction problems. The methodology is finally employed to model mineral precipitation in fracture networks, which is challenging due to the low porosity and complex geometry. Compared to other approaches, the proposed model has a concise algorithm and contains no free parameters. In the modeling, only the pore space requires meshing, which improves the computational efficiency especially for low-porosity media.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140569817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional stochastic simulation of fluvial reservoirs using multi-scale concurrent generative adversarial networks 利用多尺度并发生成式对抗网络对河流水库进行条件随机模拟
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-03-25 DOI: 10.1007/s10596-024-10279-w
Ting Zhang, Mengkai Yin, Hualin Bai, Anqin Zhang, Yi Du

To accurately grasp the comprehensive geological features of fluvial reservoirs, it is necessary to exploit a robust modelling approach to visualize and reproduce the realistic spatial distribution that exhibits apparent and implicit depositional trends of fluvial regions. The traditional geostatistical modelling methods using stochastic modelling fail to capture the complex features of geological reservoirs and therefore cannot reflect satisfactory realistic patterns. Generative adversarial network (GAN), as one of the mainstream generative models of deep learning, performs well in unsupervised learning tasks. The concurrent single image GAN (ConSinGAN) is one of the variants of GAN. Based on ConSinGAN, conditional concurrent single image GAN (CCSGAN) is proposed in this paper to perform conditional simulation of fluvial reservoirs, through which the output of the model can be constrained by conditional data. The results show that ConSinGAN, with the introduction of conditional data, not only preserves the model and parameters for future use but also improves the quality of the simulation results compared to other modeling methods.

为了准确把握河流储层的综合地质特征,有必要利用一种稳健的建模方法来直观地再现现实的空间分布,从而展现出河流区域明显和隐含的沉积趋势。使用随机建模的传统地质统计建模方法无法捕捉地质储层的复杂特征,因此无法反映令人满意的现实模式。生成对抗网络(GAN)作为深度学习的主流生成模型之一,在无监督学习任务中表现出色。并发单图像生成对抗网络(ConSinGAN)是生成对抗网络的变种之一。本文在 ConSinGAN 的基础上,提出了条件并发单图像 GAN(CCSGAN),用于对河流水库进行条件模拟,通过条件数据对模型的输出进行约束。结果表明,与其他建模方法相比,引入条件数据的 ConSinGAN 不仅能保留模型和参数以供将来使用,还能提高仿真结果的质量。
{"title":"Conditional stochastic simulation of fluvial reservoirs using multi-scale concurrent generative adversarial networks","authors":"Ting Zhang, Mengkai Yin, Hualin Bai, Anqin Zhang, Yi Du","doi":"10.1007/s10596-024-10279-w","DOIUrl":"https://doi.org/10.1007/s10596-024-10279-w","url":null,"abstract":"<p>To accurately grasp the comprehensive geological features of fluvial reservoirs, it is necessary to exploit a robust modelling approach to visualize and reproduce the realistic spatial distribution that exhibits apparent and implicit depositional trends of fluvial regions. The traditional geostatistical modelling methods using stochastic modelling fail to capture the complex features of geological reservoirs and therefore cannot reflect satisfactory realistic patterns. Generative adversarial network (GAN), as one of the mainstream generative models of deep learning, performs well in unsupervised learning tasks. The concurrent single image GAN (ConSinGAN) is one of the variants of GAN. Based on ConSinGAN, conditional concurrent single image GAN (CCSGAN) is proposed in this paper to perform conditional simulation of fluvial reservoirs, through which the output of the model can be constrained by conditional data. The results show that ConSinGAN, with the introduction of conditional data, not only preserves the model and parameters for future use but also improves the quality of the simulation results compared to other modeling methods.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140301427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new method based on multiresolution graph-based clustering for lithofacies analysis of well logging 基于多分辨率图谱聚类的测井岩性分析新方法
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-03-23 DOI: 10.1007/s10596-024-10277-y

Abstract

The lithofacies analysis of logging data is an essential step in reservoir evaluation. Multiresolution graph-based clustering (MRGC) is a commonly used methodology that provides information on the best number of clusters and cluster fitting results for geological understanding. However, the cluster fusion approach of MRGC often leads to an overemphasis of the boundary constraints among clusters. MRGC neglects the global cluster distribution relationship, which limits its practical application effectiveness. This paper proposes a new methodology, named kernel multiresolution graph-based clustering (KMRGC), to improve the merging part of clustering in MRGC, and it can give more weight to the spatial relationship characteristics among clusters. The clustering performance of K-means, Gaussian Mixture Model(GMM), fuzzy c-means(FCM), Density-Based Spatial Clustering of Applications with Noise(DBSCN), spectral clustering, MRGC and KMRGC algorithm was evaluated on a publicly available training set and noisy dataset, and the best results in terms of the adjusted Rand coefficients and normalized mutual information(NMI) coefficients on most of the datasets were obtained using KMRGC algorithm. Finally, KMRGC was used for logging data lithofacies clustering in cased wells, and the clustering effect of KMRGC algorithm was much better than that of the K-means, GMM, FCM, DBSCN, spectral clustering and MRGC algorithms, and the accuracy and stability were better.

摘要 测井数据的岩性分析是储层评价的重要步骤。基于多分辨率图的聚类(MRGC)是一种常用的方法,可提供最佳聚类数量和聚类拟合结果的信息,以帮助理解地质。然而,MRGC 的聚类融合方法往往会导致过分强调聚类之间的边界约束。MRGC 忽视了全局聚类分布关系,限制了其实际应用效果。本文提出了一种新的方法,即基于核多分辨率图的聚类(KMRGC),以改进 MRGC 中的聚类合并部分,并能更多地考虑聚类间的空间关系特征。在公开的训练集和噪声数据集上评估了 K-均值、高斯混合模型(GMM)、模糊 C-均值(FCM)、基于密度的噪声应用空间聚类(DBSCN)、光谱聚类、MRGC 和 KMRGC 算法的聚类性能、结果表明,在大多数数据集上,KMRGC 算法在调整后的 Rand 系数和归一化互信息(NMI)系数方面取得了最佳结果。最后,将 KMRGC 算法用于套管井测井数据岩性聚类,KMRGC 算法的聚类效果远优于 K-means、GMM、FCM、DBSCN、光谱聚类和 MRGC 算法,且准确性和稳定性更好。
{"title":"A new method based on multiresolution graph-based clustering for lithofacies analysis of well logging","authors":"","doi":"10.1007/s10596-024-10277-y","DOIUrl":"https://doi.org/10.1007/s10596-024-10277-y","url":null,"abstract":"<h3>Abstract</h3> <p>The lithofacies analysis of logging data is an essential step in reservoir evaluation. Multiresolution graph-based clustering (MRGC) is a commonly used methodology that provides information on the best number of clusters and cluster fitting results for geological understanding. However, the cluster fusion approach of MRGC often leads to an overemphasis of the boundary constraints among clusters. MRGC neglects the global cluster distribution relationship, which limits its practical application effectiveness. This paper proposes a new methodology, named kernel multiresolution graph-based clustering (KMRGC), to improve the merging part of clustering in MRGC, and it can give more weight to the spatial relationship characteristics among clusters. The clustering performance of K-means, Gaussian Mixture Model(GMM), fuzzy c-means(FCM), Density-Based Spatial Clustering of Applications with Noise(DBSCN), spectral clustering, MRGC and KMRGC algorithm was evaluated on a publicly available training set and noisy dataset, and the best results in terms of the adjusted Rand coefficients and normalized mutual information(NMI) coefficients on most of the datasets were obtained using KMRGC algorithm. Finally, KMRGC was used for logging data lithofacies clustering in cased wells, and the clustering effect of KMRGC algorithm was much better than that of the K-means, GMM, FCM, DBSCN, spectral clustering and MRGC algorithms, and the accuracy and stability were better.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigid transformations for stabilized lower dimensional space to support subsurface uncertainty quantification and interpretation 稳定低维空间的刚性变换,支持地下不确定性量化和解释
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-03-08 DOI: 10.1007/s10596-024-10278-x
Ademide O. Mabadeje, Michael J. Pyrcz

Subsurface datasets commonly are big data, i.e., they meet big data criteria, such as large data volume, significant feature variety, high sampling velocity, and limited data veracity. Large data volume is enhanced by the large number of necessary features derived from the imposition of various features derived from physical, engineering, and geological inputs, constraints that may invoke the curse of dimensionality. Existing dimensionality reduction (DR) methods are either linear or nonlinear; however, for subsurface datasets, nonlinear dimensionality reduction (NDR) methods are most applicable due to data complexity. Metric-multidimensional scaling (MDS) is a suitable NDR method that retains the data's intrinsic structure and could quantify uncertainty space. However, like other NDR methods, MDS is limited by its inability to achieve a stabilized unique solution of the low dimensional space (LDS) invariant to Euclidean transformations and has no extension for inclusions of out-of-sample points (OOSP). To support subsurface inferential workflows, it is imperative to transform these datasets into meaningful, stable representations of reduced dimensionality that permit OOSP without model recalculation.

We propose using rigid transformations to obtain a unique solution of stabilized Euclidean invariant representation for LDS. First, compute a dissimilarity matrix as the MDS input using a distance metric to obtain the LDS for (N)-samples and repeat for multiple realizations. Then, select the base case and perform a rigid transformation on further realizations to obtain rotation and translation matrices that enforce Euclidean transformation invariance under ensemble expectation. The expected stabilized solution identifies anchor positions using a convex hull algorithm compared to the (N+1) case from prior matrices to obtain a stabilized representation consisting of the OOSP. Next, the loss function and normalized stress are computed via distances between samples in the high-dimensional space and LDS to quantify and visualize distortion in a 2-D registration problem. To test our proposed workflow, a different sample size experiment is conducted for Euclidean and Manhattan distance metrics as the MDS dissimilarity matrix inputs for a synthetic dataset.

The workflow is also demonstrated using wells from the Duvernay Formation and OOSP with different petrophysical properties typically found in unconventional reservoirs to track and understand its behavior in LDS. The results show that our method is effective for NDR methods to obtain unique, repeatable, stable representations of LDS invariant to Euclidean transformations. In addition, we propose a distortion-based metric, stress ratio (SR), that quantifies and visualizes the uncertainty space for samples in subsurface datasets, which is helpful for model updating and inferential analysis for OOSP. Therefore, we recommend the workflow's integration as an invariant

地下数据集通常是大数据,即符合大数据标准,如数据量大、特征种类多、采样速度快、数据真实性有限。大数据量因大量必要特征而增强,这些特征来自于物理、工程和地质输入的各种特征,这些约束条件可能会引发维度诅咒。现有的降维(DR)方法既有线性的,也有非线性的;然而,对于地下数据集,由于数据的复杂性,非线性降维(NDR)方法最为适用。公制多维缩放(MDS)是一种合适的非线性降维方法,它保留了数据的内在结构,并能量化不确定性空间。然而,与其他 NDR 方法一样,MDS 也受到限制,因为它无法获得不受欧几里得变换影响的低维空间(LDS)的稳定唯一解,也无法扩展到包含样本外点(OOSP)。为了支持地下推断工作流程,必须将这些数据集转换为有意义的、稳定的降维表示,以便在不重新计算模型的情况下实现 OOSP。首先,使用距离度量计算一个不相似矩阵作为 MDS 输入,以获得 (N)-samples 的 LDS,并重复多次实现。然后,选择基本情况并对进一步的实现进行刚性变换,以获得在集合期望下执行欧几里得变换不变性的旋转和平移矩阵。预期稳定解使用凸壳算法确定锚点位置,并与先验矩阵的(N+1)情况进行比较,以获得由 OOSP 组成的稳定表示。接下来,通过高维空间样本间的距离和 LDS 计算损失函数和归一化应力,以量化和可视化二维配准问题中的失真。为了测试我们提出的工作流程,对合成数据集的欧几里得距离和曼哈顿距离指标作为 MDS 差异性矩阵输入进行了不同样本大小的实验。该工作流程还使用了非常规储层中具有不同岩石物理特性的 Duvernay Formation 和 OOSP 油井进行了演示,以跟踪和了解其在 LDS 中的行为。结果表明,我们的方法对于 NDR 方法来说是有效的,可以获得对欧几里得变换不变的 LDS 唯一、可重复、稳定的表示。此外,我们还提出了一种基于变形的度量--应力比(SR),该度量可量化和可视化地下数据集中样本的不确定性空间,有助于 OOSP 的模型更新和推理分析。因此,我们建议将该工作流程整合为 LDS 中的一个不变量变换缓解单元,用于独特的解决方案,以确保地下能源资源工程大数据推断工作流程(如模拟数据选择和灵敏度分析)中 NDR 方法的可重复性和合理比较。
{"title":"Rigid transformations for stabilized lower dimensional space to support subsurface uncertainty quantification and interpretation","authors":"Ademide O. Mabadeje, Michael J. Pyrcz","doi":"10.1007/s10596-024-10278-x","DOIUrl":"https://doi.org/10.1007/s10596-024-10278-x","url":null,"abstract":"<p>Subsurface datasets commonly are big data, i.e., they meet big data criteria, such as large data volume, significant feature variety, high sampling velocity, and limited data veracity. Large data volume is enhanced by the large number of necessary features derived from the imposition of various features derived from physical, engineering, and geological inputs, constraints that may invoke the curse of dimensionality. Existing dimensionality reduction (DR) methods are either linear or nonlinear; however, for subsurface datasets, nonlinear dimensionality reduction (NDR) methods are most applicable due to data complexity. Metric-multidimensional scaling (MDS) is a suitable NDR method that retains the data's intrinsic structure and could quantify uncertainty space. However, like other NDR methods, MDS is limited by its inability to achieve a stabilized unique solution of the low dimensional space (LDS) invariant to Euclidean transformations and has no extension for inclusions of out-of-sample points (OOSP). To support subsurface inferential workflows, it is imperative to transform these datasets into meaningful, stable representations of reduced dimensionality that permit OOSP without model recalculation.</p><p>We propose using rigid transformations to obtain a unique solution of stabilized Euclidean invariant representation for LDS. First, compute a dissimilarity matrix as the MDS input using a distance metric to obtain the LDS for <span>(N)</span>-samples and repeat for multiple realizations. Then, select the base case and perform a rigid transformation on further realizations to obtain rotation and translation matrices that enforce Euclidean transformation invariance under ensemble expectation. The expected stabilized solution identifies anchor positions using a convex hull algorithm compared to the <span>(N+1)</span> case from prior matrices to obtain a stabilized representation consisting of the OOSP. Next, the loss function and normalized stress are computed via distances between samples in the high-dimensional space and LDS to quantify and visualize distortion in a 2-D registration problem. To test our proposed workflow, a different sample size experiment is conducted for Euclidean and Manhattan distance metrics as the MDS dissimilarity matrix inputs for a synthetic dataset.</p><p>The workflow is also demonstrated using wells from the Duvernay Formation and OOSP with different petrophysical properties typically found in unconventional reservoirs to track and understand its behavior in LDS. The results show that our method is effective for NDR methods to obtain unique, repeatable, stable representations of LDS invariant to Euclidean transformations. In addition, we propose a distortion-based metric, stress ratio (SR), that quantifies and visualizes the uncertainty space for samples in subsurface datasets, which is helpful for model updating and inferential analysis for OOSP. Therefore, we recommend the workflow's integration as an invariant ","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140074309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved spatial understanding of induced seismicity hazard from the discretization of a curved fault surface 通过对弯曲断层面的离散化改进对诱发地震危害的空间理解
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-02-22 DOI: 10.1007/s10596-024-10276-z
Kevin L. McCormack, Philip J. Smith

In some geomechanical treatments of induced seismicity, the fault surface is idealized to be a plane. We depart from this assumption by comparing a discretization model and a kriging model, both of which allow the incorporation of rugosity, roughness, and curvature into the fault surface and subsequent geomechanical models of hazard. We test the Hogback Flexural Faults of the San Juan Basin, which could potentially pose a problem for induced seismicity in a carbon sequestration project in the northwestern portion of the basin. The discretization model emmeshes data about the location of the fault surface in three-dimensional space into hexagonally close-packed spheres. Each sphere that contains enough data is termed a region and Bayes’ Law is used to find a distribution of strikes and dips that describe the data within the region. The kriging model uses Gaussian processes to interpolate and extrapolate a surface through all data points. The results show that the discretized regions possess, in general, lower Coulomb failure functions, but the uncertainty in the distributions, i.e., the ranges, becomes greater as the discretization increases due to overfitting. The majority of the uncertainty in both the discretization model and the kriging model is contained in the geomechanical priors. Finally, the discretization and kriging of the fault surface elucidates locations with higher Coulomb failure functions.

在一些诱发地震的地质力学研究中,断层面被理想化为一个平面。我们偏离了这一假设,比较了离散化模型和克里金模型,这两种模型都可以将凹凸、粗糙度和曲率纳入断层面以及随后的地质力学危险模型中。我们对圣胡安盆地的霍格贝克挠性断层进行了测试,该断层有可能对盆地西北部的碳封存项目造成诱发地震问题。离散化模型将三维空间中断层表面位置的数据emmeshes到六边形紧密堆积的球体中。每个包含足够数据的球体被称为一个区域,贝叶斯定律用于找到描述区域内数据的走向和倾角分布。克里金模型使用高斯过程,通过所有数据点插值和外推一个曲面。结果表明,离散化区域一般具有较低的库仑失效函数,但由于过度拟合,随着离散化程度的增加,分布(即范围)的不确定性也随之增大。离散化模型和克里金模型的大部分不确定性都包含在地质力学先验中。最后,断层面的离散化和克里格法阐明了库仑失效函数较高的位置。
{"title":"Improved spatial understanding of induced seismicity hazard from the discretization of a curved fault surface","authors":"Kevin L. McCormack, Philip J. Smith","doi":"10.1007/s10596-024-10276-z","DOIUrl":"https://doi.org/10.1007/s10596-024-10276-z","url":null,"abstract":"<p>In some geomechanical treatments of induced seismicity, the fault surface is idealized to be a plane. We depart from this assumption by comparing a discretization model and a kriging model, both of which allow the incorporation of rugosity, roughness, and curvature into the fault surface and subsequent geomechanical models of hazard. We test the Hogback Flexural Faults of the San Juan Basin, which could potentially pose a problem for induced seismicity in a carbon sequestration project in the northwestern portion of the basin. The discretization model emmeshes data about the location of the fault surface in three-dimensional space into hexagonally close-packed spheres. Each sphere that contains enough data is termed a region and Bayes’ Law is used to find a distribution of strikes and dips that describe the data within the region. The kriging model uses Gaussian processes to interpolate and extrapolate a surface through all data points. The results show that the discretized regions possess, in general, lower Coulomb failure functions, but the uncertainty in the distributions, i.e., the ranges, becomes greater as the discretization increases due to overfitting. The majority of the uncertainty in both the discretization model and the kriging model is contained in the geomechanical priors. Finally, the discretization and kriging of the fault surface elucidates locations with higher Coulomb failure functions.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivative-free search approaches for optimization of well inflow control valves and controls 优化油井导流控制阀和控制装置的无衍生搜索方法
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-02-13 DOI: 10.1007/s10596-024-10270-5
Mathias C. Bellout, Thiago L. Silva, Jan Øystein Haavig Bakke, Carl Fredrik Berg

Decisions regarding problem conceptualization, search approach, and how best to parametrize optimization methods for practical application are key to successful implementation of optimization approaches within georesources field development projects. This work provides decision support regarding the application of derivative-free search approaches for concurrent optimization of inflow control valves (ICVs) and well controls. A set of state-of-the-art approaches possessing different search features is implemented over two reference cases, and their performance, resource requirements, and specific method configurations are compared across multiple problem formulations for completion design. In this study, problem formulations to optimize completion design comprise fixed ICVs and piecewise-constant well controls. The design is optimized by several derivative-free methodologies relying on parallel pattern-search (tAPPS), population-based stochastic sampling (tPSO) and trust-region interpolation-based models (tDFTR). These methodologies are tested on a heterogeneous two-dimensional case and on a realistic case based on a section of the Olympus benchmark model. Three problem formulations are applied in both cases, i.e., one formulation optimizes ICV settings only, while two joint configurations also treat producer and injector controls as variables. Various method parametrizations across the range of cases and problem formulations exploit the different search features to improve convergence, achieve final objectives and infer response surface features. The scope of this particular study treats only deterministic problem formulations. Results outline performance trade-offs between parallelizable algorithms (tAPPS, tPSO) with high total runtime search efficiency and the local-search trust-region approach (tDFTR) providing effective objective gains for a low number of cost function evaluations. tAPPS demonstrates robust performance across different problem formulations that can support exploration efforts, e.g., during a pre-drill design phase while multiple independent tDFTR runs can provide local tuning capability around established solutions in a time-constrained post-drill setting. Additional remarks regarding joint completion design optimization, comparison metrics, and relative algorithm performance given the varying problem formulations are also made.

在地质资源领域开发项目中成功实施优化方法的关键在于问题概念化、搜索方法以及如何为实际应用优化方法设定最佳参数。这项工作为应用无衍生搜索方法同时优化流入控制阀(ICV)和油井控制提供了决策支持。在两个参考案例中实施了一套具有不同搜索特征的先进方法,并在完井设计的多个问题公式中对其性能、资源需求和具体方法配置进行了比较。在这项研究中,优化完井设计的问题公式包括固定的 ICV 和片断恒定的井控。设计通过几种无衍生方法进行优化,这些方法依赖于并行模式搜索(tAPPS)、基于群体的随机抽样(tPSO)和基于信任区域插值模型(tDFTR)。这些方法在一个异构二维案例和一个基于奥林巴斯基准模型部分的现实案例中进行了测试。两种情况下都采用了三种问题公式,即一种公式只优化 ICV 设置,而两种联合配置也将生产者和喷射器控制作为变量。在各种情况和问题公式中,各种方法参数化利用了不同的搜索特征,以提高收敛性、实现最终目标并推断响应面特征。本研究仅涉及确定性问题的表述。结果概述了具有高总运行时间搜索效率的可并行算法(tAPPS、tPSO)与在低成本函数评估次数下提供有效目标增益的局部搜索信任区域方法(tDFTR)之间的性能权衡。tAPPS 在不同的问题公式中表现出稳健的性能,可以支持探索工作,例如在钻井前设计阶段,而多个独立的 tDFTR 运行可以在时间受限的钻井后环境中围绕既定解决方案提供局部调整能力。此外,还对联合完井设计优化、比较指标以及不同问题表述下的相对算法性能进行了补充说明。
{"title":"Derivative-free search approaches for optimization of well inflow control valves and controls","authors":"Mathias C. Bellout, Thiago L. Silva, Jan Øystein Haavig Bakke, Carl Fredrik Berg","doi":"10.1007/s10596-024-10270-5","DOIUrl":"https://doi.org/10.1007/s10596-024-10270-5","url":null,"abstract":"<p>Decisions regarding problem conceptualization, search approach, and how best to parametrize optimization methods for practical application are key to successful implementation of optimization approaches within georesources field development projects. This work provides decision support regarding the application of derivative-free search approaches for concurrent optimization of inflow control valves (ICVs) and well controls. A set of state-of-the-art approaches possessing different search features is implemented over two reference cases, and their performance, resource requirements, and specific method configurations are compared across multiple problem formulations for completion design. In this study, problem formulations to optimize completion design comprise fixed ICVs and piecewise-constant well controls. The design is optimized by several derivative-free methodologies relying on parallel pattern-search (<b>t</b>APPS), population-based stochastic sampling (<b>t</b>PSO) and trust-region interpolation-based models (<b>t</b>DFTR). These methodologies are tested on a heterogeneous two-dimensional case and on a realistic case based on a section of the Olympus benchmark model. Three problem formulations are applied in both cases, i.e., one formulation optimizes ICV settings only, while two joint configurations also treat producer and injector controls as variables. Various method parametrizations across the range of cases and problem formulations exploit the different search features to improve convergence, achieve final objectives and infer response surface features. The scope of this particular study treats only deterministic problem formulations. Results outline performance trade-offs between parallelizable algorithms (<b>t</b>APPS, <b>t</b>PSO) with high total runtime search efficiency and the local-search trust-region approach (<b>t</b>DFTR) providing effective objective gains for a low number of cost function evaluations. <b>t</b>APPS demonstrates robust performance across different problem formulations that can support exploration efforts, e.g., during a pre-drill design phase while multiple independent <b>t</b>DFTR runs can provide local tuning capability around established solutions in a time-constrained post-drill setting. Additional remarks regarding joint completion design optimization, comparison metrics, and relative algorithm performance given the varying problem formulations are also made.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139762559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy 斯托克斯-达西耦合问题的灰泥法,使用斯托克斯的 MAC 方案和达西的混合有限元方案
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-02-08 DOI: 10.1007/s10596-023-10267-6
Wietse M. Boon, Dennis Gläser, Rainer Helmig, Kilian Weishaupt, Ivan Yotov

A discretization method with non-matching grids is proposed for the coupled Stokes-Darcy problem that uses a mortar variable at the interface to couple the marker and cell (MAC) method in the Stokes domain with the Raviart-Thomas mixed finite element pair in the Darcy domain. Due to this choice, the method conserves linear momentum and mass locally in the Stokes domain and exhibits local mass conservation in the Darcy domain. The MAC scheme is reformulated as a mixed finite element method on a staggered grid, which allows for the proposed scheme to be analyzed as a mortar mixed finite element method. We show that the discrete system is well-posed and derive a priori error estimates that indicate first order convergence in all variables. The system can be reduced to an interface problem concerning only the mortar variables, leading to a non-overlapping domain decomposition method. Numerical examples are presented to illustrate the theoretical results and the applicability of the method.

针对斯托克斯-达西耦合问题提出了一种非匹配网格的离散化方法,该方法在界面上使用灰泥变量,将斯托克斯域中的标记和单元(MAC)方法与达西域中的拉维亚特-托马斯混合有限元对耦合在一起。由于这一选择,该方法在斯托克斯域局部保持线性动量和质量,在达西域表现出局部质量守恒。MAC 方案被重新表述为交错网格上的混合有限元方法,这使得所提出的方案可以作为砂浆混合有限元方法进行分析。我们证明了离散系统的良好假设,并推导出先验误差估计,表明所有变量都具有一阶收敛性。该系统可以简化为一个仅涉及砂浆变量的界面问题,从而产生一种非重叠域分解方法。本报告还列举了一些数值实例,以说明该方法的理论结果和适用性。
{"title":"A mortar method for the coupled Stokes-Darcy problem using the MAC scheme for Stokes and mixed finite elements for Darcy","authors":"Wietse M. Boon, Dennis Gläser, Rainer Helmig, Kilian Weishaupt, Ivan Yotov","doi":"10.1007/s10596-023-10267-6","DOIUrl":"https://doi.org/10.1007/s10596-023-10267-6","url":null,"abstract":"<p>A discretization method with non-matching grids is proposed for the coupled Stokes-Darcy problem that uses a mortar variable at the interface to couple the marker and cell (MAC) method in the Stokes domain with the Raviart-Thomas mixed finite element pair in the Darcy domain. Due to this choice, the method conserves linear momentum and mass locally in the Stokes domain and exhibits local mass conservation in the Darcy domain. The MAC scheme is reformulated as a mixed finite element method on a staggered grid, which allows for the proposed scheme to be analyzed as a mortar mixed finite element method. We show that the discrete system is well-posed and derive a priori error estimates that indicate first order convergence in all variables. The system can be reduced to an interface problem concerning only the mortar variables, leading to a non-overlapping domain decomposition method. Numerical examples are presented to illustrate the theoretical results and the applicability of the method.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139763091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A benchmark study on reactive two-phase flow in porous media: Part II - results and discussion 多孔介质中反应两相流的基准研究:第二部分--结果与讨论
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-02-03 DOI: 10.1007/s10596-024-10269-y
Etienne Ahusborde, Brahim Amaziane, Stephan de Hoop, Mustapha El Ossmani, Eric Flauraud, François P. Hamon, Michel Kern, Adrien Socié, Danyang Su, K. Ulrich Mayer, Michal Tóth, Denis Voskov

This paper presents and discusses the results obtained by the participants to the benchmark described in de Hoop et al, Comput. Geosci. (2024). The benchmark uses a model for CO2 geological storage and focuses on the coupling between two-phase flow and geochemistry. Several test cases of various levels of difficulty are proposed, both in one and two spatial dimensions. Six teams participated in the benchmark, each with their own simulation code, though not all teams attempted all the cases. The codes used by the participants are described, and the results obtained on the various test cases are compared, as well as the performance of the codes. It is shown that the results obtained are widely consistent, giving a good level of confidence in the outcome of the benchmark. The general complexity of two-phase flow coupled with chemical reactions altering porous media means that some differences between the codes remain. Besides, from the convergence study, it is clear that the two-dimensional problem has a relatively high sensitivity to a spatial resolution which adds to the complexity.

本文介绍并讨论了参加者根据 de Hoop 等人,Comput.Geosci.该基准测试使用二氧化碳地质封存模型,重点关注两相流与地球化学之间的耦合。在一维和二维空间中提出了多个不同难度的测试案例。六个团队参加了基准测试,每个团队都有自己的模拟代码,但并非所有团队都尝试了所有案例。文中介绍了参与者使用的代码,比较了各种测试案例的结果以及代码的性能。结果表明,获得的结果大体一致,使人对基准测试的结果充满信心。两相流加上改变多孔介质的化学反应的普遍复杂性意味着不同的代码之间仍然存在一些差异。此外,从收敛性研究中可以看出,二维问题对空间分辨率的敏感性相对较高,这增加了问题的复杂性。
{"title":"A benchmark study on reactive two-phase flow in porous media: Part II - results and discussion","authors":"Etienne Ahusborde, Brahim Amaziane, Stephan de Hoop, Mustapha El Ossmani, Eric Flauraud, François P. Hamon, Michel Kern, Adrien Socié, Danyang Su, K. Ulrich Mayer, Michal Tóth, Denis Voskov","doi":"10.1007/s10596-024-10269-y","DOIUrl":"https://doi.org/10.1007/s10596-024-10269-y","url":null,"abstract":"<p>This paper presents and discusses the results obtained by the participants to the benchmark described in de Hoop et al, Comput. Geosci. (2024). The benchmark uses a model for CO<sub>2</sub> geological storage and focuses on the coupling between two-phase flow and geochemistry. Several test cases of various levels of difficulty are proposed, both in one and two spatial dimensions. Six teams participated in the benchmark, each with their own simulation code, though not all teams attempted all the cases. The codes used by the participants are described, and the results obtained on the various test cases are compared, as well as the performance of the codes. It is shown that the results obtained are widely consistent, giving a good level of confidence in the outcome of the benchmark. The general complexity of two-phase flow coupled with chemical reactions altering porous media means that some differences between the codes remain. Besides, from the convergence study, it is clear that the two-dimensional problem has a relatively high sensitivity to a spatial resolution which adds to the complexity.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling low saline carbonated water flooding including surface complexes 包括地表复合体在内的低盐碳酸水淹模型
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-02-01 DOI: 10.1007/s10596-024-10274-1

Abstract

Carbonated water flooding (CWI) increases oil production due to favorable dissolution effects and viscosity reduction. Accurate modeling of CWI performance requires a simulator with the ability to capture the true physics of such process. In this study, compositional modeling coupled with surface complexation modeling (SCM) are done, allowing a unified study of the influence in oil recovery of reduction of salt concentration in water. The compositional model consists of the conservation equations of total carbon, hydrogen, oxygen, chloride and decane. The coefficients of such equations are obtained from the equilibrium partition of chemical species that are soluble both in oleic and the aqueous phases. SCM is done by using the PHREEQC program, which determines concentration of the master species. Estimation of the wettability as a function of the Total Bound Product (TBP) that takes into account the concentration of the complexes in the aqueous, oleic phases and in the rock walls is performed. We solve analytically and numerically these equations in (1-) D in order to elucidate the effects of the injection of low salinity carbonated water into a reservoir containing oil equilibrated with high salinity carbonated water.

摘要 碳酸水浸(CWI)由于有利的溶解效果和粘度降低而提高了石油产量。CWI 性能的精确建模要求模拟器能够捕捉这种过程的真实物理过程。在这项研究中,成分模型与表面络合模型(SCM)相结合,对降低水中盐浓度对采油的影响进行了统一研究。成分模型包括总碳、氢、氧、氯和癸烷的守恒方程。这些方程的系数是通过油相和水相可溶化学物质的平衡分配得到的。单片机是通过 PHREEQC 程序完成的,该程序可确定主物种的浓度。考虑到水相、油相和岩壁中复合物的浓度,将润湿性作为总结合产物(TBP)的函数进行估算。我们在 (1-) D 中对这些方程进行了分析和数值求解,以阐明向含有与高盐度碳酸水平衡的油藏注入低盐度碳酸水的影响。
{"title":"Modeling low saline carbonated water flooding including surface complexes","authors":"","doi":"10.1007/s10596-024-10274-1","DOIUrl":"https://doi.org/10.1007/s10596-024-10274-1","url":null,"abstract":"<h3>Abstract</h3> <p>Carbonated water flooding (CWI) increases oil production due to favorable dissolution effects and viscosity reduction. Accurate modeling of CWI performance requires a simulator with the ability to capture the true physics of such process. In this study, compositional modeling coupled with surface complexation modeling (SCM) are done, allowing a unified study of the influence in oil recovery of reduction of salt concentration in water. The compositional model consists of the conservation equations of total carbon, hydrogen, oxygen, chloride and decane. The coefficients of such equations are obtained from the equilibrium partition of chemical species that are soluble both in oleic and the aqueous phases. SCM is done by using the PHREEQC program, which determines concentration of the master species. Estimation of the wettability as a function of the Total Bound Product (TBP) that takes into account the concentration of the complexes in the aqueous, oleic phases and in the rock walls is performed. We solve analytically and numerically these equations in <span> <span>(1-)</span> </span>D in order to elucidate the effects of the injection of low salinity carbonated water into a reservoir containing oil equilibrated with high salinity carbonated water.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalized time-domain velocity-stress seismic wave equation for composite viscoelastic media with a topographic relief and an irregular seabed 具有地形起伏和不规则海床的复合粘弹性介质的广义时域速度应力地震波方程
IF 2.5 3区 地球科学 Q1 Mathematics Pub Date : 2024-02-01 DOI: 10.1007/s10596-024-10273-2
Chao Jin, Bing Zhou, Mohamed Kamel Riahi, Mohamed Jamal Zemerly

Accurate seismic wave modeling of viscoelastic anisotropic medium is a fundamental tool for seismic data processing, interpretation and full waveform inversion. Also, free water surface, topographic relief and irregular seabed are often encountered in practical seismic surveys. Thus, basing on the General Maxwell Body, we proposed a generalized matrix form of the velocity-stress seismic wave equation, which becomes valid for composite viscoelastic anisotropic media and satisfies the boundary conditions in presence of topographic free surfaces and irregular fluid–solid interfaces. We theoretically show that the viscoelastic effect of a medium may be considered as the intrinsic body sources accumulated in wavefield history and computed by a recursive convolution formula accurately and efficiently. We also demonstrated that such a generalized viscoelastic wave equation may be solved with the curvilinear MacCormack finite difference method and validated the accuracy and feasibility of the proposed method. The modeling results in homogeneous and heterogeneous media match well with the analytical solutions and the references yielded by the spectral element solutions.

粘弹性各向异性介质的精确地震波建模是地震数据处理、解释和全波形反演的基本工具。在实际地震勘探中,经常会遇到自由水面、地形起伏和不规则海床等情况。因此,我们以一般麦克斯韦体为基础,提出了一种广义矩阵形式的速度-应力地震波方程,该方程对复合粘弹性各向异性介质有效,并满足自由表面地形和不规则流固界面存在时的边界条件。我们从理论上证明,介质的粘弹性效应可被视为波场历史中累积的本体源,并通过递归卷积公式精确高效地计算出来。我们还证明了这种广义粘弹性波方程可以用曲线 MacCormack 有限差分法求解,并验证了所提方法的准确性和可行性。在同质和异质介质中的建模结果与分析解法和谱元解法得出的参考结果十分吻合。
{"title":"A generalized time-domain velocity-stress seismic wave equation for composite viscoelastic media with a topographic relief and an irregular seabed","authors":"Chao Jin, Bing Zhou, Mohamed Kamel Riahi, Mohamed Jamal Zemerly","doi":"10.1007/s10596-024-10273-2","DOIUrl":"https://doi.org/10.1007/s10596-024-10273-2","url":null,"abstract":"<p>Accurate seismic wave modeling of viscoelastic anisotropic medium is a fundamental tool for seismic data processing, interpretation and full waveform inversion. Also, free water surface, topographic relief and irregular seabed are often encountered in practical seismic surveys. Thus, basing on the General Maxwell Body, we proposed a generalized matrix form of the velocity-stress seismic wave equation, which becomes valid for composite viscoelastic anisotropic media and satisfies the boundary conditions in presence of topographic free surfaces and irregular fluid–solid interfaces. We theoretically show that the viscoelastic effect of a medium may be considered as the intrinsic body sources accumulated in wavefield history and computed by a recursive convolution formula accurately and efficiently. We also demonstrated that such a generalized viscoelastic wave equation may be solved with the curvilinear MacCormack finite difference method and validated the accuracy and feasibility of the proposed method. The modeling results in homogeneous and heterogeneous media match well with the analytical solutions and the references yielded by the spectral element solutions.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139665337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Geosciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1