Liang Yuan, Qiang He, Siyu Tan, Bo Li, Jiangshan Yu, Feifei Chen, Hai Jin, Yun Yang
Edge computing (EC) has recently emerged as a novel computing paradigm that offers users low-latency services. Suffering from constrained computing resources due to their limited physical sizes, edge servers cannot always handle all the incoming computation tasks timely when they operate independently. They often need to cooperate through peer-offloading. Deployed and managed by different stakeholders, edge servers operate in a distrusted environment. Trust and incentive are the two main issues that challenge cooperative computing between them. Another unique challenge in the EC environment is to facilitate trust and incentive in a decentralized manner. To tackle these challenges systematically, this paper proposes CoopEdge, a novel blockchain-based decentralized platform, to drive and support cooperative edge computing. On CoopEdge, an edge server can publish a computation task for other edge servers to contend for. A winner is selected from candidate edge servers based on their reputations. After that, a consensus is reached among edge servers to record the performance in task execution on blockchain. We implement CoopEdge based on Hyperledger Sawtooth and evaluate it experimentally against a baseline and two state-of-the-art implementations in a simulated EC environment. The results validate the usefulness of CoopEdge and demonstrate its performance.
{"title":"CoopEdge: A Decentralized Blockchain-based Platform for Cooperative Edge Computing","authors":"Liang Yuan, Qiang He, Siyu Tan, Bo Li, Jiangshan Yu, Feifei Chen, Hai Jin, Yun Yang","doi":"10.1145/3442381.3449994","DOIUrl":"https://doi.org/10.1145/3442381.3449994","url":null,"abstract":"Edge computing (EC) has recently emerged as a novel computing paradigm that offers users low-latency services. Suffering from constrained computing resources due to their limited physical sizes, edge servers cannot always handle all the incoming computation tasks timely when they operate independently. They often need to cooperate through peer-offloading. Deployed and managed by different stakeholders, edge servers operate in a distrusted environment. Trust and incentive are the two main issues that challenge cooperative computing between them. Another unique challenge in the EC environment is to facilitate trust and incentive in a decentralized manner. To tackle these challenges systematically, this paper proposes CoopEdge, a novel blockchain-based decentralized platform, to drive and support cooperative edge computing. On CoopEdge, an edge server can publish a computation task for other edge servers to contend for. A winner is selected from candidate edge servers based on their reputations. After that, a consensus is reached among edge servers to record the performance in task execution on blockchain. We implement CoopEdge based on Hyperledger Sawtooth and evaluate it experimentally against a baseline and two state-of-the-art implementations in a simulated EC environment. The results validate the usefulness of CoopEdge and demonstrate its performance.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"135 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116452506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuan Luo, Pu Zhao, Bo Qiao, Youjiang Wu, Hongyu Zhang, Wei Wu, Weihai Lu, Yingnong Dang, S. Rajmohan, Qingwei Lin, Dongmei Zhang
With the rapid deployment of cloud platforms, high service reliability is of critical importance. An industrial cloud platform contains a huge number of disks, and disk failure is a common cause of service unreliability. In recent years, many machine learning based disk failure prediction approaches have been proposed, and they can predict disk failures based on disk status data before the failures actually happen. In this way, proactive actions can be taken in advance to improve service reliability. However, existing approaches treat each disk individually and do not explore the influence of the neighboring disks. In this paper, we propose Neighborhood-Temporal Attention Model (NTAM), a novel deep learning based approach to disk failure prediction. When predicting whether or not a disk will fail in near future, NTAM is a novel approach that not only utilizes a disk’s own status data, but also considers its neighbors’ status data. Moreover, NTAM includes a novel attention-based temporal component to capture the temporal nature of the disk status data. Besides, we propose a data enhancement method, called Temporal Progressive Sampling (TPS), to handle the extreme data imbalance issue. We evaluate NTAM on a public dataset as well as two industrial datasets collected from millions of disks in Microsoft Azure. Our experimental results show that NTAM significantly outperforms state-of-the-art competitors. Also, our empirical evaluations indicate the effectiveness of the neighborhood-ware component and the temporal component underlying NTAM as well as the effectiveness of TPS. More encouragingly, we have successfully applied NTAM and TPS to Microsoft cloud platforms (including Microsoft Azure and Microsoft 365) and obtained benefits in industrial practice.
{"title":"NTAM: Neighborhood-Temporal Attention Model for Disk Failure Prediction in Cloud Platforms","authors":"Chuan Luo, Pu Zhao, Bo Qiao, Youjiang Wu, Hongyu Zhang, Wei Wu, Weihai Lu, Yingnong Dang, S. Rajmohan, Qingwei Lin, Dongmei Zhang","doi":"10.1145/3442381.3449867","DOIUrl":"https://doi.org/10.1145/3442381.3449867","url":null,"abstract":"With the rapid deployment of cloud platforms, high service reliability is of critical importance. An industrial cloud platform contains a huge number of disks, and disk failure is a common cause of service unreliability. In recent years, many machine learning based disk failure prediction approaches have been proposed, and they can predict disk failures based on disk status data before the failures actually happen. In this way, proactive actions can be taken in advance to improve service reliability. However, existing approaches treat each disk individually and do not explore the influence of the neighboring disks. In this paper, we propose Neighborhood-Temporal Attention Model (NTAM), a novel deep learning based approach to disk failure prediction. When predicting whether or not a disk will fail in near future, NTAM is a novel approach that not only utilizes a disk’s own status data, but also considers its neighbors’ status data. Moreover, NTAM includes a novel attention-based temporal component to capture the temporal nature of the disk status data. Besides, we propose a data enhancement method, called Temporal Progressive Sampling (TPS), to handle the extreme data imbalance issue. We evaluate NTAM on a public dataset as well as two industrial datasets collected from millions of disks in Microsoft Azure. Our experimental results show that NTAM significantly outperforms state-of-the-art competitors. Also, our empirical evaluations indicate the effectiveness of the neighborhood-ware component and the temporal component underlying NTAM as well as the effectiveness of TPS. More encouragingly, we have successfully applied NTAM and TPS to Microsoft cloud platforms (including Microsoft Azure and Microsoft 365) and obtained benefits in industrial practice.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"148 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126555974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ömer Kirnap, Fernando Diaz, Asia J. Biega, Michael D. Ekstrand, Ben Carterette, Emine Yilmaz
There is increasing attention to evaluating the fairness of search system ranking decisions. These metrics often consider the membership of items to particular groups, often identified using protected attributes such as gender or ethnicity. To date, these metrics typically assume the availability and completeness of protected attribute labels of items. However, the protected attributes of individuals are rarely present, limiting the application of fair ranking metrics in large scale systems. In order to address this problem, we propose a sampling strategy and estimation technique for four fair ranking metrics. We formulate a robust and unbiased estimator which can operate even with very limited number of labeled items. We evaluate our approach using both simulated and real world data. Our experimental results demonstrate that our method can estimate this family of fair ranking metrics and provides a robust, reliable alternative to exhaustive or random data annotation.
{"title":"Estimation of Fair Ranking Metrics with Incomplete Judgments","authors":"Ömer Kirnap, Fernando Diaz, Asia J. Biega, Michael D. Ekstrand, Ben Carterette, Emine Yilmaz","doi":"10.1145/3442381.3450080","DOIUrl":"https://doi.org/10.1145/3442381.3450080","url":null,"abstract":"There is increasing attention to evaluating the fairness of search system ranking decisions. These metrics often consider the membership of items to particular groups, often identified using protected attributes such as gender or ethnicity. To date, these metrics typically assume the availability and completeness of protected attribute labels of items. However, the protected attributes of individuals are rarely present, limiting the application of fair ranking metrics in large scale systems. In order to address this problem, we propose a sampling strategy and estimation technique for four fair ranking metrics. We formulate a robust and unbiased estimator which can operate even with very limited number of labeled items. We evaluate our approach using both simulated and real world data. Our experimental results demonstrate that our method can estimate this family of fair ranking metrics and provides a robust, reliable alternative to exhaustive or random data annotation.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"09 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127204494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaurav Aggarwal, Sreenivas Gollapudi, Raghavender, A. Sinop
Constructing efficient data structures (distance oracles) for fast computation of shortest paths and other connectivity measures in graphs has been a promising area of study in computer science [23, 24, 28]. In this paper, we propose very efficient algorithms, based on a distance oracle, for computing approximate shortest paths and alternate paths in road networks. Specifically, we adopt a distance oracle construction that exploits the existence of small separators in such networks. In other words, the existence of a small cut in a graph admits a partitioning of the graph into balanced components with a small number of inter-component edges. We demonstrate the efficacy of our algorithm by using it to find near optimal shortest paths and show that it also has the desired properties of well-studied goal-oriented path search algorithms such as ALT [12]. We further demonstrate the use of our distance oracle to produce multiple alternative routes in addition to the shortest path. Finally, we empirically demonstrate that our method, while exploring few edges, produces high quality alternates with respect to metrics such as optimality-loss and diversity of paths.
{"title":"Sketch-based Algorithms for Approximate Shortest Paths in Road Networks","authors":"Gaurav Aggarwal, Sreenivas Gollapudi, Raghavender, A. Sinop","doi":"10.1145/3442381.3450083","DOIUrl":"https://doi.org/10.1145/3442381.3450083","url":null,"abstract":"Constructing efficient data structures (distance oracles) for fast computation of shortest paths and other connectivity measures in graphs has been a promising area of study in computer science [23, 24, 28]. In this paper, we propose very efficient algorithms, based on a distance oracle, for computing approximate shortest paths and alternate paths in road networks. Specifically, we adopt a distance oracle construction that exploits the existence of small separators in such networks. In other words, the existence of a small cut in a graph admits a partitioning of the graph into balanced components with a small number of inter-component edges. We demonstrate the efficacy of our algorithm by using it to find near optimal shortest paths and show that it also has the desired properties of well-studied goal-oriented path search algorithms such as ALT [12]. We further demonstrate the use of our distance oracle to produce multiple alternative routes in addition to the shortest path. Finally, we empirically demonstrate that our method, while exploring few edges, produces high quality alternates with respect to metrics such as optimality-loss and diversity of paths.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"455 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124315671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Le Yan, Zhen Qin, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky
Existing work on search result diversification typically falls into the “next document” paradigm, that is, selecting the next document based on the ones already chosen. A sequential process of selecting documents one-by-one is naturally modeled in learning-based approaches. However, such a process makes the learning difficult because there are an exponential number of ranking lists to consider. Sampling is usually used to reduce the computational complexity but this makes the learning less effective. In this paper, we propose a soft version of the “next document” paradigm in which we associate each document with an approximate rank, and thus the subtopics covered prior to a document can also be estimated. We show that we can derive differentiable diversification-aware losses, which are smooth approximation of diversity metrics like α-NDCG, based on these estimates. We further propose to optimize the losses in the learning-to-rank setting using neural distributed representations of queries and documents. Experiments are conducted on the public benchmark TREC datasets. By comparing with an extensive list of baseline methods, we show that our Diversification-Aware LEarning-TO-Rank (DALETOR) approaches outperform them by a large margin, while being much simpler during learning and inference.
{"title":"Diversification-Aware Learning to Rank using Distributed Representation","authors":"Le Yan, Zhen Qin, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky","doi":"10.1145/3442381.3449831","DOIUrl":"https://doi.org/10.1145/3442381.3449831","url":null,"abstract":"Existing work on search result diversification typically falls into the “next document” paradigm, that is, selecting the next document based on the ones already chosen. A sequential process of selecting documents one-by-one is naturally modeled in learning-based approaches. However, such a process makes the learning difficult because there are an exponential number of ranking lists to consider. Sampling is usually used to reduce the computational complexity but this makes the learning less effective. In this paper, we propose a soft version of the “next document” paradigm in which we associate each document with an approximate rank, and thus the subtopics covered prior to a document can also be estimated. We show that we can derive differentiable diversification-aware losses, which are smooth approximation of diversity metrics like α-NDCG, based on these estimates. We further propose to optimize the losses in the learning-to-rank setting using neural distributed representations of queries and documents. Experiments are conducted on the public benchmark TREC datasets. By comparing with an extensive list of baseline methods, we show that our Diversification-Aware LEarning-TO-Rank (DALETOR) approaches outperform them by a large margin, while being much simpler during learning and inference.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127979485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays, as organizations operate in very fast-paced and competitive environments, workforce has to be agile and adaptable to regularly learning new job skills. However, it is nontrivial for talents to know which skills to develop at each working stage. To this end, in this paper, we aim to develop a cost-effective recommendation system based on deep reinforcement learning, which can provide personalized and interpretable job skill recommendation for each talent. Specifically, we first design an environment to estimate the utilities of skill learning by mining the massive job advertisement data, which includes a skill-matching-based salary estimator and a frequent itemset-based learning difficulty estimator. Based on the environment, we design a Skill Recommendation Deep Q-Network (SRDQN) with multi-task structure to estimate the long-term skill learning utilities. In particular, SRDQN recommends job skills in a personalized and cost-effective manner; that is, the talents will only learn the recommended necessary skills for achieving their career goals. Finally, extensive experiments on a real-world dataset clearly validate the effectiveness and interpretability of our approach.
{"title":"Cost-Effective and Interpretable Job Skill Recommendation with Deep Reinforcement Learning","authors":"Ying Sun, Fuzhen Zhuang, Hengshu Zhu, Qing He, Hui Xiong","doi":"10.1145/3442381.3449985","DOIUrl":"https://doi.org/10.1145/3442381.3449985","url":null,"abstract":"Nowadays, as organizations operate in very fast-paced and competitive environments, workforce has to be agile and adaptable to regularly learning new job skills. However, it is nontrivial for talents to know which skills to develop at each working stage. To this end, in this paper, we aim to develop a cost-effective recommendation system based on deep reinforcement learning, which can provide personalized and interpretable job skill recommendation for each talent. Specifically, we first design an environment to estimate the utilities of skill learning by mining the massive job advertisement data, which includes a skill-matching-based salary estimator and a frequent itemset-based learning difficulty estimator. Based on the environment, we design a Skill Recommendation Deep Q-Network (SRDQN) with multi-task structure to estimate the long-term skill learning utilities. In particular, SRDQN recommends job skills in a personalized and cost-effective manner; that is, the talents will only learn the recommended necessary skills for achieving their career goals. Finally, extensive experiments on a real-world dataset clearly validate the effectiveness and interpretability of our approach.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128814494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matteo Almanza, Silvio Lattanzi, A. Panconesi, G. Re
Understanding information dynamics and their resulting cascades is a central topic in social network analysis. In a recent seminal work, Cheng et al. analyzed multiples cascades on Facebook over several months, and noticed that many of them exhibit a recurring behaviour. They tend to have multiple peaks of popularity, with periods of quiescence in between. In this paper, we propose the first mathematical model that provably explains this interesting phenomenon, besides exhibiting other fundamental properties of information cascades. Our model is simple and shows that it is enough to have a good clustering structure to observe this interesting recurring behaviour with a standard information diffusion model. Furthermore, we complement our theoretical analysis with an experimental evaluation where we show that our model is able to reproduce the observed phenomenon on several social networks.
{"title":"Twin Peaks, a Model for Recurring Cascades","authors":"Matteo Almanza, Silvio Lattanzi, A. Panconesi, G. Re","doi":"10.1145/3442381.3449807","DOIUrl":"https://doi.org/10.1145/3442381.3449807","url":null,"abstract":"Understanding information dynamics and their resulting cascades is a central topic in social network analysis. In a recent seminal work, Cheng et al. analyzed multiples cascades on Facebook over several months, and noticed that many of them exhibit a recurring behaviour. They tend to have multiple peaks of popularity, with periods of quiescence in between. In this paper, we propose the first mathematical model that provably explains this interesting phenomenon, besides exhibiting other fundamental properties of information cascades. Our model is simple and shows that it is enough to have a good clustering structure to observe this interesting recurring behaviour with a standard information diffusion model. Furthermore, we complement our theoretical analysis with an experimental evaluation where we show that our model is able to reproduce the observed phenomenon on several social networks.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"135 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132419160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianing Sun, Zhaoyue Cheng, S. Zuberi, Felipe Pérez, M. Volkovs
Hyperbolic spaces offer a rich setup to learn embeddings with superior properties that have been leveraged in areas such as computer vision, natural language processing and computational biology. Recently, several hyperbolic approaches have been proposed to learn robust representations for users and items in the recommendation setting. However, these approaches don’t capture the higher order relationships that typically exist in the recommendation domain. Graph convolutional neural networks (GCNs) on the other hand excel at capturing higher order information by applying multiple levels of aggregation to local representations. In this paper we combine these frameworks in a novel way, by proposing a hyperbolic GCN model for collaborative filtering. We demonstrate that our model can be effectively learned with a margin ranking loss, and show that hyperbolic space has desirable properties under the rank margin setting. At test time, inference in our model is done using the hyperbolic distance which preserves the structure of the learned space. We conduct extensive empirical analysis on three public benchmarks and compare against a large set of baselines. Our approach achieves highly competitive results and outperforms leading baselines including the Euclidean GCN counterpart. We further study the properties of the learned hyperbolic embeddings and show that they offer meaningful insights into the data. Full code for this work is available here: https://github.com/layer6ai-labs/HGCF.
{"title":"HGCF: Hyperbolic Graph Convolution Networks for Collaborative Filtering","authors":"Jianing Sun, Zhaoyue Cheng, S. Zuberi, Felipe Pérez, M. Volkovs","doi":"10.1145/3442381.3450101","DOIUrl":"https://doi.org/10.1145/3442381.3450101","url":null,"abstract":"Hyperbolic spaces offer a rich setup to learn embeddings with superior properties that have been leveraged in areas such as computer vision, natural language processing and computational biology. Recently, several hyperbolic approaches have been proposed to learn robust representations for users and items in the recommendation setting. However, these approaches don’t capture the higher order relationships that typically exist in the recommendation domain. Graph convolutional neural networks (GCNs) on the other hand excel at capturing higher order information by applying multiple levels of aggregation to local representations. In this paper we combine these frameworks in a novel way, by proposing a hyperbolic GCN model for collaborative filtering. We demonstrate that our model can be effectively learned with a margin ranking loss, and show that hyperbolic space has desirable properties under the rank margin setting. At test time, inference in our model is done using the hyperbolic distance which preserves the structure of the learned space. We conduct extensive empirical analysis on three public benchmarks and compare against a large set of baselines. Our approach achieves highly competitive results and outperforms leading baselines including the Euclidean GCN counterpart. We further study the properties of the learned hyperbolic embeddings and show that they offer meaningful insights into the data. Full code for this work is available here: https://github.com/layer6ai-labs/HGCF.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132763326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The data abuse issue has risen along with the widespread development of the deep learning inference service (DLIS). Specifically, mobile users worry about their input data being labeled to secretly train new deep learning models that are unrelated to the DLIS they subscribe to. This unique issue, unlike the privacy problem, is about the rights of data owners in the context of deep learning. However, preventing data abuse is demanding when considering the usability and generality in the mobile scenario. In this work, we propose, to our best knowledge, the first data abuse prevention mechanism called DAPter. DAPter is a user-side DLIS-input converter, which removes unnecessary information with respect to the targeted DLIS. The converted input data by DAPter maintains good inference accuracy and is difficult to be labeled manually or automatically for the new model training. DAPter’s conversion is empowered by our lightweight generative model trained with a novel loss function to minimize abusable information in the input data. Furthermore, adapting DAPter requires no change in the existing DLIS backend and models. We conduct comprehensive experiments with our DAPter prototype on mobile devices and demonstrate that DAPter can substantially raise the bar of the data abuse difficulty with little impact on the service quality and overhead.
{"title":"DAPter: Preventing User Data Abuse in Deep Learning Inference Services","authors":"Hao Wu, Xuejin Tian, Yuhang Gong, Xing Su, Minghao Li, Fengyuan Xu","doi":"10.1145/3442381.3449907","DOIUrl":"https://doi.org/10.1145/3442381.3449907","url":null,"abstract":"The data abuse issue has risen along with the widespread development of the deep learning inference service (DLIS). Specifically, mobile users worry about their input data being labeled to secretly train new deep learning models that are unrelated to the DLIS they subscribe to. This unique issue, unlike the privacy problem, is about the rights of data owners in the context of deep learning. However, preventing data abuse is demanding when considering the usability and generality in the mobile scenario. In this work, we propose, to our best knowledge, the first data abuse prevention mechanism called DAPter. DAPter is a user-side DLIS-input converter, which removes unnecessary information with respect to the targeted DLIS. The converted input data by DAPter maintains good inference accuracy and is difficult to be labeled manually or automatically for the new model training. DAPter’s conversion is empowered by our lightweight generative model trained with a novel loss function to minimize abusable information in the input data. Furthermore, adapting DAPter requires no change in the existing DLIS backend and models. We conduct comprehensive experiments with our DAPter prototype on mobile devices and demonstrate that DAPter can substantially raise the bar of the data abuse difficulty with little impact on the service quality and overhead.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117232381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deepak Saini, A. Jain, Kushal Dave, Jian Jiao, Amit Singh, Ruofei Zhang, M. Varma
This paper develops the GalaXC algorithm for Extreme Classification, where the task is to annotate a document with the most relevant subset of labels from an extremely large label set. Extreme classification has been successfully applied to several real world web-scale applications such as web search, product recommendation, query rewriting, etc. GalaXC identifies two critical deficiencies in leading extreme classification algorithms. First, existing approaches generally assume that documents and labels reside in disjoint sets, even though in several applications, labels and documents cohabit the same space. Second, several approaches, albeit scalable, do not utilize various forms of metadata offered by applications, such as label text and label correlations. To remedy these, GalaXC presents a framework that enables collaborative learning over joint document-label graphs at massive scales, in a way that naturally allows various auxiliary sources of information, including label metadata, to be incorporated. GalaXC also introduces a novel label-wise attention mechanism to meld high-capacity extreme classifiers with its framework. An efficient end-to-end implementation of GalaXC is presented that could be trained on a dataset with 50M labels and 97M training documents in less than 100 hours on 4 × V100 GPUs. This allowed GalaXC to not only scale to applications with several millions of labels, but also be up to 18% more accurate than leading deep extreme classifiers, while being upto 2-50 × faster to train and 10 × faster to predict on benchmark datasets. GalaXC is particularly well-suited to warm-start scenarios where predictions need to be made on data points with partially revealed label sets, and was found to be up to 25% more accurate than extreme classification algorithms specifically designed for warm start settings. In A/B tests conducted on the Bing search engine, GalaXC could improve the Click Yield (CY) and coverage by 1.52% and 1.11% respectively. Code for GalaXC is available at https://github.com/Extreme-classification/GalaXC
{"title":"GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification","authors":"Deepak Saini, A. Jain, Kushal Dave, Jian Jiao, Amit Singh, Ruofei Zhang, M. Varma","doi":"10.1145/3442381.3449937","DOIUrl":"https://doi.org/10.1145/3442381.3449937","url":null,"abstract":"This paper develops the GalaXC algorithm for Extreme Classification, where the task is to annotate a document with the most relevant subset of labels from an extremely large label set. Extreme classification has been successfully applied to several real world web-scale applications such as web search, product recommendation, query rewriting, etc. GalaXC identifies two critical deficiencies in leading extreme classification algorithms. First, existing approaches generally assume that documents and labels reside in disjoint sets, even though in several applications, labels and documents cohabit the same space. Second, several approaches, albeit scalable, do not utilize various forms of metadata offered by applications, such as label text and label correlations. To remedy these, GalaXC presents a framework that enables collaborative learning over joint document-label graphs at massive scales, in a way that naturally allows various auxiliary sources of information, including label metadata, to be incorporated. GalaXC also introduces a novel label-wise attention mechanism to meld high-capacity extreme classifiers with its framework. An efficient end-to-end implementation of GalaXC is presented that could be trained on a dataset with 50M labels and 97M training documents in less than 100 hours on 4 × V100 GPUs. This allowed GalaXC to not only scale to applications with several millions of labels, but also be up to 18% more accurate than leading deep extreme classifiers, while being upto 2-50 × faster to train and 10 × faster to predict on benchmark datasets. GalaXC is particularly well-suited to warm-start scenarios where predictions need to be made on data points with partially revealed label sets, and was found to be up to 25% more accurate than extreme classification algorithms specifically designed for warm start settings. In A/B tests conducted on the Bing search engine, GalaXC could improve the Click Yield (CY) and coverage by 1.52% and 1.11% respectively. Code for GalaXC is available at https://github.com/Extreme-classification/GalaXC","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"71 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131653856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}