Matrix learning is at the core of many machine learning problems. A number of real-world applications such as collaborative filtering and text mining can be formulated as a low-rank matrix completion problems, which recovers incomplete matrix using low-rank assumptions. To ensure that the matrix solution has a low rank, a recent trend is to use nonconvex regularizers that adaptively penalize singular values. They offer good recovery performance and have nice theoretical properties, but are computationally expensive due to repeated access to individual singular values. In this paper, based on the key insight that adaptive shrinkage on singular values improve empirical performance, we propose a new nonconvex low-rank regularizer called ”nuclear norm minus Frobenius norm” regularizer, which is scalable, adaptive and sound. We first show it provably holds the adaptive shrinkage property. Further, we discover its factored form which bypasses the computation of singular values and allows fast optimization by general optimization algorithms. Stable recovery and convergence are guaranteed. Extensive low-rank matrix completion experiments on a number of synthetic and real-world data sets show that the proposed method obtains state-of-the-art recovery performance while being the fastest in comparison to existing low-rank matrix learning methods. 1
{"title":"A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix Learning","authors":"Yaqing Wang, Quanming Yao, J. Kwok","doi":"10.1145/3442381.3450142","DOIUrl":"https://doi.org/10.1145/3442381.3450142","url":null,"abstract":"Matrix learning is at the core of many machine learning problems. A number of real-world applications such as collaborative filtering and text mining can be formulated as a low-rank matrix completion problems, which recovers incomplete matrix using low-rank assumptions. To ensure that the matrix solution has a low rank, a recent trend is to use nonconvex regularizers that adaptively penalize singular values. They offer good recovery performance and have nice theoretical properties, but are computationally expensive due to repeated access to individual singular values. In this paper, based on the key insight that adaptive shrinkage on singular values improve empirical performance, we propose a new nonconvex low-rank regularizer called ”nuclear norm minus Frobenius norm” regularizer, which is scalable, adaptive and sound. We first show it provably holds the adaptive shrinkage property. Further, we discover its factored form which bypasses the computation of singular values and allows fast optimization by general optimization algorithms. Stable recovery and convergence are guaranteed. Extensive low-rank matrix completion experiments on a number of synthetic and real-world data sets show that the proposed method obtains state-of-the-art recovery performance while being the fastest in comparison to existing low-rank matrix learning methods. 1","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130382470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To improve the performance of mobile web service, a new transport protocol, QUIC, has been recently proposed. However, for large-scale real-world deployments, deciding whether and when to use QUIC in mobile web service is challenging. Complex temporal correlation of network conditions, high spatial heterogeneity of users in a nationwide deployment, and limited resources on mobile devices all affect the selection of transport protocols. In this paper, we present WiseTrans to adaptively switch transport protocols for mobile web service online and improve the completion time of web requests. WiseTrans introduces machine learning techniques to deal with temporal heterogeneity, makes decisions with historical information to handle spatial heterogeneity, and switches transport protocols at the request level to reach both high performance and acceptable overhead. We implement WiseTrans on two platforms (Android and iOS) in a popular mobile web service application of Baidu. Comprehensive experiments demonstrate that WiseTrans can reduce request completion time by up to 26.5% on average compared to the usage of a single protocol.
{"title":"WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service","authors":"Jia Zhang, Enhuan Dong, Zili Meng, Yuan Yang, Mingwei Xu, Sijie Yang, Miao Zhang, Yang Yue","doi":"10.1145/3442381.3449958","DOIUrl":"https://doi.org/10.1145/3442381.3449958","url":null,"abstract":"To improve the performance of mobile web service, a new transport protocol, QUIC, has been recently proposed. However, for large-scale real-world deployments, deciding whether and when to use QUIC in mobile web service is challenging. Complex temporal correlation of network conditions, high spatial heterogeneity of users in a nationwide deployment, and limited resources on mobile devices all affect the selection of transport protocols. In this paper, we present WiseTrans to adaptively switch transport protocols for mobile web service online and improve the completion time of web requests. WiseTrans introduces machine learning techniques to deal with temporal heterogeneity, makes decisions with historical information to handle spatial heterogeneity, and switches transport protocols at the request level to reach both high performance and acceptable overhead. We implement WiseTrans on two platforms (Android and iOS) in a popular mobile web service application of Baidu. Comprehensive experiments demonstrate that WiseTrans can reduce request completion time by up to 26.5% on average compared to the usage of a single protocol.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114144424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingxuan Ju, Wei Song, Shiyu Sun, Yanfang Ye, Yujie Fan, Shifu Hou, K. Loparo, Liang Zhao
During the pandemic caused by coronavirus disease (COVID-19), social media has played an important role by enabling people to discuss their experiences and feelings of this global crisis. To help combat the prolonged pandemic that has exposed vulnerabilities impacting community resilience, in this paper, based on our established large-scale COVID-19 related social media data, we propose and develop an integrated framework (named Dr.Emotion) to learn disentangled representations of social media posts (i.e., tweets) for emotion analysis and thus to gain deep insights into public perceptions towards COVID-19. In Dr.Emotion, for given social media posts, we first post-train a transformer-based model to obtain the initial post embeddings. Since users may implicitly express their emotions in social media posts which could be highly entangled with other descriptive information in the post content, to address this challenge for emotion analysis, we propose an adversarial disentangler by integrating emotion-independent (i.e., sentiment-neutral) priors of the posts generated by another post-trained transformer-based model to separate and disentangle the implicitly encoded emotions from the content in latent space for emotion classification at the first attempt. Extensive experimental studies are conducted to fully evaluate Dr.Emotion and promising results demonstrate its performance in emotion analysis by comparison with the state-of-the-art baseline methods. By exploiting our developed Dr.Emotion, we further perform emotion analysis over a large number of social media posts and provide in-depth investigation from both temporal and geographical perspectives, based on which additional work can be conducted to extract and transform the constructive ideas, experiences and support into actionable information to improve community resilience in responses to a variety of crises created by COVID-19 and well beyond.
{"title":"Dr.Emotion: Disentangled Representation Learning for Emotion Analysis on Social Media to Improve Community Resilience in the COVID-19 Era and Beyond","authors":"Mingxuan Ju, Wei Song, Shiyu Sun, Yanfang Ye, Yujie Fan, Shifu Hou, K. Loparo, Liang Zhao","doi":"10.1145/3442381.3449961","DOIUrl":"https://doi.org/10.1145/3442381.3449961","url":null,"abstract":"During the pandemic caused by coronavirus disease (COVID-19), social media has played an important role by enabling people to discuss their experiences and feelings of this global crisis. To help combat the prolonged pandemic that has exposed vulnerabilities impacting community resilience, in this paper, based on our established large-scale COVID-19 related social media data, we propose and develop an integrated framework (named Dr.Emotion) to learn disentangled representations of social media posts (i.e., tweets) for emotion analysis and thus to gain deep insights into public perceptions towards COVID-19. In Dr.Emotion, for given social media posts, we first post-train a transformer-based model to obtain the initial post embeddings. Since users may implicitly express their emotions in social media posts which could be highly entangled with other descriptive information in the post content, to address this challenge for emotion analysis, we propose an adversarial disentangler by integrating emotion-independent (i.e., sentiment-neutral) priors of the posts generated by another post-trained transformer-based model to separate and disentangle the implicitly encoded emotions from the content in latent space for emotion classification at the first attempt. Extensive experimental studies are conducted to fully evaluate Dr.Emotion and promising results demonstrate its performance in emotion analysis by comparison with the state-of-the-art baseline methods. By exploiting our developed Dr.Emotion, we further perform emotion analysis over a large number of social media posts and provide in-depth investigation from both temporal and geographical perspectives, based on which additional work can be conducted to extract and transform the constructive ideas, experiences and support into actionable information to improve community resilience in responses to a variety of crises created by COVID-19 and well beyond.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123676115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deep learning-based video manipulation methods have become widely accessible to the masses. With little to no effort, people can quickly learn how to generate deepfake (DF) videos. While deep learning-based detection methods have been proposed to identify specific types of DFs, their performance suffers for other types of deepfake methods, including real-world deepfakes, on which they are not sufficiently trained. In other words, most of the proposed deep learning-based detection methods lack transferability and generalizability. Beyond detecting a single type of DF from benchmark deepfake datasets, we focus on developing a generalized approach to detect multiple types of DFs, including deepfakes from unknown generation methods such as DeepFake-in-the-Wild (DFW) videos. To better cope with unknown and unseen deepfakes, we introduce a Convolutional LSTM-based Residual Network (CLRNet), which adopts a unique model training strategy and explores spatial as well as the temporal information in a deepfakes. Through extensive experiments, we show that existing defense methods are not ready for real-world deployment. Whereas our defense method (CLRNet) achieves far better generalization when detecting various benchmark deepfake methods (97.57% on average). Furthermore, we evaluate our approach with a high-quality DeepFake-in-the-Wild dataset, collected from the Internet containing numerous videos and having more than 150,000 frames. Our CLRNet model demonstrated that it generalizes well against high-quality DFW videos by achieving 93.86% detection accuracy, outperforming existing state-of-the-art defense methods by a considerable margin.
{"title":"One Detector to Rule Them All: Towards a General Deepfake Attack Detection Framework","authors":"Shahroz Tariq, Sangyup Lee, Simon S. Woo","doi":"10.1145/3442381.3449809","DOIUrl":"https://doi.org/10.1145/3442381.3449809","url":null,"abstract":"Deep learning-based video manipulation methods have become widely accessible to the masses. With little to no effort, people can quickly learn how to generate deepfake (DF) videos. While deep learning-based detection methods have been proposed to identify specific types of DFs, their performance suffers for other types of deepfake methods, including real-world deepfakes, on which they are not sufficiently trained. In other words, most of the proposed deep learning-based detection methods lack transferability and generalizability. Beyond detecting a single type of DF from benchmark deepfake datasets, we focus on developing a generalized approach to detect multiple types of DFs, including deepfakes from unknown generation methods such as DeepFake-in-the-Wild (DFW) videos. To better cope with unknown and unseen deepfakes, we introduce a Convolutional LSTM-based Residual Network (CLRNet), which adopts a unique model training strategy and explores spatial as well as the temporal information in a deepfakes. Through extensive experiments, we show that existing defense methods are not ready for real-world deployment. Whereas our defense method (CLRNet) achieves far better generalization when detecting various benchmark deepfake methods (97.57% on average). Furthermore, we evaluate our approach with a high-quality DeepFake-in-the-Wild dataset, collected from the Internet containing numerous videos and having more than 150,000 frames. Our CLRNet model demonstrated that it generalizes well against high-quality DFW videos by achieving 93.86% detection accuracy, outperforming existing state-of-the-art defense methods by a considerable margin.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"218 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124305182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonis Papasavva, Jeremy Blackburn, G. Stringhini, Savvas Zannettou, Emiliano De Cristofaro
Online fringe communities offer fertile grounds to users seeking and sharing ideas fueling suspicion of mainstream news and conspiracy theories. Among these, the QAnon conspiracy theory emerged in 2017 on 4chan, broadly supporting the idea that powerful politicians, aristocrats, and celebrities are closely engaged in a global pedophile ring. Simultaneously, governments are thought to be controlled by “puppet masters,” as democratically elected officials serve as a fake showroom of democracy. This paper provides an empirical exploratory analysis of the QAnon community on Voat.co, a Reddit-esque news aggregator, which has captured the interest of the press for its toxicity and for providing a platform to QAnon followers. More precisely, we analyze a large dataset from /v/GreatAwakening, the most popular QAnon-related subverse (the Voat equivalent of a subreddit), to characterize activity and user engagement. To further understand the discourse around QAnon, we study the most popular named entities mentioned in the posts, along with the most prominent topics of discussion, which focus on US politics, Donald Trump, and world events. We also use word embeddings to identify narratives around QAnon-specific keywords. Our graph visualization shows that some of the QAnon-related ones are closely related to those from the Pizzagate conspiracy theory and so-called drops by “Q.” Finally, we analyze content toxicity, finding that discussions on /v/GreatAwakening are less toxic than in the broad Voat community.
{"title":"“Is it a Qoincidence?”: An Exploratory Study of QAnon on Voat","authors":"Antonis Papasavva, Jeremy Blackburn, G. Stringhini, Savvas Zannettou, Emiliano De Cristofaro","doi":"10.1145/3442381.3450036","DOIUrl":"https://doi.org/10.1145/3442381.3450036","url":null,"abstract":"Online fringe communities offer fertile grounds to users seeking and sharing ideas fueling suspicion of mainstream news and conspiracy theories. Among these, the QAnon conspiracy theory emerged in 2017 on 4chan, broadly supporting the idea that powerful politicians, aristocrats, and celebrities are closely engaged in a global pedophile ring. Simultaneously, governments are thought to be controlled by “puppet masters,” as democratically elected officials serve as a fake showroom of democracy. This paper provides an empirical exploratory analysis of the QAnon community on Voat.co, a Reddit-esque news aggregator, which has captured the interest of the press for its toxicity and for providing a platform to QAnon followers. More precisely, we analyze a large dataset from /v/GreatAwakening, the most popular QAnon-related subverse (the Voat equivalent of a subreddit), to characterize activity and user engagement. To further understand the discourse around QAnon, we study the most popular named entities mentioned in the posts, along with the most prominent topics of discussion, which focus on US politics, Donald Trump, and world events. We also use word embeddings to identify narratives around QAnon-specific keywords. Our graph visualization shows that some of the QAnon-related ones are closely related to those from the Pizzagate conspiracy theory and so-called drops by “Q.” Finally, we analyze content toxicity, finding that discussions on /v/GreatAwakening are less toxic than in the broad Voat community.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125653805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ines Arous, Jie Yang, Mourad Khayati, P. Cudré-Mauroux
Scientific peer review is pivotal to maintain quality standards for academic publication. The effectiveness of the reviewing process is currently being challenged by the rapid increase of paper submissions in various conferences. Those venues need to recruit a large number of reviewers of different levels of expertise and background. The submitted reviews often do not meet the conformity standards of the conferences. Such a situation poses an ever-bigger burden on the meta-reviewers when trying to reach a final decision. In this work, we propose a human-AI approach that estimates the conformity of reviews to the conference standards. Specifically, we ask peers to grade each other’s reviews anonymously with respect to important criteria of review conformity such as sufficient justification and objectivity. We introduce a Bayesian framework that learns the conformity of reviews from both the peer grading process, historical reviews and decisions of a conference, while taking into account grading reliability. Our approach helps meta-reviewers easily identify reviews that require clarification and detect submissions requiring discussions while not inducing additional overhead from reviewers. Through a large-scale crowdsourced study where crowd workers are recruited as graders, we show that the proposed approach outperforms machine learning or review grades alone and that it can be easily integrated into existing peer review systems.
{"title":"Peer Grading the Peer Reviews: A Dual-Role Approach for Lightening the Scholarly Paper Review Process","authors":"Ines Arous, Jie Yang, Mourad Khayati, P. Cudré-Mauroux","doi":"10.1145/3442381.3450088","DOIUrl":"https://doi.org/10.1145/3442381.3450088","url":null,"abstract":"Scientific peer review is pivotal to maintain quality standards for academic publication. The effectiveness of the reviewing process is currently being challenged by the rapid increase of paper submissions in various conferences. Those venues need to recruit a large number of reviewers of different levels of expertise and background. The submitted reviews often do not meet the conformity standards of the conferences. Such a situation poses an ever-bigger burden on the meta-reviewers when trying to reach a final decision. In this work, we propose a human-AI approach that estimates the conformity of reviews to the conference standards. Specifically, we ask peers to grade each other’s reviews anonymously with respect to important criteria of review conformity such as sufficient justification and objectivity. We introduce a Bayesian framework that learns the conformity of reviews from both the peer grading process, historical reviews and decisions of a conference, while taking into account grading reliability. Our approach helps meta-reviewers easily identify reviews that require clarification and detect submissions requiring discussions while not inducing additional overhead from reviewers. Through a large-scale crowdsourced study where crowd workers are recruited as graders, we show that the proposed approach outperforms machine learning or review grades alone and that it can be easily integrated into existing peer review systems.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125958307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multiple networks emerge in a wealth of high-impact applications. Network alignment, which aims to find the node correspondence across different networks, plays a fundamental role for many data mining tasks. Most of the existing methods can be divided into two categories: (1) consistency optimization based methods, which often explicitly assume the alignment to be consistent in terms of neighborhood topology and attribute across networks, and (2) network embedding based methods which learn low-dimensional node embedding vectors to infer alignment. In this paper, by analyzing representative methods of these two categories, we show that (1) the consistency optimization based methods are essentially specific random walk propagations from anchor links that might be too restrictive; (2) the embedding based methods no longer explicitly assume alignment consistency but inevitably suffer from the space disparity issue. To overcome these two limitations, we bridge these methods and propose a novel family of network alignment algorithms BRIGHT to handle both plain and attributed networks. Specifically, it constructs a space by random walk with restart (RWR) whose bases are one-hot encoding vectors of anchor nodes, followed by a shared linear layer. Our experiments on real-world networks show that the proposed family of algorithms BRIGHT outperform the state-of-the-arts for both plain and attributed network alignment tasks.
{"title":"BRIGHT: A Bridging Algorithm for Network Alignment","authors":"Yuchen Yan, Si Zhang, Hanghang Tong","doi":"10.1145/3442381.3450053","DOIUrl":"https://doi.org/10.1145/3442381.3450053","url":null,"abstract":"Multiple networks emerge in a wealth of high-impact applications. Network alignment, which aims to find the node correspondence across different networks, plays a fundamental role for many data mining tasks. Most of the existing methods can be divided into two categories: (1) consistency optimization based methods, which often explicitly assume the alignment to be consistent in terms of neighborhood topology and attribute across networks, and (2) network embedding based methods which learn low-dimensional node embedding vectors to infer alignment. In this paper, by analyzing representative methods of these two categories, we show that (1) the consistency optimization based methods are essentially specific random walk propagations from anchor links that might be too restrictive; (2) the embedding based methods no longer explicitly assume alignment consistency but inevitably suffer from the space disparity issue. To overcome these two limitations, we bridge these methods and propose a novel family of network alignment algorithms BRIGHT to handle both plain and attributed networks. Specifically, it constructs a space by random walk with restart (RWR) whose bases are one-hot encoding vectors of anchor nodes, followed by a shared linear layer. Our experiments on real-world networks show that the proposed family of algorithms BRIGHT outperform the state-of-the-arts for both plain and attributed network alignment tasks.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130176985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Qian, Eunyee Koh, F. Du, Sungchul Kim, Joel Chan, Ryan A. Rossi, Sana Malik, Tak Yeon Lee
Scientific-style figures are commonly used on the web to present numerical information. Captions that tell accurate figure information and sound natural would significantly improve figure accessibility. In this paper, we present promising results on machine figure captioning. A recent corpus analysis of real-world captions reveals that machine figure captioning systems should start by generating accurate caption units. We formulate the caption unit generation problem as a controlled captioning problem. Given a caption unit type as a control signal, a model generates an accurate caption unit of that type. As a proof-of-concept on single bar charts, we propose a model, FigJAM, that achieves this goal through utilizing metadata information and a joint static and dynamic dictionary. Quantitative evaluations with two datasets from the figure question answering task show that our model can generate more accurate caption units than competitive baseline models. A user study with ten human experts confirms the value of machine-generated caption units in their standalone accuracy and naturalness. Finally, a post-editing simulation study demonstrates the potential for models to paraphrase and stitch together single-type caption units into multi-type captions by learning from data.
{"title":"Generating Accurate Caption Units for Figure Captioning","authors":"Xin Qian, Eunyee Koh, F. Du, Sungchul Kim, Joel Chan, Ryan A. Rossi, Sana Malik, Tak Yeon Lee","doi":"10.1145/3442381.3449923","DOIUrl":"https://doi.org/10.1145/3442381.3449923","url":null,"abstract":"Scientific-style figures are commonly used on the web to present numerical information. Captions that tell accurate figure information and sound natural would significantly improve figure accessibility. In this paper, we present promising results on machine figure captioning. A recent corpus analysis of real-world captions reveals that machine figure captioning systems should start by generating accurate caption units. We formulate the caption unit generation problem as a controlled captioning problem. Given a caption unit type as a control signal, a model generates an accurate caption unit of that type. As a proof-of-concept on single bar charts, we propose a model, FigJAM, that achieves this goal through utilizing metadata information and a joint static and dynamic dictionary. Quantitative evaluations with two datasets from the figure question answering task show that our model can generate more accurate caption units than competitive baseline models. A user study with ten human experts confirms the value of machine-generated caption units in their standalone accuracy and naturalness. Finally, a post-editing simulation study demonstrates the potential for models to paraphrase and stitch together single-type caption units into multi-type captions by learning from data.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129744040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aaron Schein, Keyon Vafa, Dhanya Sridhar, Victor Veitch, Jeffrey M. Quinn, James Moffet, D. Blei, D. Green
Recent mobile app technology lets people systematize the process of messaging their friends to urge them to vote. Prior to the most recent US midterm elections in 2018, the mobile app Outvote randomized an aspect of their system, hoping to unobtrusively assess the causal effect of their users’ messages on voter turnout. However, properly assessing this causal effect is hindered by multiple statistical challenges, including attenuation bias due to mismeasurement of subjects’ outcomes and low precision due to two-sided non-compliance with subjects’ assignments. We address these challenges, which are likely to impinge upon any study that seeks to randomize authentic friend-to-friend interactions, by tailoring the statistical analysis to make use of additional data about both users and subjects. Using meta-data of users’ in-app behavior, we reconstruct subjects’ positions in users’ queues. We use this information to refine the study population to more compliant subjects who were higher in the queues, and we do so in a systematic way which optimizes a proxy for the study’s power. To mitigate attenuation bias, we then use ancillary data of subjects’ matches to the voter rolls that lets us refine the study population to one with low rates of outcome mismeasurement. Our analysis reveals statistically significant treatment effects from friend-to-friend mobilization efforts ( 8.3, CI = (1.2, 15.3)) that are among the largest reported in the get-out-the-vote (GOTV) literature. While social pressure from friends has long been conjectured to play a role in effective GOTV treatments, the present study is among the first to assess these effects experimentally.
{"title":"Assessing the Effects of Friend-to-Friend Texting onTurnout in the 2018 US Midterm Elections","authors":"Aaron Schein, Keyon Vafa, Dhanya Sridhar, Victor Veitch, Jeffrey M. Quinn, James Moffet, D. Blei, D. Green","doi":"10.1145/3442381.3449800","DOIUrl":"https://doi.org/10.1145/3442381.3449800","url":null,"abstract":"Recent mobile app technology lets people systematize the process of messaging their friends to urge them to vote. Prior to the most recent US midterm elections in 2018, the mobile app Outvote randomized an aspect of their system, hoping to unobtrusively assess the causal effect of their users’ messages on voter turnout. However, properly assessing this causal effect is hindered by multiple statistical challenges, including attenuation bias due to mismeasurement of subjects’ outcomes and low precision due to two-sided non-compliance with subjects’ assignments. We address these challenges, which are likely to impinge upon any study that seeks to randomize authentic friend-to-friend interactions, by tailoring the statistical analysis to make use of additional data about both users and subjects. Using meta-data of users’ in-app behavior, we reconstruct subjects’ positions in users’ queues. We use this information to refine the study population to more compliant subjects who were higher in the queues, and we do so in a systematic way which optimizes a proxy for the study’s power. To mitigate attenuation bias, we then use ancillary data of subjects’ matches to the voter rolls that lets us refine the study population to one with low rates of outcome mismeasurement. Our analysis reveals statistically significant treatment effects from friend-to-friend mobilization efforts ( 8.3, CI = (1.2, 15.3)) that are among the largest reported in the get-out-the-vote (GOTV) literature. While social pressure from friends has long been conjectured to play a role in effective GOTV treatments, the present study is among the first to assess these effects experimentally.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129419920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mixup is an advanced data augmentation method for training neural network based image classifiers, which interpolates both features and labels of a pair of images to produce synthetic samples. However, devising the Mixup methods for graph learning is challenging due to the irregularity and connectivity of graph data. In this paper, we propose the Mixup methods for two fundamental tasks in graph learning: node and graph classification. To interpolate the irregular graph topology, we propose the two-branch graph convolution to mix the receptive field subgraphs for the paired nodes. Mixup on different node pairs can interfere with the mixed features for each other due to the connectivity between nodes. To block this interference, we propose the two-stage Mixup framework, which uses each node’s neighbors’ representations before Mixup for graph convolutions. For graph classification, we interpolate complex and diverse graphs in the semantic space. Qualitatively, our Mixup methods enable GNNs to learn more discriminative features and reduce over-fitting. Quantitative results show that our method yields consistent gains in terms of test accuracy and F1-micro scores on standard datasets, for both node and graph classification. Overall, our method effectively regularizes popular graph neural networks for better generalization without increasing their time complexity.
{"title":"Mixup for Node and Graph Classification","authors":"Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Bryan Hooi","doi":"10.1145/3442381.3449796","DOIUrl":"https://doi.org/10.1145/3442381.3449796","url":null,"abstract":"Mixup is an advanced data augmentation method for training neural network based image classifiers, which interpolates both features and labels of a pair of images to produce synthetic samples. However, devising the Mixup methods for graph learning is challenging due to the irregularity and connectivity of graph data. In this paper, we propose the Mixup methods for two fundamental tasks in graph learning: node and graph classification. To interpolate the irregular graph topology, we propose the two-branch graph convolution to mix the receptive field subgraphs for the paired nodes. Mixup on different node pairs can interfere with the mixed features for each other due to the connectivity between nodes. To block this interference, we propose the two-stage Mixup framework, which uses each node’s neighbors’ representations before Mixup for graph convolutions. For graph classification, we interpolate complex and diverse graphs in the semantic space. Qualitatively, our Mixup methods enable GNNs to learn more discriminative features and reduce over-fitting. Quantitative results show that our method yields consistent gains in terms of test accuracy and F1-micro scores on standard datasets, for both node and graph classification. Overall, our method effectively regularizes popular graph neural networks for better generalization without increasing their time complexity.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121640563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}