Pub Date : 2024-09-01Epub Date: 2023-07-13DOI: 10.1080/1040841X.2023.2233605
Yaning Xu, Haiyan Du, Yuchun Chen, Chong Ma, Qian Zhang, Hao Li, Zhiyong Xie, Yanjun Hong
Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.
{"title":"Targeting the gut microbiota to alleviate chemotherapy-induced toxicity in cancer.","authors":"Yaning Xu, Haiyan Du, Yuchun Chen, Chong Ma, Qian Zhang, Hao Li, Zhiyong Xie, Yanjun Hong","doi":"10.1080/1040841X.2023.2233605","DOIUrl":"10.1080/1040841X.2023.2233605","url":null,"abstract":"<p><p>Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT <i>via</i> targeting the gut microbiota.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"564-580"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9779043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-03-15DOI: 10.1080/1040841X.2024.2320247
Chongshan Yuan, Kunyu Xie, Lianjun Feng, Shouyang Gao, Lifu Cai
The uterine environment provides necessary conditions for the existence of endometrial microbiota, which in turn plays an important role in maintaining the homeostasis of the uterine environment. The endometrial microbiome is highly susceptible to external factors such as age, hormones, menstrual, pregnancy, etc. When the microbiota is imbalanced, it will further promote the occurrence of uterine diseases such as endometritis and endometrial cancer. Regulating the microbiome of the endometrium is of positive significance for promoting uterine health. Among them, antibiotics, probiotics, prebiotics, and microbial transplantation may be important pathways for regulating endometrial microbiota in the future. However, there is currently no unified plan for evaluating the endometrial microbiota. In addition, due to the small sample size, it is easy to be contaminated by exogenous bacterial DNA, which poses great challenges for studying the mechanism of microbial community regulating uterine health. Therefore, there are still many areas worth exploring for the future of endometrial microbiome.
子宫环境为子宫内膜微生物群的存在提供了必要条件,而子宫内膜微生物群又在维持子宫环境平衡方面发挥着重要作用。子宫内膜微生物群极易受到年龄、激素、月经、妊娠等外部因素的影响。当微生物群失衡时,会进一步促进子宫内膜炎、子宫内膜癌等子宫疾病的发生。调节子宫内膜微生物群对促进子宫健康具有积极意义。其中,抗生素、益生菌、益生元、微生物移植等可能是未来调节子宫内膜微生物群的重要途径。然而,目前还没有评估子宫内膜微生物群的统一计划。此外,由于样本量较小,容易受到外源性细菌 DNA 的污染,这给研究微生物群落调控子宫健康的机制带来了巨大挑战。因此,子宫内膜微生物组的未来仍有许多值得探索的领域。
{"title":"The role and challenges of regulating endometrial microbiome in uterine health and diseases.","authors":"Chongshan Yuan, Kunyu Xie, Lianjun Feng, Shouyang Gao, Lifu Cai","doi":"10.1080/1040841X.2024.2320247","DOIUrl":"10.1080/1040841X.2024.2320247","url":null,"abstract":"<p><p>The uterine environment provides necessary conditions for the existence of endometrial microbiota, which in turn plays an important role in maintaining the homeostasis of the uterine environment. The endometrial microbiome is highly susceptible to external factors such as age, hormones, menstrual, pregnancy, etc. When the microbiota is imbalanced, it will further promote the occurrence of uterine diseases such as endometritis and endometrial cancer. Regulating the microbiome of the endometrium is of positive significance for promoting uterine health. Among them, antibiotics, probiotics, prebiotics, and microbial transplantation may be important pathways for regulating endometrial microbiota in the future. However, there is currently no unified plan for evaluating the endometrial microbiota. In addition, due to the small sample size, it is easy to be contaminated by exogenous bacterial DNA, which poses great challenges for studying the mechanism of microbial community regulating uterine health. Therefore, there are still many areas worth exploring for the future of endometrial microbiome.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"937-954"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-08-08DOI: 10.1080/1040841X.2023.2243617
Lejaniya Abdul Kalam Saleena, Sui Kiat Chang, Khanom Simarani, Kantha Deivi Arunachalam, Rarinthorn Thammakulkrajang, Yu Hsuan How, Liew Phing Pui
Recently, more consumers are interested in purchasing probiotic food and beverage products that may improve their immune health. The market for functional foods and beverages that include Bifidobacterium is expanding because of their potential uses in both food and therapeutic applications. However, maintaining Bifidobacterium's viability during food processing and storage remains a challenge. Microencapsulation technique has been explored to improve the viability of Bifidobacterium. Despite the technical, microbiological, and economic challenges, the market potential for immune-supporting functional foods and beverages is significant. Additionally, there is a shift toward postbiotics as a solution for product innovation, a promising postbiotic product that can be incorporated into various food and beverage formats is also introduced in this review. As consumers become more health-conscious, future developments in the functional food and beverage market discussed in this review could serve as a reference for researchers and industrialist.
{"title":"A comprehensive review of <i>Bifidobacterium spp</i>: as a probiotic, application in the food and therapeutic, and forthcoming trends.","authors":"Lejaniya Abdul Kalam Saleena, Sui Kiat Chang, Khanom Simarani, Kantha Deivi Arunachalam, Rarinthorn Thammakulkrajang, Yu Hsuan How, Liew Phing Pui","doi":"10.1080/1040841X.2023.2243617","DOIUrl":"10.1080/1040841X.2023.2243617","url":null,"abstract":"<p><p>Recently, more consumers are interested in purchasing probiotic food and beverage products that may improve their immune health. The market for functional foods and beverages that include Bifidobacterium is expanding because of their potential uses in both food and therapeutic applications. However, maintaining <i>Bifidobacterium's</i> viability during food processing and storage remains a challenge. Microencapsulation technique has been explored to improve the viability of <i>Bifidobacterium</i>. Despite the technical, microbiological, and economic challenges, the market potential for immune-supporting functional foods and beverages is significant. Additionally, there is a shift toward postbiotics as a solution for product innovation, a promising postbiotic product that can be incorporated into various food and beverage formats is also introduced in this review. As consumers become more health-conscious, future developments in the functional food and beverage market discussed in this review could serve as a reference for researchers and industrialist.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"581-597"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10231696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-09-06DOI: 10.1080/1040841X.2023.2254388
Kai Xia, Renyuan Gao, Lin Li, Xiaocai Wu, Tianqi Wu, Yu Ruan, Lu Yin, Chunqiu Chen
Intestinal inflammation modifies host physiology to promote the occurrence of colorectal cancer (CRC), as seen in colitis-associated CRC. Gut microbiota is crucial in cancer progression, primarily by inducing intestinal chronic inflammatory microenvironment, leading to DNA damage, chromosomal mutation, and alterations in specific metabolite production. Therefore, there is an increasing interest in microbiota-based prevention and treatment strategies, such as probiotics, prebiotics, microbiota-derived metabolites, and fecal microbiota transplantation. This review aims to provide valuable insights into the potential correlations between gut microbiota and colitis-associated CRC, as well as the promising microbiota-based strategies for colitis-associated CRC.
肠道炎症会改变宿主的生理机能,从而促进结肠直肠癌(CRC)的发生,结肠炎相关的 CRC 就属于这种情况。肠道微生物群对癌症的发展至关重要,主要是通过诱导肠道慢性炎症微环境,导致 DNA 损伤、染色体突变和特定代谢产物生成的改变。因此,人们越来越关注基于微生物群的预防和治疗策略,如益生菌、益生元、微生物群衍生代谢物和粪便微生物群移植。本综述旨在就肠道微生物群与结肠炎相关性 CRC 之间的潜在相关性以及基于微生物群的治疗结肠炎相关性 CRC 的可行策略提供有价值的见解。
{"title":"Transformation of colitis and colorectal cancer: a tale of gut microbiota.","authors":"Kai Xia, Renyuan Gao, Lin Li, Xiaocai Wu, Tianqi Wu, Yu Ruan, Lu Yin, Chunqiu Chen","doi":"10.1080/1040841X.2023.2254388","DOIUrl":"10.1080/1040841X.2023.2254388","url":null,"abstract":"<p><p>Intestinal inflammation modifies host physiology to promote the occurrence of colorectal cancer (CRC), as seen in colitis-associated CRC. Gut microbiota is crucial in cancer progression, primarily by inducing intestinal chronic inflammatory microenvironment, leading to DNA damage, chromosomal mutation, and alterations in specific metabolite production. Therefore, there is an increasing interest in microbiota-based prevention and treatment strategies, such as probiotics, prebiotics, microbiota-derived metabolites, and fecal microbiota transplantation. This review aims to provide valuable insights into the potential correlations between gut microbiota and colitis-associated CRC, as well as the promising microbiota-based strategies for colitis-associated CRC.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"653-662"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-02-23DOI: 10.1080/1040841X.2024.2319040
Daniel Herrera-Rodríguez, Sara Jareño-Moreno, Clara Buch-Cardona, François Mougeot, Juan José Luque-Larena, Dolors Vidal
Francisella tularensis is the pathogen of tularemia, a zoonotic disease that have a broad range of hosts. Its epidemiology is related to aquatic environments, particularly in the subspecies holarctica. In this review, we explore the role of water and mosquitoes in the epidemiology of Francisella in Europe. F. tularensis epidemiology has been linked to natural waters, where its persistence has been associated with biofilm and amebas. In Sweden and Finland, the European countries where most human cases have been reported, mosquito bites are a main route of transmission. F. tularensis is present in other European countries, but to date positive mosquitoes have not been found. Biofilm and amebas are potential sources of Francisella for mosquito larvae, however, mosquito vector capacity has not been demonstrated experimentally, with the need to be studied using local species to uncover a potential transmission adaptation. Transstadial, for persistence through life stages, and mechanical transmission, suggesting contaminated media as a source for infection, have been studied experimentally for mosquitoes, but their natural occurrence needs to be evaluated. It is important to clear up the role of different local mosquito species in the epidemiology of F. tularensis and their importance in all areas where tularemia is present.
{"title":"Water and mosquitoes as key components of the infective cycle of <i>Francisella tularensis</i> in Europe: a review.","authors":"Daniel Herrera-Rodríguez, Sara Jareño-Moreno, Clara Buch-Cardona, François Mougeot, Juan José Luque-Larena, Dolors Vidal","doi":"10.1080/1040841X.2024.2319040","DOIUrl":"10.1080/1040841X.2024.2319040","url":null,"abstract":"<p><p><i>Francisella tularensis</i> is the pathogen of tularemia, a zoonotic disease that have a broad range of hosts. Its epidemiology is related to aquatic environments, particularly in the subspecies <i>holarctica</i>. In this review, we explore the role of water and mosquitoes in the epidemiology of <i>Francisella</i> in Europe. <i>F. tularensis</i> epidemiology has been linked to natural waters, where its persistence has been associated with biofilm and amebas. In Sweden and Finland, the European countries where most human cases have been reported, mosquito bites are a main route of transmission. <i>F. tularensis</i> is present in other European countries, but to date positive mosquitoes have not been found. Biofilm and amebas are potential sources of <i>Francisella</i> for mosquito larvae, however, mosquito vector capacity has not been demonstrated experimentally, with the need to be studied using local species to uncover a potential transmission adaptation. Transstadial, for persistence through life stages, and mechanical transmission, suggesting contaminated media as a source for infection, have been studied experimentally for mosquitoes, but their natural occurrence needs to be evaluated. It is important to clear up the role of different local mosquito species in the epidemiology of <i>F. tularensis</i> and their importance in all areas where tularemia is present.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"922-936"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-10-28DOI: 10.1080/1040841X.2023.2274849
Monika Adamczyk-Popławska, Piotr Golec, Andrzej Piekarowicz, Agnieszka Kwiatek
Bacteriophages are the most numerous entities on earth and are found everywhere their bacterial hosts live. As natural bacteria killers, phages are extensively investigated as a potential cure for bacterial infections. Neisseria gonorrhoeae (the gonococcus) is the etiologic agent of a sexually transmitted disease: gonorrhea. The rapid increase of resistance of N. gonorrhoeae to antibiotics urges scientists to look for alternative treatments to combat gonococcal infections. Phage therapy has not been tested as an anti-gonococcal therapy so far. To date, no lytic phage has been discovered against N. gonorrhoeae. Nevertheless, gonococcal genomes contain both dsDNA and ssDNA prophages, and viral particle induction has been documented. In this review, we consider literature data about the attempts of hunting for a bacteriophage specific for gonococci - the gonophage. We also discuss the potential application of prophage elements in the fight against N. gonorrhoeae. Temperate phages may be useful in preventing and treating gonorrhea as a scaffold for anti-gonococcal vaccine development and as a source of lytic enzymes with anti-gonococcal activity.
{"title":"The potential for bacteriophages and prophage elements in fighting and preventing the gonorrhea.","authors":"Monika Adamczyk-Popławska, Piotr Golec, Andrzej Piekarowicz, Agnieszka Kwiatek","doi":"10.1080/1040841X.2023.2274849","DOIUrl":"10.1080/1040841X.2023.2274849","url":null,"abstract":"<p><p>Bacteriophages are the most numerous entities on earth and are found everywhere their bacterial hosts live. As natural bacteria killers, phages are extensively investigated as a potential cure for bacterial infections. <i>Neisseria gonorrhoeae</i> (the gonococcus) is the etiologic agent of a sexually transmitted disease: gonorrhea. The rapid increase of resistance of <i>N. gonorrhoeae</i> to antibiotics urges scientists to look for alternative treatments to combat gonococcal infections. Phage therapy has not been tested as an anti-gonococcal therapy so far. To date, no lytic phage has been discovered against <i>N. gonorrhoeae</i>. Nevertheless, gonococcal genomes contain both dsDNA and ssDNA prophages, and viral particle induction has been documented. In this review, we consider literature data about the attempts of hunting for a bacteriophage specific for gonococci - the gonophage. We also discuss the potential application of prophage elements in the fight against <i>N. gonorrhoeae</i>. Temperate phages may be useful in preventing and treating gonorrhea as a scaffold for anti-gonococcal vaccine development and as a source of lytic enzymes with anti-gonococcal activity.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"769-784"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66783627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-01DOI: 10.1080/1040841X.2023.2274855
Bhavna Gowan Gordhan, Dale Liebenberg, Gabriella Scarlatti, Carolina Herrera, Francesca Chiodi, Neil Martinson, Julie Fox, Bavesh Davandra Kana
Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.
{"title":"<i>Ex vivo</i> challenge models for infectious diseases.","authors":"Bhavna Gowan Gordhan, Dale Liebenberg, Gabriella Scarlatti, Carolina Herrera, Francesca Chiodi, Neil Martinson, Julie Fox, Bavesh Davandra Kana","doi":"10.1080/1040841X.2023.2274855","DOIUrl":"10.1080/1040841X.2023.2274855","url":null,"abstract":"<p><p>Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal <i>ex vivo</i> tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of <i>ex vivo</i> tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using <i>ex vivo</i> challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"785-804"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71421375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-11-07DOI: 10.1080/1040841X.2023.2274840
Kyle L Macauslane, Cassandra L Pegg, Kirsty R Short, Benjamin L Schulz
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
{"title":"Modulation of endoplasmic reticulum stress response pathways by respiratory viruses.","authors":"Kyle L Macauslane, Cassandra L Pegg, Kirsty R Short, Benjamin L Schulz","doi":"10.1080/1040841X.2023.2274840","DOIUrl":"10.1080/1040841X.2023.2274840","url":null,"abstract":"<p><p>Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"750-768"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71479085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-08-27DOI: 10.1080/1040841X.2023.2247477
S Mayo-Pérez, Y Gama-Martínez, S Dávila, N Rivera, I Hernández-Lucas
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
LysR 型转录调节因子(LTTRs)是存在于细菌、古菌和藻类中的 DNA 结合蛋白。人们对它们的分布、丰度、进化、结构组织、转录调控、在自由生命中的基本作用、致病机理以及细菌与植物的相互作用都有了一定的了解。本综述将重点关注这些方面,并介绍 LTTR 生物学的现状。
{"title":"LysR-type transcriptional regulators: state of the art.","authors":"S Mayo-Pérez, Y Gama-Martínez, S Dávila, N Rivera, I Hernández-Lucas","doi":"10.1080/1040841X.2023.2247477","DOIUrl":"10.1080/1040841X.2023.2247477","url":null,"abstract":"<p><p>The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"598-630"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10087604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2023-10-20DOI: 10.1080/1040841X.2023.2271098
Suja E, Sathyanarayana N Gummadi
Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the "farm-to-fork continuum". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.
{"title":"Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria.","authors":"Suja E, Sathyanarayana N Gummadi","doi":"10.1080/1040841X.2023.2271098","DOIUrl":"10.1080/1040841X.2023.2271098","url":null,"abstract":"<p><p>Food-contaminating bacteria pose a threat to food safety and the economy by causing foodborne illnesses and spoilage. Bacteriophages, a group of viruses that infect only bacteria, have the potential to control bacteria throughout the \"farm-to-fork continuum\". Phage application offers several advantages, including targeted action against specific bacterial strains and minimal impact on the natural microflora of food. This review covers multiple aspects of bacteriophages applications in the food industry, including their use as biocontrol and biopreservation agents to fight over 20 different genera of food-contaminating bacteria, reduce cross-contamination and the risk of foodborne diseases, and also to prolong shelf life and preserve freshness. The review also highlights the benefits of using bacteriophages in bioprocesses to selectively inhibit undesirable bacteria, such as substrate competitors and toxin producers, which is particularly valuable in complex microbial bioprocesses where physical or chemical methods become inadequate. Furthermore, the review briefly discusses other uses of bacteriophages in the food industry, such as sanitizing food processing environments and detecting specific bacteria in food products. The review also explores strategies to enhance the effectiveness of phages, such as employing multi-phage cocktails, encapsulated phages, phage products, and synergistic hurdle approaches by combining them with antimicrobials.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"702-727"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49675291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}