Pub Date : 2023-03-01DOI: 10.1080/10408363.2022.2128030
Päivi Lakkisto, Louise Torp Dalgaard, Thalia Belmonte, Sara-Joan Pinto-Sietsma, Yvan Devaux, David de Gonzalo-Calvo
Circulating cell-free microRNAs (miRNAs) represent a major reservoir for biomarker discovery. Unfortunately, their implementation in clinical practice is limited due to a profound lack of reproducibility. The great technical variability linked to major pre-analytical and analytical caveats makes the interpretation of circulating cell-free miRNA data challenging and leads to inconsistent findings. Additional efforts directed to standardization are fundamental. Several well-established protocols are currently used by independent groups worldwide. Nonetheless, there are some specific aspects in specimen collection and processing, sample handling, miRNA quantification, and data analysis that should be considered to ensure reproducibility of results. Here, we have addressed this challenge using an alternative approach. We have highlighted and discussed common pitfalls that negatively impact the robustness of circulating miRNA quantification and their application for clinical decision-making. Furthermore, we provide a checklist usable by investigators to facilitate and ensure the control of the whole miRNA quantification and analytical process. We expect that these recommendations improve the reproducibility of findings, and ultimately, facilitate the incorporation of circulating miRNA profiles into clinical practice as the next generation of disease biomarkers.
{"title":"Development of circulating microRNA-based biomarkers for medical decision-making: a friendly reminder of what should NOT be done.","authors":"Päivi Lakkisto, Louise Torp Dalgaard, Thalia Belmonte, Sara-Joan Pinto-Sietsma, Yvan Devaux, David de Gonzalo-Calvo","doi":"10.1080/10408363.2022.2128030","DOIUrl":"https://doi.org/10.1080/10408363.2022.2128030","url":null,"abstract":"<p><p>Circulating cell-free microRNAs (miRNAs) represent a major reservoir for biomarker discovery. Unfortunately, their implementation in clinical practice is limited due to a profound lack of reproducibility. The great technical variability linked to major pre-analytical and analytical caveats makes the interpretation of circulating cell-free miRNA data challenging and leads to inconsistent findings. Additional efforts directed to standardization are fundamental. Several well-established protocols are currently used by independent groups worldwide. Nonetheless, there are some specific aspects in specimen collection and processing, sample handling, miRNA quantification, and data analysis that should be considered to ensure reproducibility of results. Here, we have addressed this challenge using an alternative approach. We have highlighted and discussed common pitfalls that negatively impact the robustness of circulating miRNA quantification and their application for clinical decision-making. Furthermore, we provide a checklist usable by investigators to facilitate and ensure the control of the whole miRNA quantification and analytical process. We expect that these recommendations improve the reproducibility of findings, and ultimately, facilitate the incorporation of circulating miRNA profiles into clinical practice as the next generation of disease biomarkers.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"60 2","pages":"141-152"},"PeriodicalIF":10.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9397688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1080/10408363.2022.2114418
Nadia Güell, Pablo Mozas, Alba Jimenez-Rueda, Milos Miljkovic, Jordi Juncà, Marc Sorigue
The diagnosis of leukemic B-cell lymphoproliferative disorders (B-LPDs) is made by integrating clinical, cytological, cytometric, cytogenetic, and molecular data. This leaves room for differences and inconsistencies between experts. In this study, we examine methodological and conceptual aspects of the flow cytometric classification of leukemic B-LPDs that could explain them. Among methodological aspects, we discuss (1) the different statistical tests used to select and evaluate markers, (2) how these markers are analyzed, (3) how scores are interpreted, (4) different degrees to which diagnostic information is used, and (5) and the impact of differences in study populations. Among conceptual aspects, we discuss (1) challenges to integrating different biological data points, (2) the under examination of the costs of misclassification (false positives and false negatives), and finally, (3) we delve into the impact of the lack of a true diagnostic gold standard and the indirect evidence suggesting poor reproducibility in the diagnosis of leukemic B-LPDs. We then outline current harmonization efforts and our personal approach. We conclude that numerous flow cytometry scores and diagnostic systems are now available; however, as long as the considerations discussed remain unaddressed, external reproducibility and interobserver agreement will not be achieved, and the field will not be able to move forward if a true gold standard is not found.
{"title":"Methodological and conceptual challenges to the flow cytometric classification of leukemic lymphoproliferative disorders.","authors":"Nadia Güell, Pablo Mozas, Alba Jimenez-Rueda, Milos Miljkovic, Jordi Juncà, Marc Sorigue","doi":"10.1080/10408363.2022.2114418","DOIUrl":"https://doi.org/10.1080/10408363.2022.2114418","url":null,"abstract":"<p><p>The diagnosis of leukemic B-cell lymphoproliferative disorders (B-LPDs) is made by integrating clinical, cytological, cytometric, cytogenetic, and molecular data. This leaves room for differences and inconsistencies between experts. In this study, we examine methodological and conceptual aspects of the flow cytometric classification of leukemic B-LPDs that could explain them. Among methodological aspects, we discuss (1) the different statistical tests used to select and evaluate markers, (2) how these markers are analyzed, (3) how scores are interpreted, (4) different degrees to which diagnostic information is used, and (5) and the impact of differences in study populations. Among conceptual aspects, we discuss (1) challenges to integrating different biological data points, (2) the under examination of the costs of misclassification (false positives and false negatives), and finally, (3) we delve into the impact of the lack of a true diagnostic gold standard and the indirect evidence suggesting poor reproducibility in the diagnosis of leukemic B-LPDs. We then outline current harmonization efforts and our personal approach. We conclude that numerous flow cytometry scores and diagnostic systems are now available; however, as long as the considerations discussed remain unaddressed, external reproducibility and interobserver agreement will not be achieved, and the field will not be able to move forward if a true gold standard is not found.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"60 2","pages":"83-100"},"PeriodicalIF":10.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9710703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/10408363.2022.2106544
Vinita Thakur, Olatunji Anthony Akerele, Edward Randell
Processes to enhance customer-related services in healthcare organizations are complex and it can be difficult to achieve efficient patient-focused services. Laboratories make an integral part of the healthcare service industry where healthcare providers deal with critical patient results. Errors in these processes may cost a human life, create a negative impact on an organization's reputation, cause revenue loss, and open doors for expensive lawsuits. To overcome these complexities, healthcare organizations must implement an approach that helps healthcare service providers to reduce waste, variation, and work imbalance in the service processes. Lean and Six Sigma are used as continuous process improvement frameworks in laboratory medicine. Six Sigma uses an approach that involves problem-solving, continuous improvement and quantitative statistical process control. Six Sigma is a technique based on the DMAIC process (Define, Measure, Analyze, Improve, and Control) to improve quality performance. Application of DMAIC in a healthcare organization provides guidance on how to handle quality that is directed toward patient satisfaction in a healthcare service industry. The Lean process is a technique for process management in which waste reduction is the primary purpose; this is accomplished by implementing waste mitigation practices and methodologies for quality improvement. Overall, this article outlines the frameworks for continuous quality and process improvement in healthcare organizations, with a focus on the impacts of Lean and Six Sigma on the performance and quality service delivery system in clinical laboratories. It also examines the role of utilization management and challenges that impact the implementation of Lean and Six Sigma in clinical laboratories.
{"title":"Lean and Six Sigma as continuous quality improvement frameworks in the clinical diagnostic laboratory.","authors":"Vinita Thakur, Olatunji Anthony Akerele, Edward Randell","doi":"10.1080/10408363.2022.2106544","DOIUrl":"https://doi.org/10.1080/10408363.2022.2106544","url":null,"abstract":"<p><p>Processes to enhance customer-related services in healthcare organizations are complex and it can be difficult to achieve efficient patient-focused services. Laboratories make an integral part of the healthcare service industry where healthcare providers deal with critical patient results. Errors in these processes may cost a human life, create a negative impact on an organization's reputation, cause revenue loss, and open doors for expensive lawsuits. To overcome these complexities, healthcare organizations must implement an approach that helps healthcare service providers to reduce waste, variation, and work imbalance in the service processes. Lean and Six Sigma are used as continuous process improvement frameworks in laboratory medicine. Six Sigma uses an approach that involves problem-solving, continuous improvement and quantitative statistical process control. Six Sigma is a technique based on the DMAIC process (Define, Measure, Analyze, Improve, and Control) to improve quality performance. Application of DMAIC in a healthcare organization provides guidance on how to handle quality that is directed toward patient satisfaction in a healthcare service industry. The Lean process is a technique for process management in which waste reduction is the primary purpose; this is accomplished by implementing waste mitigation practices and methodologies for quality improvement. Overall, this article outlines the frameworks for continuous quality and process improvement in healthcare organizations, with a focus on the impacts of Lean and Six Sigma on the performance and quality service delivery system in clinical laboratories. It also examines the role of utilization management and challenges that impact the implementation of Lean and Six Sigma in clinical laboratories.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"60 1","pages":"63-81"},"PeriodicalIF":10.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9396906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/10408363.2022.2103085
M Thevis, Katja Walpurgis, A Thomas
For decades, blood testing has been an integral part of routine doping controls. The breadth of information contained in blood samples has become considerably more accessible for anti-doping purposes over the last 10 years through technological advancements regarding analytical instrumentation as well as enhanced sample collection systems. Particularly, microsampling of whole blood and serum, for instance as dried blood spots (DBS), has opened new avenues in sports drug testing and substantially increased the availability and cost-effectiveness of doping control specimens. Thus, microvolume blood specimens possess the potential to improve monitoring of blood hormone and drug levels, support evaluation of circulating drug concentrations in competition, and enhance the stability of labile markers and target analytes in blood passport analyses as well as peptide hormone and steroid ester detection. Further, the availability of the fraction of lysed erythrocytes for anti-doping purposes warrants additional investigation, considering the sequestering capability of red blood cells (RBCs) for certain substances, as a complementary approach in support of the clean sport.
{"title":"DropWise: current role and future perspectives of dried blood spots (DBS), blood microsampling, and their analysis in sports drug testing.","authors":"M Thevis, Katja Walpurgis, A Thomas","doi":"10.1080/10408363.2022.2103085","DOIUrl":"https://doi.org/10.1080/10408363.2022.2103085","url":null,"abstract":"<p><p>For decades, blood testing has been an integral part of routine doping controls. The breadth of information contained in blood samples has become considerably more accessible for anti-doping purposes over the last 10 years through technological advancements regarding analytical instrumentation as well as enhanced sample collection systems. Particularly, microsampling of whole blood and serum, for instance as dried blood spots (DBS), has opened new avenues in sports drug testing and substantially increased the availability and cost-effectiveness of doping control specimens. Thus, microvolume blood specimens possess the potential to improve monitoring of blood hormone and drug levels, support evaluation of circulating drug concentrations in competition, and enhance the stability of labile markers and target analytes in blood passport analyses as well as peptide hormone and steroid ester detection. Further, the availability of the fraction of lysed erythrocytes for anti-doping purposes warrants additional investigation, considering the sequestering capability of red blood cells (RBCs) for certain substances, as a complementary approach in support of the clean sport.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"60 1","pages":"41-62"},"PeriodicalIF":10.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9334296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/10408363.2022.2101612
Sophie Steels, Marijke Proesmans, Xavier Bossuyt, Lieven Dupont, Glynis Frans
Allergic bronchopulmonary aspergillosis (ABPA), a severe inflammatory respiratory disease, is caused by a hypersensitivity reaction to the colonization of the airways with Aspergillus fumigatus. It is most often described in patients with asthma or cystic fibrosis. The diagnosis of ABPA is based on a combination of clinical, radiological, and immunological findings that have been included in different diagnostic criteria over the years. In this paper, we review the biomarkers included in these diagnostic criteria and novel research biomarkers that may be used in the diagnosis and treatment follow-up of ABPA in cystic fibrosis.
{"title":"Laboratory biomarkers in the diagnosis and follow-up of treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis.","authors":"Sophie Steels, Marijke Proesmans, Xavier Bossuyt, Lieven Dupont, Glynis Frans","doi":"10.1080/10408363.2022.2101612","DOIUrl":"https://doi.org/10.1080/10408363.2022.2101612","url":null,"abstract":"<p><p>Allergic bronchopulmonary aspergillosis (ABPA), a severe inflammatory respiratory disease, is caused by a hypersensitivity reaction to the colonization of the airways with <i>Aspergillus fumigatus</i>. It is most often described in patients with asthma or cystic fibrosis. The diagnosis of ABPA is based on a combination of clinical, radiological, and immunological findings that have been included in different diagnostic criteria over the years. In this paper, we review the biomarkers included in these diagnostic criteria and novel research biomarkers that may be used in the diagnosis and treatment follow-up of ABPA in cystic fibrosis.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"60 1","pages":"1-24"},"PeriodicalIF":10.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9696076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/10408363.2022.2102578
Dorsa Sohaei, Morley Hollenberg, Sok-Ja Janket, Eleftherios P Diamandis, Gennady Poda, Ioannis Prassas
While coronavirus disease 2019 (COVID-19) begins as a respiratory infection, it progresses as a systemic disease involving multiorgan microthromboses that underly the pathology. SARS-CoV-2 enters host cells via attachment to the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is widely expressed in a multitude of tissues, including the lung (alveolar cells), heart, intestine, kidney, testis, gallbladder, vasculature (endothelial cells), and immune cells. Interference in ACE2 signaling could drive the aforementioned systemic pathologies, such as endothelial dysfunction, microthromboses, and systemic inflammation, that are typically seen in patients with severe COVID-19. ACE2 is a component of the renin-angiotensin system (RAS) and is intimately associated with the plasma kallikrein-kinin system (KKS). As many papers are published on the role of ACE and ACE2 in COVID-19, we will review the role of bradykinin, and more broadly the KSS, in SARS-CoV-2-induced vascular dysfunction. Furthermore, we will discuss the possible therapeutic interventions that are approved and in development for the following targets: coagulation factor XII (FXII), tissue kallikrein (KLK1), plasma kallikrein (KLKB1), bradykinin (BK), plasminogen activator inhibitor (PAI-1), bradykinin B1 receptor (BKB1R), bradykinin B2 receptor (BKB2R), ACE, furin, and the NLRP3 inflammasome. Understanding these targets may prove of value in the treatment of COVID-19 as well as in other virus-induced coagulopathies in the future.
{"title":"The therapeutic relevance of the Kallikrein-Kinin axis in SARS-cov-2-induced vascular pathology.","authors":"Dorsa Sohaei, Morley Hollenberg, Sok-Ja Janket, Eleftherios P Diamandis, Gennady Poda, Ioannis Prassas","doi":"10.1080/10408363.2022.2102578","DOIUrl":"https://doi.org/10.1080/10408363.2022.2102578","url":null,"abstract":"<p><p>While coronavirus disease 2019 (COVID-19) begins as a respiratory infection, it progresses as a systemic disease involving multiorgan microthromboses that underly the pathology. SARS-CoV-2 enters host cells <i>via</i> attachment to the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is widely expressed in a multitude of tissues, including the lung (alveolar cells), heart, intestine, kidney, testis, gallbladder, vasculature (endothelial cells), and immune cells. Interference in ACE2 signaling could drive the aforementioned systemic pathologies, such as endothelial dysfunction, microthromboses, and systemic inflammation, that are typically seen in patients with severe COVID-19. ACE2 is a component of the renin-angiotensin system (RAS) and is intimately associated with the plasma kallikrein-kinin system (KKS). As many papers are published on the role of ACE and ACE2 in COVID-19, we will review the role of bradykinin, and more broadly the KSS, in SARS-CoV-2-induced vascular dysfunction. Furthermore, we will discuss the possible therapeutic interventions that are approved and in development for the following targets: coagulation factor XII (FXII), tissue kallikrein (KLK1), plasma kallikrein (KLKB1), bradykinin (BK), plasminogen activator inhibitor (PAI-1), bradykinin B1 receptor (BKB1R), bradykinin B2 receptor (BKB2R), ACE, furin, and the NLRP3 inflammasome. Understanding these targets may prove of value in the treatment of COVID-19 as well as in other virus-induced coagulopathies in the future.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"60 1","pages":"25-40"},"PeriodicalIF":10.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9341058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/10408363.2022.2070595
Jiří Janoušek, Veronika Pilařová, Kateřina Macáková, Anderson Nomura, Jéssica Veiga-Matos, Diana Dias da Silva, Fernando Remião, Luciano Saso, Kateřina Malá-Ládová, Josef Malý, Lucie Nováková, Přemysl Mladěnka
Vitamin D has a well-known role in the calcium homeostasis associated with the maintenance of healthy bones. It increases the efficiency of the intestinal absorption of dietary calcium, reduces calcium losses in urine, and mobilizes calcium stored in the skeleton. However, vitamin D receptors are present ubiquitously in the human body and indeed, vitamin D has a plethora of non-calcemic functions. In contrast to most vitamins, sufficient vitamin D can be synthesized in human skin. However, its production can be markedly decreased due to factors such as clothing, sunscreens, intentional avoidance of the direct sunlight, or the high latitude of the residence. Indeed, more than one billion people worldwide are vitamin D deficient, and the deficiency is frequently undiagnosed. The chronic deficiency is not only associated with rickets/osteomalacia/osteoporosis but it is also linked to a higher risk of hypertension, type 1 diabetes, multiple sclerosis, or cancer. Supplementation of vitamin D may be hence beneficial, but the intake of vitamin D should be under the supervision of health professionals because overdosing leads to intoxication with severe health consequences. For monitoring vitamin D, several analytical methods are employed, and their advantages and disadvantages are discussed in detail in this review.
{"title":"Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites.","authors":"Jiří Janoušek, Veronika Pilařová, Kateřina Macáková, Anderson Nomura, Jéssica Veiga-Matos, Diana Dias da Silva, Fernando Remião, Luciano Saso, Kateřina Malá-Ládová, Josef Malý, Lucie Nováková, Přemysl Mladěnka","doi":"10.1080/10408363.2022.2070595","DOIUrl":"https://doi.org/10.1080/10408363.2022.2070595","url":null,"abstract":"<p><p>Vitamin D has a well-known role in the calcium homeostasis associated with the maintenance of healthy bones. It increases the efficiency of the intestinal absorption of dietary calcium, reduces calcium losses in urine, and mobilizes calcium stored in the skeleton. However, vitamin D receptors are present ubiquitously in the human body and indeed, vitamin D has a plethora of non-calcemic functions. In contrast to most vitamins, sufficient vitamin D can be synthesized in human skin. However, its production can be markedly decreased due to factors such as clothing, sunscreens, intentional avoidance of the direct sunlight, or the high latitude of the residence. Indeed, more than one billion people worldwide are vitamin D deficient, and the deficiency is frequently undiagnosed. The chronic deficiency is not only associated with rickets/osteomalacia/osteoporosis but it is also linked to a higher risk of hypertension, type 1 diabetes, multiple sclerosis, or cancer. Supplementation of vitamin D may be hence beneficial, but the intake of vitamin D should be under the supervision of health professionals because overdosing leads to intoxication with severe health consequences. For monitoring vitamin D, several analytical methods are employed, and their advantages and disadvantages are discussed in detail in this review.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"59 8","pages":"517-554"},"PeriodicalIF":10.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10615445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/10408363.2022.2088685
Huub H van Rossum
Technical quality assurance (QA) and quality control (QA/QC) are important activities within medical laboratories to ensure the adequate quality of obtained test results. QA/QC tools available at medical laboratories include external QC and internal QC, patient-based real-time quality control (PBRTQC) tools such as moving average quality control (MAQC), limit checks, delta checks, and multivariate checks, and finally, analyzer flagging. Recently, for PBRTQC tools, new optimization and validation methods based on error detection simulation have been developed to obtain laboratory-specific insights into PBRTQC error detection. These developments have enabled implementation and application of these individual tools in routine clinical practice. As a next step, they also enable performance comparison of the individual QA/QC tools and integration of all the individual QA/QC tools in order to obtain the most powerful and efficient QA/QC plans. In this review, a brief overview of the individual QA/QC tools and their characteristics is provided and the error detection simulation approaches are explained. Finally, a new concept entitled integrated quality assurance and control (IQAC) is presented. To enable IQAC, a conceptual framework is suggested and demonstrated for sodium, based on available published data. The proposed IQAC framework provides ways and tools by which the performance of different QA/QC tools can be compared in a so-called QA/QC error detection table to enable optimization and validation of the overall QA/QC plan in terms of alarm rate as well as pre-analytical, analytical, and post-analytical error detection performance.
{"title":"Technical quality assurance and quality control for medical laboratories: a review and proposal of a new concept to obtain integrated and validated QA/QC plans.","authors":"Huub H van Rossum","doi":"10.1080/10408363.2022.2088685","DOIUrl":"https://doi.org/10.1080/10408363.2022.2088685","url":null,"abstract":"<p><p>Technical quality assurance (QA) and quality control (QA/QC) are important activities within medical laboratories to ensure the adequate quality of obtained test results. QA/QC tools available at medical laboratories include external QC and internal QC, patient-based real-time quality control (PBRTQC) tools such as moving average quality control (MAQC), limit checks, delta checks, and multivariate checks, and finally, analyzer flagging. Recently, for PBRTQC tools, new optimization and validation methods based on error detection simulation have been developed to obtain laboratory-specific insights into PBRTQC error detection. These developments have enabled implementation and application of these individual tools in routine clinical practice. As a next step, they also enable performance comparison of the individual QA/QC tools and integration of all the individual QA/QC tools in order to obtain the most powerful and efficient QA/QC plans. In this review, a brief overview of the individual QA/QC tools and their characteristics is provided and the error detection simulation approaches are explained. Finally, a new concept entitled integrated quality assurance and control (IQAC) is presented. To enable IQAC, a conceptual framework is suggested and demonstrated for sodium, based on available published data. The proposed IQAC framework provides ways and tools by which the performance of different QA/QC tools can be compared in a so-called QA/QC error detection table to enable optimization and validation of the overall QA/QC plan in terms of alarm rate as well as pre-analytical, analytical, and post-analytical error detection performance.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"59 8","pages":"586-600"},"PeriodicalIF":10.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10668719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/10408363.2022.2072467
Jing Yang, Dandan Li, Jie Wang, Rui Zhang, Jinming Li
Viral respiratory infections are common and serious diseases. Because there is no effective treatment method or vaccine for respiratory tract infection, early diagnosis is vital to identify the pathogen so as to determine the infectivity of the patient and to quickly take measures to curb the spread of the virus, if warranted, to avoid serious public health problems. Real-time reverse transcriptase PCR (rRT-PCR), which has high sensitivity and specificity, is the best approach for early diagnosis. Among rRT-PCR methods, multiplex rRT-PCR can resolve issues arising from various types of viruses, high mutation frequency, coinfection, and low concentrations of virus. However, the design, optimization, and validation of multiplex rRT-PCR are more complicated than singleplex rRT-PCR, and comprehensive research on multiplex rRT-PCR methodology is lacking. This review summarizes recent progress in multiplex rRT-PCR methodology, outlines the principles of design, optimization and validation, and describes a scheme to help diagnostic companies to design and optimize their multiplex rRT-PCR detection panel and to assist laboratory staff to solve problems in their daily work. In addition, the analytical validity, clinical validity and clinical utility of multiplex rRT-PCR in viral respiratory tract infection diagnosis are assessed to provide theoretical guidance and useful information for physicians to understand the test results.
{"title":"Design, optimization, and application of multiplex rRT-PCR in the detection of respiratory viruses.","authors":"Jing Yang, Dandan Li, Jie Wang, Rui Zhang, Jinming Li","doi":"10.1080/10408363.2022.2072467","DOIUrl":"https://doi.org/10.1080/10408363.2022.2072467","url":null,"abstract":"<p><p>Viral respiratory infections are common and serious diseases. Because there is no effective treatment method or vaccine for respiratory tract infection, early diagnosis is vital to identify the pathogen so as to determine the infectivity of the patient and to quickly take measures to curb the spread of the virus, if warranted, to avoid serious public health problems. Real-time reverse transcriptase PCR (rRT-PCR), which has high sensitivity and specificity, is the best approach for early diagnosis. Among rRT-PCR methods, multiplex rRT-PCR can resolve issues arising from various types of viruses, high mutation frequency, coinfection, and low concentrations of virus. However, the design, optimization, and validation of multiplex rRT-PCR are more complicated than singleplex rRT-PCR, and comprehensive research on multiplex rRT-PCR methodology is lacking. This review summarizes recent progress in multiplex rRT-PCR methodology, outlines the principles of design, optimization and validation, and describes a scheme to help diagnostic companies to design and optimize their multiplex rRT-PCR detection panel and to assist laboratory staff to solve problems in their daily work. In addition, the analytical validity, clinical validity and clinical utility of multiplex rRT-PCR in viral respiratory tract infection diagnosis are assessed to provide theoretical guidance and useful information for physicians to understand the test results.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"59 8","pages":"555-572"},"PeriodicalIF":10.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9680190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1080/10408363.2022.2080175
Norah J Alghamdi, Christopher T Burns, Roland Valdes
The urocortins are polypeptides belonging to the corticotropin-releasing hormone family, known to modulate stress responses in mammals. Stress, whether induced physically or psychologically, is an underlying cause or consequence of numerous clinical syndromes. Identifying biological markers associated with the homeostatic regulation of stress could provide a clinical laboratory approach for the management of stress-related disorders. The neuropeptide, urocortin 3 (UCN3), and the corticotropin-releasing hormone receptor 2 (CRHR2) constitute a regulatory axis known to mediate stress homeostasis. Dysregulation of this peptide/receptor axis is believed to play a role in several clinical conditions including post-traumatic stress, sleep apnea, cardiovascular disease, and other health problems related to stress. Understanding the physiology and measurement of the UCN3/CRHR2 axis is important for establishing a viable clinical laboratory diagnostic. In this article, we focus on evidence supporting the role of UCN3 and its receptor in stress-related clinical syndromes. We also provide insight into the measurements of UCN3 in blood and urine. These potential biomarkers provide new opportunities for clinical research and applications of laboratory medicine diagnostics in stress management.
{"title":"The urocortin peptides: biological relevance and laboratory aspects of UCN3 and its receptor.","authors":"Norah J Alghamdi, Christopher T Burns, Roland Valdes","doi":"10.1080/10408363.2022.2080175","DOIUrl":"https://doi.org/10.1080/10408363.2022.2080175","url":null,"abstract":"<p><p>The urocortins are polypeptides belonging to the corticotropin-releasing hormone family, known to modulate stress responses in mammals. Stress, whether induced physically or psychologically, is an underlying cause or consequence of numerous clinical syndromes. Identifying biological markers associated with the homeostatic regulation of stress could provide a clinical laboratory approach for the management of stress-related disorders. The neuropeptide, urocortin 3 (UCN3), and the corticotropin-releasing hormone receptor 2 (CRHR2) constitute a regulatory axis known to mediate stress homeostasis. Dysregulation of this peptide/receptor axis is believed to play a role in several clinical conditions including post-traumatic stress, sleep apnea, cardiovascular disease, and other health problems related to stress. Understanding the physiology and measurement of the UCN3/CRHR2 axis is important for establishing a viable clinical laboratory diagnostic. In this article, we focus on evidence supporting the role of UCN3 and its receptor in stress-related clinical syndromes. We also provide insight into the measurements of UCN3 in blood and urine. These potential biomarkers provide new opportunities for clinical research and applications of laboratory medicine diagnostics in stress management.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"59 8","pages":"573-585"},"PeriodicalIF":10.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9184699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}