首页 > 最新文献

Crystal Research and Technology最新文献

英文 中文
Self‐Assembly Method for Insensitive DAAF/FOX‐7 Composite Crystals with Microspheres Structure 微球结构不敏感DAAF/FOX - 7复合晶体的自组装方法
IF 1.5 4区 材料科学 Pub Date : 2021-02-08 DOI: 10.1002/crat.202000194
Shujie Liu, Bidong Wu, Jia-ni Xie, Zhimin Li, Chongwei An, Jingyu Wang, Xiaodong Li
Highly efficient design for the formulation of explosives is desired for accelerating the development of energetic materials. These investigations are focused on the preparation of the compounds 3,3′‐diamino‐4,4′‐azoxyfurazan (DAAF) and 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7). DAAF/FOX‐7 microspheres are prepared via the self‐assembly method using different mass ratios of DAAF and FOX‐7. Materials Studio is used to analyze the intermolecular binding energy (Ebind) of the composite system. DAAF/FOX‐7 with a mass ratio of 90:10 shows a higher Ebind (183.24 kJ mol−1) and peak temperature at the heating rate of 0 °C min−1 (266.2 °C) than DAAF/FOX‐7 with a mass ratio of 70:30 and DAAF/FOX‐7 with a mass ratio of 80:20; this indicates that DAAF/FOX‐7 (90:10) shows better thermal stability. EXPLO5 is used to analyze the detonation velocity of the composite system, and the detonation velocity of DAAF/FOX‐7 microspheres increase by 0.5 km s−1 compared to that of DAAF. The characteristic drop height of impact sensitivity is more than 100 cm, and this demonstrates that the microspheres exhibit good safety performance. The morphology, crystal structure, thermal decomposition property, and impact sensitivity of the microspheres are investigated and compared. X‐ray diffraction and Fourier transform infrared spectroscopy results indicate that the structure of the DAAF/FOX‐7 composite is not changed compared to that of the raw material.
为了加速高能材料的发展,需要高效的炸药配方设计。这些研究主要集中在化合物3,3 ' -二氨基- 4,4 ' -氮氧呋喃氮(DAAF)和1,1 -二氨基- 2,2 -二亚基乙烯(FOX - 7)的制备上。采用DAAF和FOX‐7的不同质量比,通过自组装方法制备了DAAF/FOX‐7微球。使用Materials Studio分析复合体系的分子间结合能(Ebind)。质量比为90:10的DAAF/FOX‐7比质量比为70:30的DAAF/FOX‐7和质量比为80:20的DAAF/FOX‐7的Ebind (183.24 kJ mol−1)和升温速率为0℃min−1(266.2℃)时的峰值温度更高;这表明DAAF/FOX‐7(90:10)具有更好的热稳定性。利用EXPLO5分析了复合体系的爆速,DAAF/FOX‐7微球的爆速比DAAF提高了0.5 km s−1。冲击敏感性特征落差大于100 cm,表明微球具有良好的安全性能。对微球的形貌、晶体结构、热分解性能和冲击敏感性进行了研究和比较。X射线衍射和傅里叶变换红外光谱结果表明,与原料相比,DAAF/FOX - 7复合材料的结构没有发生变化。
{"title":"Self‐Assembly Method for Insensitive DAAF/FOX‐7 Composite Crystals with Microspheres Structure","authors":"Shujie Liu, Bidong Wu, Jia-ni Xie, Zhimin Li, Chongwei An, Jingyu Wang, Xiaodong Li","doi":"10.1002/crat.202000194","DOIUrl":"https://doi.org/10.1002/crat.202000194","url":null,"abstract":"Highly efficient design for the formulation of explosives is desired for accelerating the development of energetic materials. These investigations are focused on the preparation of the compounds 3,3′‐diamino‐4,4′‐azoxyfurazan (DAAF) and 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7). DAAF/FOX‐7 microspheres are prepared via the self‐assembly method using different mass ratios of DAAF and FOX‐7. Materials Studio is used to analyze the intermolecular binding energy (Ebind) of the composite system. DAAF/FOX‐7 with a mass ratio of 90:10 shows a higher Ebind (183.24 kJ mol−1) and peak temperature at the heating rate of 0 °C min−1 (266.2 °C) than DAAF/FOX‐7 with a mass ratio of 70:30 and DAAF/FOX‐7 with a mass ratio of 80:20; this indicates that DAAF/FOX‐7 (90:10) shows better thermal stability. EXPLO5 is used to analyze the detonation velocity of the composite system, and the detonation velocity of DAAF/FOX‐7 microspheres increase by 0.5 km s−1 compared to that of DAAF. The characteristic drop height of impact sensitivity is more than 100 cm, and this demonstrates that the microspheres exhibit good safety performance. The morphology, crystal structure, thermal decomposition property, and impact sensitivity of the microspheres are investigated and compared. X‐ray diffraction and Fourier transform infrared spectroscopy results indicate that the structure of the DAAF/FOX‐7 composite is not changed compared to that of the raw material.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"7 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82204499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Gallium(III) Oxide: Formation of High‐Quality Heteroepitaxial β‐Ga 2 O 3 Films by Crystal Phase Transition (Crystal Research and Technology 2/2021) 氧化镓(III):通过晶体相变形成高质量异质外延β - ga2o3薄膜(晶体研究与技术2/2021)
IF 1.5 4区 材料科学 Pub Date : 2021-02-01 DOI: 10.1002/crat.202170012
{"title":"Gallium(III) Oxide: Formation of High‐Quality Heteroepitaxial β‐Ga\u0000 2\u0000 O\u0000 3\u0000 Films by Crystal Phase Transition (Crystal Research and Technology 2/2021)","authors":"","doi":"10.1002/crat.202170012","DOIUrl":"https://doi.org/10.1002/crat.202170012","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"12 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73091169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Crystal Research and Technology 2'2021 报头:晶体研究与技术2'2021
IF 1.5 4区 材料科学 Pub Date : 2021-02-01 DOI: 10.1002/crat.202170013
{"title":"Masthead: Crystal Research and Technology 2'2021","authors":"","doi":"10.1002/crat.202170013","DOIUrl":"https://doi.org/10.1002/crat.202170013","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"15 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80345279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical Synthesis and Substrate Temperature Effect on Morphology of 2D Vanadium Disulfide 化学合成及衬底温度对二维二硫化钒形貌的影响
IF 1.5 4区 材料科学 Pub Date : 2021-01-27 DOI: 10.1002/crat.202000184
Mongur Hossain, B. Qin, S. Sen
2D metallic transition metal dichalcogenides exhibit plenty of intriguing physical properties such as magnetism, charge density wave, and superconductivity resulting in worldwide attention from condensed‐matter physicists over the last few decades. Herein, the chemical synthesis and substrate temperature effect on the morphology of 2D vanadium disulfide (VS2) are reported. The synthesis is done by atmospheric pressure chemical vapor deposition using vanadium chloride (VCl3) precursor on SiO2/Si, fluorphlogopite mica, and hexagonal boron nitride (h‐BN) substrates. The effect of substrate temperatures on the morphology of 2D VS2 nanosheets growth is investigated by optical microscopy, scanning electron microscopy, and atomic force microscopy. Large area VS2 films are attained when the substrate temperature is 650 °C whereas VS2 single crystals are obtained at 550 °C.
二维金属过渡金属二硫族化合物表现出许多有趣的物理性质,如磁性、电荷密度波和超导性,在过去的几十年里引起了全世界凝聚态物理学家的关注。本文报道了二维二硫化钒(VS2)的化学合成和衬底温度对其形貌的影响。利用氯化钒(VCl3)前驱体在SiO2/Si、氟晶云母和六方氮化硼(h‐BN)衬底上进行常压化学气相沉积合成。利用光学显微镜、扫描电子显微镜和原子力显微镜研究了衬底温度对二维VS2纳米片生长形貌的影响。当衬底温度为650℃时,可以得到大面积的VS2薄膜,而当衬底温度为550℃时,可以得到VS2单晶。
{"title":"Chemical Synthesis and Substrate Temperature Effect on Morphology of 2D Vanadium Disulfide","authors":"Mongur Hossain, B. Qin, S. Sen","doi":"10.1002/crat.202000184","DOIUrl":"https://doi.org/10.1002/crat.202000184","url":null,"abstract":"2D metallic transition metal dichalcogenides exhibit plenty of intriguing physical properties such as magnetism, charge density wave, and superconductivity resulting in worldwide attention from condensed‐matter physicists over the last few decades. Herein, the chemical synthesis and substrate temperature effect on the morphology of 2D vanadium disulfide (VS2) are reported. The synthesis is done by atmospheric pressure chemical vapor deposition using vanadium chloride (VCl3) precursor on SiO2/Si, fluorphlogopite mica, and hexagonal boron nitride (h‐BN) substrates. The effect of substrate temperatures on the morphology of 2D VS2 nanosheets growth is investigated by optical microscopy, scanning electron microscopy, and atomic force microscopy. Large area VS2 films are attained when the substrate temperature is 650 °C whereas VS2 single crystals are obtained at 550 °C.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"32 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75783798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
How to Manage a Crystallization Process Aimed at Obtaining a Desired Combination of Number of Crystals and Their Distribution by Size: Learn Here
IF 1.5 4区 材料科学 Pub Date : 2021-01-18 DOI: 10.1002/crat.202000190
C. Nanev
Managing a crystallization process adequately, it is possible to obtain a crystalline product having the desired crystal size distribution. Recommendations for selecting crystallization parameters that are needed to achieve this goal are given basing of a theoretical analysis in which special attention is paid to the growth of crystals from solutions with a preset concentration. Mathematical equations which enable calculation of the theoretical yield for the crystallization process have been elaborated. New formula giving the crystal nuclei number per unit volume as a function of both supersaturation and nucleation time has been devised based on the logistic kinetics of crystal nucleation proceeding under constant supersaturation. The quantitative relation between number density and mean size of crystals growing in batch crystallization is calculated. The calculation shows that the mean size of crystals reached at any time of their growth is inversely proportional to root third of the crystal number density.
充分管理结晶过程,有可能获得具有所需晶体尺寸分布的结晶产品。根据理论分析给出了选择结晶参数所需的建议,以实现这一目标,其中特别注意从预设浓度的溶液中生长晶体。阐述了计算结晶过程理论产率的数学方程。根据恒过饱和条件下晶体成核过程的logistic动力学,提出了单位体积内晶核数与过饱和度和成核时间的函数关系式。计算了在间歇结晶过程中生长的晶体数密度与平均尺寸之间的定量关系。计算表明,晶体在生长的任何时刻所达到的平均尺寸与晶体数密度的三分之一成反比。
{"title":"How to Manage a Crystallization Process Aimed at Obtaining a Desired Combination of Number of Crystals and Their Distribution by Size: Learn Here","authors":"C. Nanev","doi":"10.1002/crat.202000190","DOIUrl":"https://doi.org/10.1002/crat.202000190","url":null,"abstract":"Managing a crystallization process adequately, it is possible to obtain a crystalline product having the desired crystal size distribution. Recommendations for selecting crystallization parameters that are needed to achieve this goal are given basing of a theoretical analysis in which special attention is paid to the growth of crystals from solutions with a preset concentration. Mathematical equations which enable calculation of the theoretical yield for the crystallization process have been elaborated. New formula giving the crystal nuclei number per unit volume as a function of both supersaturation and nucleation time has been devised based on the logistic kinetics of crystal nucleation proceeding under constant supersaturation. The quantitative relation between number density and mean size of crystals growing in batch crystallization is calculated. The calculation shows that the mean size of crystals reached at any time of their growth is inversely proportional to root third of the crystal number density.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"100 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76995163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Supramolecular Self‐Assembly of Cyclopentyl‐Substituted Cucurbit[n]uril with Fe3+, Fe2+, and HClO4 Based on Outer Surface Interaction 基于外表面相互作用的环戊基取代葫芦[n] il与Fe3+, Fe2+和HClO4的超分子自组装
IF 1.5 4区 材料科学 Pub Date : 2021-01-18 DOI: 10.1002/crat.202000183
Jun Zheng, W. Zhao, Ye Meng, Y. Jin, Jie Gao, P. Ma
The supramolecular self‐assembly of the outer surface of cucurbit[n]uril is one of the main areas of focus in cucurbit[n]uril chemistry. The crystal structure is determined by single‐crystal X‐ray diffraction and characterized. This work focuses on the supramolecular self‐assembly between CyP5Q[5], FeCl2, FeCl3 and CyP6Q[6] and HClO4 through the interaction of the outer surface.
瓜[n] il外表面的超分子自组装是瓜[n] il化学的主要研究领域之一。晶体结构由单晶X射线衍射测定并表征。本研究主要研究了CyP5Q[5]、FeCl2、FeCl3和CyP6Q[6]通过外表面相互作用与HClO4之间的超分子自组装。
{"title":"Supramolecular Self‐Assembly of Cyclopentyl‐Substituted Cucurbit[n]uril with Fe3+, Fe2+, and HClO4 Based on Outer Surface Interaction","authors":"Jun Zheng, W. Zhao, Ye Meng, Y. Jin, Jie Gao, P. Ma","doi":"10.1002/crat.202000183","DOIUrl":"https://doi.org/10.1002/crat.202000183","url":null,"abstract":"The supramolecular self‐assembly of the outer surface of cucurbit[n]uril is one of the main areas of focus in cucurbit[n]uril chemistry. The crystal structure is determined by single‐crystal X‐ray diffraction and characterized. This work focuses on the supramolecular self‐assembly between CyP5Q[5], FeCl2, FeCl3 and CyP6Q[6] and HClO4 through the interaction of the outer surface.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"44 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73368215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Numerical Study of the Upgraded Hot Zone in Silicon Directional Solidification Process 硅定向凝固过程中升级热区的数值研究
IF 1.5 4区 材料科学 Pub Date : 2021-01-06 DOI: 10.1002/crat.202000180
Wenjia Su, Wei Yang, Jiulong Li, Xiaoming Han, Junfeng Wang
2D global transient model for generation‐six (G6) GT‐style furnace and upgraded generation‐seven (G7) ALD‐style furnace in which all types of heat transfer and flow are included is established to investigate the thermal field, melt convection, melt–crystal (m–c) interface shape, thermal stress, growth rate, and Voronkov ratios in the growing silicon ingot. The modeling is verified by the heater power and temperature experiment. Simulation results show that the melt flow is relatively stronger as the furnace upgrades. For G7, a relatively higher thermal stress and growth rate are found due to the higher temperature gradient both in the horizontal and axial directions. Furthermore, unlike the optimized G6, G7 shows the overly convex m–c interface in the initial stage and edge nucleation throughout crystal growth stage.
建立了第6代(G6) GT式炉和升级后的第7代(G7) ALD式炉的二维全局瞬态模型,其中包括所有类型的传热和流动,以研究生长硅锭中的热场、熔体对流、熔体-晶体(m-c)界面形状、热应力、生长速率和沃龙科夫比。通过加热器功率和温度实验验证了模型的正确性。模拟结果表明,随着炉体升级,熔体流动相对增强。对于G7,由于水平方向和轴向温度梯度较大,其热应力和生长速率相对较高。此外,与优化后的G6不同,G7在初始阶段表现出过凸的m-c界面,在整个晶体生长阶段表现出边缘成核。
{"title":"Numerical Study of the Upgraded Hot Zone in Silicon Directional Solidification Process","authors":"Wenjia Su, Wei Yang, Jiulong Li, Xiaoming Han, Junfeng Wang","doi":"10.1002/crat.202000180","DOIUrl":"https://doi.org/10.1002/crat.202000180","url":null,"abstract":"2D global transient model for generation‐six (G6) GT‐style furnace and upgraded generation‐seven (G7) ALD‐style furnace in which all types of heat transfer and flow are included is established to investigate the thermal field, melt convection, melt–crystal (m–c) interface shape, thermal stress, growth rate, and Voronkov ratios in the growing silicon ingot. The modeling is verified by the heater power and temperature experiment. Simulation results show that the melt flow is relatively stronger as the furnace upgrades. For G7, a relatively higher thermal stress and growth rate are found due to the higher temperature gradient both in the horizontal and axial directions. Furthermore, unlike the optimized G6, G7 shows the overly convex m–c interface in the initial stage and edge nucleation throughout crystal growth stage.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"57 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81446928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
55 Years of Crystal Research & Technology 55年的晶体研究与技术
IF 1.5 4区 材料科学 Pub Date : 2021-01-01 DOI: 10.1002/CRAT.202000233
W. Neumann, K. Benz, M. Zastrow
{"title":"55 Years of Crystal Research & Technology","authors":"W. Neumann, K. Benz, M. Zastrow","doi":"10.1002/CRAT.202000233","DOIUrl":"https://doi.org/10.1002/CRAT.202000233","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"110 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75991509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(Crystal Research and Technology 1/2021) (晶体研究与技术1/2021)
IF 1.5 4区 材料科学 Pub Date : 2021-01-01 DOI: 10.1002/crat.202170010
{"title":"(Crystal Research and Technology 1/2021)","authors":"","doi":"10.1002/crat.202170010","DOIUrl":"https://doi.org/10.1002/crat.202170010","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"64 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79055534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Crystal Research and Technology 1'2021 报头:晶体研究与技术1'2021
IF 1.5 4区 材料科学 Pub Date : 2021-01-01 DOI: 10.1002/crat.202170011
{"title":"Masthead: Crystal Research and Technology 1'2021","authors":"","doi":"10.1002/crat.202170011","DOIUrl":"https://doi.org/10.1002/crat.202170011","url":null,"abstract":"","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"3 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75303073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Crystal Research and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1