Pub Date : 2024-02-26DOI: 10.1007/s00338-024-02472-1
Sergio D. Guendulain-Garcia, Anastazia T. Banaszak, Lorenzo Álvarez-Filip, Andrea M. Quattrini, Andrés Lopez-Perez
Reef functionality depends on the coral community’s species composition, abundance, and on the capacity of corals to build carbonate structures. Nevertheless, the coral’s contribution to functionality remains hidden in species morphological variation displayed. Here, we use three-dimensional (3D) models to estimate the morpho-functional space of 14 Caribbean coral species by combining information from five morphological traits (sphericity, convexity, packing, first moment of surface area, and first moment of volume). Based on a principal component analysis, we selected the trait that captured most of the coral morphological variation to address the effect of colony size on structural complexity, shelter volume, and efficiency of resource use in terms of colony volume and calcium carbonate (CaCO3) investment. At the species level, structural complexity increased as a function of coral colony size in branching, digitate, and columnar coral species. Shelter volume increased with colony size in all species; however, branching species such as Acropora palmata not only provide more shelter volume than species with simpler morphologies, but they do so more efficiently, investing less colony volume and CaCO3 mass for attaining the same shelter volume. Tracking changes in coral morphologies and colony size can improve our ability to predict functional repercussions from modifications to coral assemblages that are caused by, for example, disease outbreaks or environmental disturbances.
{"title":"Three-dimensional morphological variation and physical functionality of Caribbean corals","authors":"Sergio D. Guendulain-Garcia, Anastazia T. Banaszak, Lorenzo Álvarez-Filip, Andrea M. Quattrini, Andrés Lopez-Perez","doi":"10.1007/s00338-024-02472-1","DOIUrl":"https://doi.org/10.1007/s00338-024-02472-1","url":null,"abstract":"<p>Reef functionality depends on the coral community’s species composition, abundance, and on the capacity of corals to build carbonate structures. Nevertheless, the coral’s contribution to functionality remains hidden in species morphological variation displayed. Here, we use three-dimensional (3D) models to estimate the morpho-functional space of 14 Caribbean coral species by combining information from five morphological traits (sphericity, convexity, packing, first moment of surface area, and first moment of volume). Based on a principal component analysis, we selected the trait that captured most of the coral morphological variation to address the effect of colony size on structural complexity, shelter volume, and efficiency of resource use in terms of colony volume and calcium carbonate (CaCO<sub>3</sub>) investment. At the species level, structural complexity increased as a function of coral colony size in branching, digitate, and columnar coral species. Shelter volume increased with colony size in all species; however, branching species such as <i>Acropora palmata</i> not only provide more shelter volume than species with simpler morphologies, but they do so more efficiently, investing less colony volume and CaCO<sub>3</sub> mass for attaining the same shelter volume. Tracking changes in coral morphologies and colony size can improve our ability to predict functional repercussions from modifications to coral assemblages that are caused by, for example, disease outbreaks or environmental disturbances.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"30 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139968007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-24DOI: 10.1007/s00338-024-02474-z
Abstract
Function-based studies have opened a new chapter in our understanding of coral reefs. Unfortunately, we are opening this chapter as the world’s reefs rapidly transform. In this context, one of the most important roles of function-based studies is to inform coral reef conservation. At this critical juncture, we have a chance to reflect on where we have come from, and where we are going, in coral reef functional ecology, with specific consideration of what this means for our approaches to conserving reefs. As focal examples, we examine the role of corals on reefs, and the practice of culling crown-of-thorns starfish, from a functional perspective. We also consider how the papers in this special issue build on our current understanding. Ultimately, we highlight how robust scientific investigation, based on an understanding of ecosystem functions, will be key in helping us navigate reefs through the current coral reef crisis.
{"title":"Studying functions on coral reefs: past perspectives, current conundrums, and future potential","authors":"","doi":"10.1007/s00338-024-02474-z","DOIUrl":"https://doi.org/10.1007/s00338-024-02474-z","url":null,"abstract":"<h3>Abstract</h3> <p>Function-based studies have opened a new chapter in our understanding of coral reefs. Unfortunately, we are opening this chapter as the world’s reefs rapidly transform. In this context, one of the most important roles of function-based studies is to inform coral reef conservation. At this critical juncture, we have a chance to reflect on where we have come from, and where we are going, in coral reef functional ecology, with specific consideration of what this means for our approaches to conserving reefs. As focal examples, we examine the role of corals on reefs, and the practice of culling crown-of-thorns starfish, from a functional perspective. We also consider how the papers in this special issue build on our current understanding. Ultimately, we highlight how robust scientific investigation, based on an understanding of ecosystem functions, will be key in helping us navigate reefs through the current coral reef crisis.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"14 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-22DOI: 10.1007/s00338-024-02466-z
Abstract
Coral reefs harbor 30% of oceanic biodiversity, but many species remain undiscovered. Indeed, coral reef taxonomic inventories are heavily skewed toward large, conspicuous organisms, leaving numerous smaller, cryptic species undescribed. Cryptobenthic reef fishes, such as gobies, can speciate rapidly due to short lifespans and limited dispersal, and ecological specialization may facilitate their diversification. Here, we examine whether habitat specialization correlates with genetic and phenotypic divergence in Risor ruber, a sponge-dwelling goby distributed across the western Atlantic Ocean. By integrating phylogenetic evidence, morphometrics, and network analysis, we identify seven distinct genetic lineages within Risor and reveal concordant patterns of Risor–sponge specialization. Despite the absence of lineage-specific morphologies, morphological traits are associated with sponge hosts, indicating high phenotypic plasticity within lineages. Two Risor lineages specialize on a single host sponge across the Caribbean, while five lineages are generalists. Finally, high modularity across Risor–sponge networks provides further evidence that ecological specialization contributes to Risor diversification. Given the rapid changes in coral reef benthic communities, habitat specialists are more likely to lose their primary habitat and face extinction. Documenting and understanding genetic diversification is imperative, especially in understudied, vulnerable organisms such as cryptobenthic reef fishes.
{"title":"Cryptic diversification, phenotypic plasticity, and host specialization in a sponge-dwelling goby","authors":"","doi":"10.1007/s00338-024-02466-z","DOIUrl":"https://doi.org/10.1007/s00338-024-02466-z","url":null,"abstract":"<h3>Abstract</h3> <p>Coral reefs harbor 30% of oceanic biodiversity, but many species remain undiscovered. Indeed, coral reef taxonomic inventories are heavily skewed toward large, conspicuous organisms, leaving numerous smaller, cryptic species undescribed. Cryptobenthic reef fishes, such as gobies, can speciate rapidly due to short lifespans and limited dispersal, and ecological specialization may facilitate their diversification. Here, we examine whether habitat specialization correlates with genetic and phenotypic divergence in <em>Risor ruber</em>, a sponge-dwelling goby distributed across the western Atlantic Ocean. By integrating phylogenetic evidence, morphometrics, and network analysis, we identify seven distinct genetic lineages within <em>Risor</em> and reveal concordant patterns of <em>Risor</em>–sponge specialization. Despite the absence of lineage-specific morphologies, morphological traits are associated with sponge hosts, indicating high phenotypic plasticity within lineages. Two <em>Risor</em> lineages specialize on a single host sponge across the Caribbean, while five lineages are generalists. Finally, high modularity across <em>Risor</em>–sponge networks provides further evidence that ecological specialization contributes to <em>Risor</em> diversification. Given the rapid changes in coral reef benthic communities, habitat specialists are more likely to lose their primary habitat and face extinction. Documenting and understanding genetic diversification is imperative, especially in understudied, vulnerable organisms such as cryptobenthic reef fishes.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"9 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-21DOI: 10.1007/s00338-023-02456-7
Marko Terzin, Adriana Villamor, Lorenzo Marincich, Kenan Matterson, Maria Grazia Paletta, Valentina Bertuccio, Giorgio Bavestrello, Lisandro Benedetti Cecchi, Elisa Boscari, Carlo Cerrano, Giovanni Chimienti, Leonardo Congiu, Simonetta Fraschetti, Francesco Mastrototaro, Massimo Ponti, Roberto Sandulli, Eva Turicchia, Lorenzo Zane, Marco Abbiati, Federica Costantini
The zoanthid Parazoanthus axinellae (Schmidt, 1862) is a widespread coral species in the Mediterranean coralligenous assemblages where two morphotypes are found: Slender and Stocky, differing in size, color, and preferred substrate. Due to these marked differences, Slender and Stocky morphotypes were hypothesized to be two species. Here, we used 2bRAD to obtain genome‐wide genotyped single nucleotide polymorphisms (SNPs) to investigate the genetic differentiation between Slender and Stocky morphs, as well as their population structure. A total of 101 specimens of P. axinellae were sampled and genotyped from eight locations along the Italian coastline. In four locations, samples of the two morphotypes were collected in sympatry. 2bRAD genome-wide SNPs were used to assess the genetic divergence between the two morphotypes (1319 SNPs), and population connectivity patterns within Slender (1926 SNPs) and Stocky (1871 SNPs) morphotypes. Marked and consistent differentiation was detected between Slender and Stocky morphotypes. The widely distributed Slender morphotype showed higher population mixing patterns, while populations of the Stocky morphotype exhibited a stronger genetic structure at a regional scale. The strong genetic differentiation observed between P. axinellae Slender and Stocky morphotypes provides additional evidence that these morphs could be attributed to different species, although further morphological and ecological studies are required to validate this hypothesis. Our study highlights the importance of resolving phylogenetic and taxonomic disparities within taxonomically problematic groups, such as the P. axinellae species complex, when performing genetic connectivity studies for management and conservation purposes.
Graphical Abstract
Schematic overview of the main genetic structuring patterns observed in this study. Coral polyps were colored to intuitively associate the reader to Parazoanthus axinellae morphotypes, with orange tones being attributed to the Stocky morphotype, and yellow tones to the Slender morphotype. Bidirectional arrows represent gene flow between coral individuals, with the number and thickness of arrows corresponding to the intensity of gene flow rates. The red dashed line represents the potential reproductive isolation between Slender and Stocky morphs