Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
{"title":"Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications.","authors":"Anna L Malinowska, Harley L Huynh, Sritama Bose","doi":"10.3390/cimb46100655","DOIUrl":"https://doi.org/10.3390/cimb46100655","url":null,"abstract":"<p><p>Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michel Kiréopori Gomgnimbou, Louis Robert Wendyam Belem, Etienne Bilgo, Miriam Félicité Amara, Zouera Laouali, Ali Ouari, Toussaint Bayala, Kobo Gnada, Raymond Kharlis Yao, Moussa Namountougou, Ibrahim Sangaré
Mosquitoes of the genus Aedes are the most important arthropod disease vector. Dengue virus (DENV) and Chikungunya virus (CHIKV) are the main arboviruses distributed throughout the world. Based on entomo-virological surveillance, appropriate public health strategies can be adopted to contain cases and control outbreaks. This study aims to show the potential performance of two new molecular methods for detecting DENV serotypes and CHIKV in mosquitoes. Mosquitoes were collected in urban and sylvatic areas of Bobo-Dioulasso, Burkina Faso, between July and August 2023. DENV and CHIKV were screened using new multiplex RT-PCR and RT-qPCR methods. A total of 2150 mosquitoes were trapped, consisting of 976 Aedes (959 Ae. aegypti, 6 Ae. furcifer, and 11 Ae. vittatus) and 1174 Culex sp. These were grouped into 39 pools, with each pool containing a maximum of 30 mosquitoes. Molecular screening revealed that 7.7% (3/39) of the pools were positive for DENV. Specifically, DENV-1 was detected in one pool (1/3), and DENV-3 was found in two pools (2/3). All pools tested negative for CHIKV. The overall minimum infection rate (MIR) of DENV in this study was 3.07 (95% CI: 2.24-19.86). This study shows the usefulness of our new molecular tools for the surveillance of DENV serotypes and CHIKV.
{"title":"Potential Performance of Two New RT-PCR and RT-qPCR Methods for Multiplex Detection of Dengue Virus Serotypes 1-4 and Chikungunya Virus in Mosquitoes.","authors":"Michel Kiréopori Gomgnimbou, Louis Robert Wendyam Belem, Etienne Bilgo, Miriam Félicité Amara, Zouera Laouali, Ali Ouari, Toussaint Bayala, Kobo Gnada, Raymond Kharlis Yao, Moussa Namountougou, Ibrahim Sangaré","doi":"10.3390/cimb46100656","DOIUrl":"https://doi.org/10.3390/cimb46100656","url":null,"abstract":"<p><p>Mosquitoes of the genus <i>Aedes</i> are the most important arthropod disease vector. Dengue virus (DENV) and Chikungunya virus (CHIKV) are the main arboviruses distributed throughout the world. Based on entomo-virological surveillance, appropriate public health strategies can be adopted to contain cases and control outbreaks. This study aims to show the potential performance of two new molecular methods for detecting DENV serotypes and CHIKV in mosquitoes. Mosquitoes were collected in urban and sylvatic areas of Bobo-Dioulasso, Burkina Faso, between July and August 2023. DENV and CHIKV were screened using new multiplex RT-PCR and RT-qPCR methods. A total of 2150 mosquitoes were trapped, consisting of 976 Aedes (959 <i>Ae. aegypti</i>, 6 <i>Ae. furcifer</i>, and 11 <i>Ae. vittatus</i>) and 1174 <i>Culex</i> sp. These were grouped into 39 pools, with each pool containing a maximum of 30 mosquitoes. Molecular screening revealed that 7.7% (3/39) of the pools were positive for DENV. Specifically, DENV-1 was detected in one pool (1/3), and DENV-3 was found in two pools (2/3). All pools tested negative for CHIKV. The overall minimum infection rate (MIR) of DENV in this study was 3.07 (95% CI: 2.24-19.86). This study shows the usefulness of our new molecular tools for the surveillance of DENV serotypes and CHIKV.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salah Laaraj, Hanane Choubbane, Amal Elrherabi, Aziz Tikent, Ayoub Farihi, Meriem Laaroussi, Mohamed Bouhrim, Abdelaaty A Shahat, Younes Noutfia, Rashed N Herqash, Fatiha Chigr, Souad Salmaoui, Kaoutar Elfazazi
Ceratonia siliqua L. is a medicinal plant that has long been used in traditional Moroccan medicine to treat many diseases. This study aimed to assess the impact of the stages of the immature phase of carob pulp (M1, M2, M3, M4, and M5) on phytochemical composition, antioxidant activity, and antidiabetic activity of Ceratonia siliqua L. The identification of the phenolic profile by HPLC-UV/MS-MS and the study of the antidiabetic effect by in silico, in vitro, and in vivo studies were carried out for extracts with high contents of phenolic compounds from immature wild carob pulp from the communes of Timoulit (TM), Bin Elouidane (AW), and Ouaouizerth (TG) in the province of Azilal in the Béni Mellal-Khénifra region. The results revealed a gradual increase in total sugar content over the pulp's ripening period, reaching a value of 2134 ± 56.23 mg GE/100 g fresh weight (FW) for TG. The three locations showed peak values for total polyphenol content (TPC), total flavonoid content (TFC), and total condensed tannin (TCT) at the M2 stage. AW had the highest concentrations of TPC (3819 ± 226.4 mg GAE/100 g FM), TFC (1034 ± 57.08 mg QE/100 g FM), and TCT (1472 ± 28.46 mg CE/100 g FM). The DPPH assay (7892 ± 296.1 mg TE/100 g FM) and the FRAP assay (278.2 ± 7.85 mg TE/100 g FM) both demonstrated that the TG zone is a highly potent antioxidant zone. In contrast, the AW site exhibited a markedly elevated value of 725.4 ± 103.6 mg TE/100 g FM in the ABTS assay. HPLC-UV-MS/MS analysis showed that the methanolic extracts of immature carob pulp (MEICP) from the three areas contained several different chemical compounds. The most prevalent were 3-O-p-coumaroyl-5-O-caffeoylquinic acid, quercetin 3-methyl ether, gallic acid, and galloylquinic acid. Immature carob pulp extract (ICPE) from AW showed the strongest in vitro inhibition of pancreatic α-amylase (IC50 = 0.405 µg/mL) and TG extracts were most potent against intestinal α-glucosidase (IC50 = 0.063 µg/mL). In vivo, AW, TG, and TM extracts significantly reduced postprandial glycemia in rats, with AW having the greatest effect. These results highlight the antidiabetic potential of ICPE. The 3-O-p-Coumaroyl-5-O-caffeoylquinic acid showed better affinity for α-amylase compared to acarbose and interacted significantly with several amino acid residues of the enzyme. Similarly, this molecule and 3,4-Dicaffeoylquinic acid demonstrated a strong affinity for α-glucosidase, suggesting their potential as natural inhibitors of enzymes involved in carbohydrate metabolism. Most of the compounds are not substrates of P-glycoprotein and exhibited high intestinal absorption. Furthermore, the majority of these compounds did not act as inhibitors or substrates of CYP450 enzymes, reinforcing their suitability for development as oral medications. These results underscore the potential of immature carob pulp as a promising antidiabetic agent.
{"title":"Influence of Harvesting Stage on Phytochemical Composition, Antioxidant, and Antidiabetic Activity of Immature <i>Ceratonia siliqua</i> L. Pulp from Béni Mellal-Khénifra Region, Morocco: In Silico, In Vitro, and In Vivo Approaches.","authors":"Salah Laaraj, Hanane Choubbane, Amal Elrherabi, Aziz Tikent, Ayoub Farihi, Meriem Laaroussi, Mohamed Bouhrim, Abdelaaty A Shahat, Younes Noutfia, Rashed N Herqash, Fatiha Chigr, Souad Salmaoui, Kaoutar Elfazazi","doi":"10.3390/cimb46100653","DOIUrl":"https://doi.org/10.3390/cimb46100653","url":null,"abstract":"<p><p><i>Ceratonia siliqua</i> L. is a medicinal plant that has long been used in traditional Moroccan medicine to treat many diseases. This study aimed to assess the impact of the stages of the immature phase of carob pulp (M1, M2, M3, M4, and M5) on phytochemical composition, antioxidant activity, and antidiabetic activity of <i>Ceratonia siliqua</i> L. The identification of the phenolic profile by HPLC-UV/MS-MS and the study of the antidiabetic effect by in silico, in vitro, and in vivo studies were carried out for extracts with high contents of phenolic compounds from immature wild carob pulp from the communes of Timoulit (TM), Bin Elouidane (AW), and Ouaouizerth (TG) in the province of Azilal in the Béni Mellal-Khénifra region. The results revealed a gradual increase in total sugar content over the pulp's ripening period, reaching a value of 2134 ± 56.23 mg GE/100 g fresh weight (FW) for TG. The three locations showed peak values for total polyphenol content (TPC), total flavonoid content (TFC), and total condensed tannin (TCT) at the M2 stage. AW had the highest concentrations of TPC (3819 ± 226.4 mg GAE/100 g FM), TFC (1034 ± 57.08 mg QE/100 g FM), and TCT (1472 ± 28.46 mg CE/100 g FM). The DPPH assay (7892 ± 296.1 mg TE/100 g FM) and the FRAP assay (278.2 ± 7.85 mg TE/100 g FM) both demonstrated that the TG zone is a highly potent antioxidant zone. In contrast, the AW site exhibited a markedly elevated value of 725.4 ± 103.6 mg TE/100 g FM in the ABTS assay. HPLC-UV-MS/MS analysis showed that the methanolic extracts of immature carob pulp (MEICP) from the three areas contained several different chemical compounds. The most prevalent were 3-O-p-coumaroyl-5-O-caffeoylquinic acid, quercetin 3-methyl ether, gallic acid, and galloylquinic acid. Immature carob pulp extract (ICPE) from AW showed the strongest in vitro inhibition of pancreatic α-amylase (IC<sub>50</sub> = 0.405 µg/mL) and TG extracts were most potent against intestinal α-glucosidase (IC<sub>50</sub> = 0.063 µg/mL). In vivo, AW, TG, and TM extracts significantly reduced postprandial glycemia in rats, with AW having the greatest effect. These results highlight the antidiabetic potential of ICPE. The 3-O-p-Coumaroyl-5-O-caffeoylquinic acid showed better affinity for α-amylase compared to acarbose and interacted significantly with several amino acid residues of the enzyme. Similarly, this molecule and 3,4-Dicaffeoylquinic acid demonstrated a strong affinity for α-glucosidase, suggesting their potential as natural inhibitors of enzymes involved in carbohydrate metabolism. Most of the compounds are not substrates of P-glycoprotein and exhibited high intestinal absorption. Furthermore, the majority of these compounds did not act as inhibitors or substrates of CYP450 enzymes, reinforcing their suitability for development as oral medications. These results underscore the potential of immature carob pulp as a promising antidiabetic agent.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youngchan Park, Youngjin Kim, Insong Koh, Jong-Young Lee
Retinitis pigmentosa (RP) encompasses a diverse range of hereditary, degenerative retinal ailments, presenting notable obstacles to molecular genetic diagnoses due to the intricate array of variants in different genes involved. This study enrolled 21 probands and their families who have been diagnosed with nonsyndromic RP but without a previous molecular diagnosis. We employed whole-exome sequencing (WES) to detect possible harmful gene variations in individuals with unknown-cause RP at the molecular level. WES allowed the identification of ten potential disease-causing variants in eight different genes. In 8 out of the total 21 patients, this method successfully identified the underlying molecular causes, such as putative pathogenic variants in genes including CRB1, KLHL7, PDE6B, RDH12, RP1, RPE65, USH2A, and RHO. A novel variant was identified in one of these genes, specifically PDE6B, providing valuable information on prospective targets for future enhanced gene therapeutic approaches.
视网膜色素变性(RP)包括多种遗传性、退行性视网膜疾病,由于涉及不同基因中错综复杂的变异,给分子遗传诊断带来了明显的障碍。本研究招募了 21 名被诊断为非综合征 RP 但之前未进行过分子诊断的原发性患者及其家属。我们采用全外显子组测序(WES)技术,从分子水平检测不明原因 RP 患者可能存在的有害基因变异。通过全外显子测序,我们在 8 个不同的基因中发现了 10 个潜在的致病变异。在总共 21 例患者中,有 8 例成功鉴定出了潜在的分子病因,如 CRB1、KLHL7、PDE6B、RDH12、RP1、RPE65、USH2A 和 RHO 等基因中的潜在致病变异。在其中一个基因(特别是 PDE6B)中发现了一种新型变异,为今后加强基因治疗方法提供了有价值的潜在靶点信息。
{"title":"Whole-Exome Sequencing Improves Understanding of Inherited Retinal Dystrophies in Korean Patients.","authors":"Youngchan Park, Youngjin Kim, Insong Koh, Jong-Young Lee","doi":"10.3390/cimb46100654","DOIUrl":"https://doi.org/10.3390/cimb46100654","url":null,"abstract":"<p><p>Retinitis pigmentosa (RP) encompasses a diverse range of hereditary, degenerative retinal ailments, presenting notable obstacles to molecular genetic diagnoses due to the intricate array of variants in different genes involved. This study enrolled 21 probands and their families who have been diagnosed with nonsyndromic RP but without a previous molecular diagnosis. We employed whole-exome sequencing (WES) to detect possible harmful gene variations in individuals with unknown-cause RP at the molecular level. WES allowed the identification of ten potential disease-causing variants in eight different genes. In 8 out of the total 21 patients, this method successfully identified the underlying molecular causes, such as putative pathogenic variants in genes including <i>CRB1</i>, <i>KLHL7</i>, <i>PDE6B</i>, <i>RDH12</i>, <i>RP1</i>, <i>RPE65</i>, <i>USH2A</i>, and <i>RHO</i>. A novel variant was identified in one of these genes, specifically <i>PDE6B</i>, providing valuable information on prospective targets for future enhanced gene therapeutic approaches.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Liu, Mingshen Ma, Jing Li, Fuxiao Luan, Tingting Ren, Nan Wang, Jianmin Ma
To investigate the differential expression of the chemokine signaling pathway in lacrimal gland benign lymphoepithelial lesion (LGBLEL) and lacrimal lymphoma, providing insights into the mechanisms underlying malignant transformation and aiding clinical differentiation. Transcriptome analysis was conducted on patients with LGBLEL, lymphoma, and orbital cavernous hemangioma (CH). Three cases of LGBLEL and three cases of lymphoma were randomly selected as control and experimental groups, respectively. A real-time quantitative polymerase chain reaction (RT-qPCR) was used to validate genes associated with the chemokine signaling pathway. Immunohistochemical (IHC) staining and quantitative Western blotting (WB) were performed for precise protein quantification. Transcriptome analysis revealed differential expression of the chemokine signaling pathway between the LGBLEL and lymphoma groups, identifying ten differentially expressed genes: CCL17, VAV2, CXCR5, NRAS, HCK, RASGRP2, PREX1, GNB5, ADRBK2, and CCL22. RT-qPCR showed that, compared to the lymphoma group, the LGBLEL group had significantly higher expression of CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.001, <0.001, <0.001, <0.001, =0.020, <0.001, respectively) and lower expression of CCR1 (p = 0.002). IHC staining and quantitative analysis confirmed significant differences in protein expression between the groups for CCL28, CCR1, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.003, 0.011, 0.001, 0.024, 0.005, 0.019, and 0.031, respectively). While IHC provided localization, WB offered greater precision. WB revealed that, compared to the lymphoma group, the LGBLEL group exhibited significantly higher expression of CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.012, 0.005, 0.009, 0.011, 0.008, and 0.003, respectively) and lower expression of CCR1 (p = 0.014). The chemokine signaling pathway plays a role in the malignant transformation of LGBLEL. The decreased expression of CCL28 and CXCL17, coupled with the increased expression of CCR1, may be linked to the progression of LGBLEL into lymphoma.
{"title":"Loss of CCL28 and CXCL17 Expression and Increase in CCR1 Expression May Be Related to Malignant Transformation of LGBLEL into Lymphoma.","authors":"Rui Liu, Mingshen Ma, Jing Li, Fuxiao Luan, Tingting Ren, Nan Wang, Jianmin Ma","doi":"10.3390/cimb46100652","DOIUrl":"https://doi.org/10.3390/cimb46100652","url":null,"abstract":"<p><p><b></b> To investigate the differential expression of the chemokine signaling pathway in lacrimal gland benign lymphoepithelial lesion (LGBLEL) and lacrimal lymphoma, providing insights into the mechanisms underlying malignant transformation and aiding clinical differentiation. Transcriptome analysis was conducted on patients with LGBLEL, lymphoma, and orbital cavernous hemangioma (CH). Three cases of LGBLEL and three cases of lymphoma were randomly selected as control and experimental groups, respectively. A real-time quantitative polymerase chain reaction (RT-qPCR) was used to validate genes associated with the chemokine signaling pathway. Immunohistochemical (IHC) staining and quantitative Western blotting (WB) were performed for precise protein quantification. Transcriptome analysis revealed differential expression of the chemokine signaling pathway between the LGBLEL and lymphoma groups, identifying ten differentially expressed genes: <i>CCL17</i>, <i>VAV2</i>, <i>CXCR5</i>, <i>NRAS</i>, <i>HCK</i>, <i>RASGRP2</i>, <i>PREX1</i>, <i>GNB5</i>, <i>ADRBK2</i>, and <i>CCL22</i>. RT-qPCR showed that, compared to the lymphoma group, the LGBLEL group had significantly higher expression of <i>CCL28</i>, <i>CXCL17</i>, <i>HCK</i>, <i>GNB5</i>, <i>NRAS</i>, and <i>VAV2</i> (<i>p</i> = 0.001, <0.001, <0.001, <0.001, =0.020, <0.001, respectively) and lower expression of <i>CCR1</i> (<i>p</i> = 0.002). IHC staining and quantitative analysis confirmed significant differences in protein expression between the groups for CCL28, CCR1, CXCL17, HCK, GNB5, NRAS, and VAV2 (<i>p</i> = 0.003, 0.011, 0.001, 0.024, 0.005, 0.019, and 0.031, respectively). While IHC provided localization, WB offered greater precision. WB revealed that, compared to the lymphoma group, the LGBLEL group exhibited significantly higher expression of CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 (<i>p</i> = 0.012, 0.005, 0.009, 0.011, 0.008, and 0.003, respectively) and lower expression of CCR1 (<i>p</i> = 0.014). The chemokine signaling pathway plays a role in the malignant transformation of LGBLEL. The decreased expression of CCL28 and CXCL17, coupled with the increased expression of CCR1, may be linked to the progression of LGBLEL into lymphoma.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The diatom Phaeodactylum tricornutum shows potential as a source for biofuel production because of its considerable lipid content. Fatty acid β-oxidation plays a critical role in lipid breakdown. However, we still have a limited understanding of the role of fatty acid β-oxidation in lipid content in this microalga. In our study, we utilized a CRISPR interference method to reduce the expression of enoyl-CoA hydratase (PtECH), which is involved in the hydration of trans-2-enoyl-CoA to produce 3-hydroxyacyl-CoA during the β-oxidation pathway. Using this method, we developed two transgenic lines, PtECH21 and PtECH1487, which resulted from interference at two different sites of the PtECH gene, respectively. RT-qPCR analysis confirmed that the mRNA levels of PtECH in both mutants were significantly lower compared to the wild type. Surprisingly, the lipid content of both mutants increased notably. Additionally, both knockdown mutants exhibited higher chlorophyll content and improved photosynthetic efficiency of the photosystem II compared to the wild type. This study introduces a new approach for enhancing lipid content in P. tricornutum and expands our knowledge of the functions of enoyl-CoA hydratase in microalgae.
{"title":"Improving Lipid Content in the Diatom <i>Phaeodactylum tricornutum</i> by the Knockdown of the Enoyl-CoA Hydratase Using CRISPR Interference.","authors":"Wenfeng Guo, Yuwei Weng, Wenkai Ma, Chaofeng Chang, Yuqing Gao, Xuguang Huang, Feng Zhang","doi":"10.3390/cimb46100649","DOIUrl":"https://doi.org/10.3390/cimb46100649","url":null,"abstract":"<p><p>The diatom <i>Phaeodactylum tricornutum</i> shows potential as a source for biofuel production because of its considerable lipid content. Fatty acid β-oxidation plays a critical role in lipid breakdown. However, we still have a limited understanding of the role of fatty acid β-oxidation in lipid content in this microalga. In our study, we utilized a CRISPR interference method to reduce the expression of enoyl-CoA hydratase (PtECH), which is involved in the hydration of trans-2-enoyl-CoA to produce 3-hydroxyacyl-CoA during the β-oxidation pathway. Using this method, we developed two transgenic lines, PtECH21 and PtECH1487, which resulted from interference at two different sites of the <i>PtECH</i> gene, respectively. RT-qPCR analysis confirmed that the mRNA levels of PtECH in both mutants were significantly lower compared to the wild type. Surprisingly, the lipid content of both mutants increased notably. Additionally, both knockdown mutants exhibited higher chlorophyll content and improved photosynthetic efficiency of the photosystem II compared to the wild type. This study introduces a new approach for enhancing lipid content in <i>P. tricornutum</i> and expands our knowledge of the functions of enoyl-CoA hydratase in microalgae.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dental pulp stem cells (DPSCs) demonstrate high proliferative and multilineage differentiation potential. As previously reported, the helioxanthin derivative 4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-b]pyridine-2-carboxamide (TH) has been demonstrated to induce the osteogenic differentiation of DPSCs. However, the mechanism of osteogenesis induced by TH in DPSCs remains unknown. The objective of this study was to identify functional extracellular vesicle (EV) microRNAs (miRNAs), and the principal genes involved in the TH-induced osteogenesis of DPSCs. DPSCs were derived from dental pulp extracted from the third molars of three healthy subjects, and were cultured with or without TH. miRNAs were extracted from DPSC-derived EVs. The gene expression patterns of mRNA and miRNA were compared using RNA-Seq and miRNA-Seq. To investigate miRNA/mRNA interacting networks, functional analyses were performed by Ingenuity Pathway Analysis. Alkaline phosphatase (ALP) staining demonstrated that treatment with TH resulted in enhanced ALP activity in DPSCs after 7 days. The expression levels of ALP and type 1 collagen alpha 1 were significantly higher in TH-induced DPSCs on day 7. RNA-Seq and miRNA-Seq analyses identified 869 differentially expressed genes (DEGs) and 18 miRNA-DEGs. Gene Ontology analysis of the mRNA-Seq results showed that TH induced several biological activities associated with signal transduction, cell adhesion, and cell differentiation. Integrated miRNA-mRNA analyses showed that these miRNAs contain the targeting information of 277 mRNAs of the DEGs. Among them, 17 target genes known to be involved in the differentiation of osteoblasts, and 24 target genes known to be involved in the differentiation of bone cells were identified. Quantitative real-time PCR showed that WNT5a expression in DPSCs was upregulated by 48 h of TH treatment. Upstream regulator analysis indicated that WNT3a, FOS, and RAC1 may be responsible for gene expression changes in DPSCs after TH treatment. EV miRNA regulatory networks might play crucial roles in TH-induced osteogenic differentiation of DPSCs. Our results presented herein offer valuable insights that will facilitate further research into the mechanism of osteogenesis of DPSCs, which is expected to lead to the clinical application of TH-induced DPSCs for bone regeneration. Furthermore, EVs derived from TH-induced DPSCs might be useful as therapeutic tools for bone defects.
{"title":"Integrated MicroRNA-mRNA Analyses of the Osteogenic Differentiation of Human Dental Pulp Stem Cells by a Helioxanthin Derivative.","authors":"Yasuyuki Fujii, Sakura Minami, Ayano Hatori, Yoko Kawase-Koga, Toru Ogasawara, Daichi Chikazu","doi":"10.3390/cimb46100651","DOIUrl":"https://doi.org/10.3390/cimb46100651","url":null,"abstract":"<p><p>Dental pulp stem cells (DPSCs) demonstrate high proliferative and multilineage differentiation potential. As previously reported, the helioxanthin derivative 4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-b]pyridine-2-carboxamide (TH) has been demonstrated to induce the osteogenic differentiation of DPSCs. However, the mechanism of osteogenesis induced by TH in DPSCs remains unknown. The objective of this study was to identify functional extracellular vesicle (EV) microRNAs (miRNAs), and the principal genes involved in the TH-induced osteogenesis of DPSCs. DPSCs were derived from dental pulp extracted from the third molars of three healthy subjects, and were cultured with or without TH. miRNAs were extracted from DPSC-derived EVs. The gene expression patterns of mRNA and miRNA were compared using RNA-Seq and miRNA-Seq. To investigate miRNA/mRNA interacting networks, functional analyses were performed by Ingenuity Pathway Analysis. Alkaline phosphatase (ALP) staining demonstrated that treatment with TH resulted in enhanced ALP activity in DPSCs after 7 days. The expression levels of ALP and type 1 collagen alpha 1 were significantly higher in TH-induced DPSCs on day 7. RNA-Seq and miRNA-Seq analyses identified 869 differentially expressed genes (DEGs) and 18 miRNA-DEGs. Gene Ontology analysis of the mRNA-Seq results showed that TH induced several biological activities associated with signal transduction, cell adhesion, and cell differentiation. Integrated miRNA-mRNA analyses showed that these miRNAs contain the targeting information of 277 mRNAs of the DEGs. Among them, 17 target genes known to be involved in the differentiation of osteoblasts, and 24 target genes known to be involved in the differentiation of bone cells were identified. Quantitative real-time PCR showed that <i>WNT5a</i> expression in DPSCs was upregulated by 48 h of TH treatment. Upstream regulator analysis indicated that <i>WNT3a</i>, <i>FOS</i>, and <i>RAC1</i> may be responsible for gene expression changes in DPSCs after TH treatment. EV miRNA regulatory networks might play crucial roles in TH-induced osteogenic differentiation of DPSCs. Our results presented herein offer valuable insights that will facilitate further research into the mechanism of osteogenesis of DPSCs, which is expected to lead to the clinical application of TH-induced DPSCs for bone regeneration. Furthermore, EVs derived from TH-induced DPSCs might be useful as therapeutic tools for bone defects.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this study was to conduct a comparative analysis of the population frequencies of the minor allele of polymorphic variants in the genes TCF7L2 (rs7903146) and PPARG (rs1801282), based on the genome-wide association studies analysis data associated with the risk of developing prediabetes, in an ethnically homogeneous Kazakh population compared to previously studied populations worldwide. This study utilized a genomic database consisting of 1800 ethnically Kazakh individuals who were considered in healthy condition. Whole-genome genotyping was performed using Illumina OmniChip 2.5-8 arrays, which interrogated approximately 2.5 million single nucleotide polymorphisms. The distribution of genotypes for the TCF7L2 (rs7903146) and PPARG (rs1801282) polymorphisms in the Kazakh sample was found to be in Hardy-Weinberg equilibrium (p > 0.05). The minor G allele of the "Asian" protective polymorphism rs1801282 in the PPARG gene was observed at a frequency of 13.8% in the Kazakh population. This suggests a potentially more significant protective effect of this polymorphism in reducing the risk of prediabetes among Kazakhs. The frequency of the unfavorable T allele of the insulin secretion-disrupting gene TCF7L2 (rs7903146) in Kazakhs was 15.2%. Studying the associations of genetic markers for prediabetes enables the timely identification of "high-risk groups" and facilitates the implementation of effective preventive measures. Further results from replicative genomic research will help identify significant polymorphic variants of genes underlying the alteration of prediabetes status.
{"title":"Genetic Predisposition to Prediabetes in the Kazakh Population.","authors":"Gulnara Svyatova, Galina Berezina, Alexandra Murtazaliyeva, Altay Dyussupov, Tatyana Belyayeva, Raida Faizova, Azhar Dyussupova","doi":"10.3390/cimb46100648","DOIUrl":"https://doi.org/10.3390/cimb46100648","url":null,"abstract":"<p><p>The aim of this study was to conduct a comparative analysis of the population frequencies of the minor allele of polymorphic variants in the genes <i>TCF7L2</i> (rs7903146) and <i>PPARG</i> (rs1801282), based on the genome-wide association studies analysis data associated with the risk of developing prediabetes, in an ethnically homogeneous Kazakh population compared to previously studied populations worldwide. This study utilized a genomic database consisting of 1800 ethnically Kazakh individuals who were considered in healthy condition. Whole-genome genotyping was performed using Illumina OmniChip 2.5-8 arrays, which interrogated approximately 2.5 million single nucleotide polymorphisms. The distribution of genotypes for the <i>TCF7L2</i> (rs7903146) and <i>PPARG</i> (rs1801282) polymorphisms in the Kazakh sample was found to be in Hardy-Weinberg equilibrium (<i>p</i> > 0.05). The minor G allele of the \"Asian\" protective polymorphism rs1801282 in the <i>PPARG</i> gene was observed at a frequency of 13.8% in the Kazakh population. This suggests a potentially more significant protective effect of this polymorphism in reducing the risk of prediabetes among Kazakhs. The frequency of the unfavorable T allele of the insulin secretion-disrupting gene <i>TCF7L2</i> (rs7903146) in Kazakhs was 15.2%. Studying the associations of genetic markers for prediabetes enables the timely identification of \"high-risk groups\" and facilitates the implementation of effective preventive measures. Further results from replicative genomic research will help identify significant polymorphic variants of genes underlying the alteration of prediabetes status.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Svetlana S Kirikovich, Evgeniy V Levites, Anastasia S Proskurina, Genrikh S Ritter, Evgeniya V Dolgova, Vera S Ruzanova, Sofya G Oshihmina, Julia S Snegireva, Svetlana G Gamaley, Galina M Sysoeva, Elena D Danilenko, Oleg S Taranov, Alexandr A Ostanin, Elena R Chernykh, Nikolay A Kolchanov, Sergey S Bogachev
Vitamin D3 transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates mouse peritoneal macrophages towards synthesis of either pro- (IL-1β, TNF-α-M1 phenotype) or anti-inflammatory (TGF-β, IL-10-M2 phenotype) cytokines. The condition for the transition of the direction of the inflammatory response of macrophages when exposed to GcMAF is the initial glycosylated state of the population of DBP molecules and the associated effective deglycosylation of DBP by β-galactosidase. In vivo experiments with GcMAF exhibiting anti-inflammatory properties on models of induced arthritis in mice and cystitis in rats indicate a significant anti-inflammatory effect of the macrophage activator. The feasibility of unidirectional induction of anti-inflammatory properties of macrophages allows creation of combined therapeutic platforms where M2 macrophages are among the key therapeutic components.
{"title":"Production of GcMAF with Anti-Inflammatory Properties and Its Effect on Models of Induced Arthritis in Mice and Cystitis in Rats.","authors":"Svetlana S Kirikovich, Evgeniy V Levites, Anastasia S Proskurina, Genrikh S Ritter, Evgeniya V Dolgova, Vera S Ruzanova, Sofya G Oshihmina, Julia S Snegireva, Svetlana G Gamaley, Galina M Sysoeva, Elena D Danilenko, Oleg S Taranov, Alexandr A Ostanin, Elena R Chernykh, Nikolay A Kolchanov, Sergey S Bogachev","doi":"10.3390/cimb46100650","DOIUrl":"https://doi.org/10.3390/cimb46100650","url":null,"abstract":"<p><p>Vitamin D<sub>3</sub> transporter (DBP) is a multifunctional protein. Site-specific deglycosylation results in its conversion to group-specific component protein-derived macrophage activating factor (GcMAF), which is capable of activating macrophages. It has been shown that depending on precursor conversion conditions, the resulting GcMAF activates mouse peritoneal macrophages towards synthesis of either pro- (IL-1β, TNF-α-M1 phenotype) or anti-inflammatory (TGF-β, IL-10-M2 phenotype) cytokines. The condition for the transition of the direction of the inflammatory response of macrophages when exposed to GcMAF is the initial glycosylated state of the population of DBP molecules and the associated effective deglycosylation of DBP by β-galactosidase. In vivo experiments with GcMAF exhibiting anti-inflammatory properties on models of induced arthritis in mice and cystitis in rats indicate a significant anti-inflammatory effect of the macrophage activator. The feasibility of unidirectional induction of anti-inflammatory properties of macrophages allows creation of combined therapeutic platforms where M2 macrophages are among the key therapeutic components.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cătălin Prodan-Bărbulescu, Laura Andreea Ghenciu, Edward Şeclăman, Georgeta Cristiana Bujor, Virgil Enătescu, Alexandra-Ioana Danila, Ecaterina Dăescu, Luminioara Maria Rosu, Ionuţ Flaviu Faur, Paul Tuţac, Norberth-Istvan Varga, Tanasescu Sonia, Ciprian Duță
Major depressive disorder (MDD) is a complex mental health condition with a multifaceted and incompletely elucidated pathophysiology. MicroRNAs (miRNAs) have emerged as potential biomarkers due to their role in gene regulation and the observed dysregulation in MDD. The aim of this study is to detect the presence of specific molecular diagnostic biomarkers in major depressive disorder. This cross-sectional study analyzed plasma miRNA expression in ten MDD patients and eight healthy controls using real-time PCR. Differentially expressed miRNAs were identified using independent t-tests, and their diagnostic potential was assessed with ROC curve analysis. Fifteen miRNAs exhibited significant dysregulation in MDD patients. Notably, hsa-miR-29c-3p, hsa-miR-376a-3p, hsa-miR-532-5p, and hsa-miR-339-5p showed excellent discriminatory power (AUC > 0.8). This study identifies differentially expressed plasma miRNAs in MDD, suggesting their potential for improved diagnosis and personalized treatment. However, further validation in larger cohorts and investigation into their functional roles are warranted.
{"title":"Exploring miRNA Biomarkers in Major Depressive Disorder: A Molecular Medicine Perspective.","authors":"Cătălin Prodan-Bărbulescu, Laura Andreea Ghenciu, Edward Şeclăman, Georgeta Cristiana Bujor, Virgil Enătescu, Alexandra-Ioana Danila, Ecaterina Dăescu, Luminioara Maria Rosu, Ionuţ Flaviu Faur, Paul Tuţac, Norberth-Istvan Varga, Tanasescu Sonia, Ciprian Duță","doi":"10.3390/cimb46100644","DOIUrl":"https://doi.org/10.3390/cimb46100644","url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a complex mental health condition with a multifaceted and incompletely elucidated pathophysiology. MicroRNAs (miRNAs) have emerged as potential biomarkers due to their role in gene regulation and the observed dysregulation in MDD. The aim of this study is to detect the presence of specific molecular diagnostic biomarkers in major depressive disorder. This cross-sectional study analyzed plasma miRNA expression in ten MDD patients and eight healthy controls using real-time PCR. Differentially expressed miRNAs were identified using independent <i>t</i>-tests, and their diagnostic potential was assessed with ROC curve analysis. Fifteen miRNAs exhibited significant dysregulation in MDD patients. Notably, hsa-miR-29c-3p, hsa-miR-376a-3p, hsa-miR-532-5p, and hsa-miR-339-5p showed excellent discriminatory power (AUC > 0.8). This study identifies differentially expressed plasma miRNAs in MDD, suggesting their potential for improved diagnosis and personalized treatment. However, further validation in larger cohorts and investigation into their functional roles are warranted.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}