首页 > 最新文献

Current Issues in Molecular Biology最新文献

英文 中文
Plant miRNAs for Improved Gene Regulation in a Wide Range of Human Cancers.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-09 DOI: 10.3390/cimb47010042
Maksym Zoziuk, Vittorio Colizzi, Pavlo Krysenko, Maurizio Mattei, Roberta Bernardini, Fabio Massimo Zanzotto, Stefano Marini, Dmitri Koroliouk

Determining the relationships between miRNA expression, target genes, and cancer development is critical to cancer research. The possibility of correlating miRNA expression with plant or artificial ones provides prerequisites for cancer treatment. Based on the broad database of human miRNA expression for all cancer types, we grade human miRNAs by their expression level. The identified deficient miRNAs are compared with their target genes for coincidences in their expression directions. The replacement of human miRNAs is proposed to be implemented, using plant miRNAs closest to the human-deficient ones. Such plant substitutes are identified by analyzing the average complementarity of all human under-expressed miRNAs. It was established that the number of downregulated miRNAs is almost 2.5 times greater than that of upregulated miRNAs. There is no significant correlation between the expression of miRNA and genes, implying many other expression regulation mechanisms exist. Working on the organization of experimental verification of the obtained statistical studies, we present significant regularities that provide grounds for considering some plant microRNAs as possible means of compensating for insufficient expression of regulatory microRNAs in humans and animals in a wide range of oncological diseases.

{"title":"Plant miRNAs for Improved Gene Regulation in a Wide Range of Human Cancers.","authors":"Maksym Zoziuk, Vittorio Colizzi, Pavlo Krysenko, Maurizio Mattei, Roberta Bernardini, Fabio Massimo Zanzotto, Stefano Marini, Dmitri Koroliouk","doi":"10.3390/cimb47010042","DOIUrl":"10.3390/cimb47010042","url":null,"abstract":"<p><p>Determining the relationships between miRNA expression, target genes, and cancer development is critical to cancer research. The possibility of correlating miRNA expression with plant or artificial ones provides prerequisites for cancer treatment. Based on the broad database of human miRNA expression for all cancer types, we grade human miRNAs by their expression level. The identified deficient miRNAs are compared with their target genes for coincidences in their expression directions. The replacement of human miRNAs is proposed to be implemented, using plant miRNAs closest to the human-deficient ones. Such plant substitutes are identified by analyzing the average complementarity of all human under-expressed miRNAs. It was established that the number of downregulated miRNAs is almost 2.5 times greater than that of upregulated miRNAs. There is no significant correlation between the expression of miRNA and genes, implying many other expression regulation mechanisms exist. Working on the organization of experimental verification of the obtained statistical studies, we present significant regularities that provide grounds for considering some plant microRNAs as possible means of compensating for insufficient expression of regulatory microRNAs in humans and animals in a wide range of oncological diseases.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Anticancer Potential of MonoHER (7-Mono-O-(β-Hydroxyethyl)-Rutoside): Mitochondrial-Dependent Apoptosis in HepG2 Cells.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-09 DOI: 10.3390/cimb47010036
Chujie Li, Yue Wang, Jian Liang, Guido R M M Haenen, Yonger Chen, Zhengwen Li, Ming Zhang, Ludwig J Dubois

Background/aim: Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells.

Materials and methods: HepG2 liver, MCF7 breast, and H1299 lung cancer cells were grown under ambient conditions with or without MonoHER exposure. CCK8 assay was used to assess cell viability. Apoptosis, JC-1, and mitochondrial mass were determined using flow cytometry and confocal analysis. The effects of monoHER on apoptosis proteins were detected by confocal microscopy analysis and Western blot.

Results: It was found that MonoHER can reduce HepG2 cells' and MCF7 cells' viability, but not H1299 cells', and induced apoptosis only in HepG2 cells. MonoHER has the potential to enhance the expression of caspase-9 and caspase-3, to damage mitochondria, and to provoke the release of cytochrome C from the mitochondria.

Conclusion: MonoHER can inhibit cell growth and induce apoptosis especially in HepG2 human liver cancer cells by triggering the mitochondrial signal transduction pathway, leading to the release of cytochrome C in the cytoplasm and the subsequent activation of caspase-9 and caspase-3. Future research should further explore MonoHER's mechanism of action, efficacy, and potential for clinical translation.

{"title":"Exploring the Anticancer Potential of MonoHER (7-Mono-O-(β-Hydroxyethyl)-Rutoside): Mitochondrial-Dependent Apoptosis in HepG2 Cells.","authors":"Chujie Li, Yue Wang, Jian Liang, Guido R M M Haenen, Yonger Chen, Zhengwen Li, Ming Zhang, Ludwig J Dubois","doi":"10.3390/cimb47010036","DOIUrl":"10.3390/cimb47010036","url":null,"abstract":"<p><strong>Background/aim: </strong>Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells.</p><p><strong>Materials and methods: </strong>HepG2 liver, MCF7 breast, and H1299 lung cancer cells were grown under ambient conditions with or without MonoHER exposure. CCK8 assay was used to assess cell viability. Apoptosis, JC-1, and mitochondrial mass were determined using flow cytometry and confocal analysis. The effects of monoHER on apoptosis proteins were detected by confocal microscopy analysis and Western blot.</p><p><strong>Results: </strong>It was found that MonoHER can reduce HepG2 cells' and MCF7 cells' viability, but not H1299 cells', and induced apoptosis only in HepG2 cells. MonoHER has the potential to enhance the expression of caspase-9 and caspase-3, to damage mitochondria, and to provoke the release of cytochrome C from the mitochondria.</p><p><strong>Conclusion: </strong>MonoHER can inhibit cell growth and induce apoptosis especially in HepG2 human liver cancer cells by triggering the mitochondrial signal transduction pathway, leading to the release of cytochrome C in the cytoplasm and the subsequent activation of caspase-9 and caspase-3. Future research should further explore MonoHER's mechanism of action, efficacy, and potential for clinical translation.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Theoretical Study on the Efficacy and Mechanism of Combined YAP-1 and PARP-1 Inhibitors in the Treatment of Glioblastoma Multiforme Using Peruvian Maca Lepidium meyenii.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-09 DOI: 10.3390/cimb47010040
Albert Gabriel Turpo-Peqqueña, Sebastian Luna-Prado, Renato Javier Valencia-Arce, Fabio Leonardo Del-Carpio-Carrazco, Badhin Gómez

Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant forms of brain cancer. Current therapeutic strategies, including surgery, chemotherapy, and radiotherapy, often fail due to the tumor's ability to develop resistance. The proteins YAP-1 (Yes-associated protein 1) and PARP-1 (Poly-(ADP-ribose)-polymerase-1) have been implicated in this resistance, playing crucial roles in cell proliferation and DNA repair mechanisms, respectively. This study explored the inhibitory potential of natural compounds from Lepidium meyenii (Peruvian Maca) on the YAP-1 and PARP-1 protein systems to develop novel therapeutic strategies for GBM. By molecular dynamics simulations, we identified N-(3-Methoxybenzyl)-(9Z,12Z,15Z)- octadecatrienamide (DK5) as the most promising natural inhibitor for PARP-1 and stearic acid (GK4) for YAP-1. Although synthetic inhibitors, such as Olaparib (ODK) for PARP-1 and Verteporfin (VER) for YAP-1, only VER was superior to the naturally occurring molecule and proved a promising alternative. In conclusion, natural compounds from Lepidium meyenii (Peruvian Maca) offer a potentially innovative approach to improve GBM treatment, complementing existing therapies with their inhibitory action on PARP-1 and YAP-1.

{"title":"A Theoretical Study on the Efficacy and Mechanism of Combined YAP-1 and PARP-1 Inhibitors in the Treatment of Glioblastoma Multiforme Using Peruvian Maca <i>Lepidium meyenii</i>.","authors":"Albert Gabriel Turpo-Peqqueña, Sebastian Luna-Prado, Renato Javier Valencia-Arce, Fabio Leonardo Del-Carpio-Carrazco, Badhin Gómez","doi":"10.3390/cimb47010040","DOIUrl":"10.3390/cimb47010040","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant forms of brain cancer. Current therapeutic strategies, including surgery, chemotherapy, and radiotherapy, often fail due to the tumor's ability to develop resistance. The proteins YAP-1 (Yes-associated protein 1) and PARP-1 (Poly-(ADP-ribose)-polymerase-1) have been implicated in this resistance, playing crucial roles in cell proliferation and DNA repair mechanisms, respectively. This study explored the inhibitory potential of natural compounds from <i>Lepidium meyenii</i> (Peruvian Maca) on the YAP-1 and PARP-1 protein systems to develop novel therapeutic strategies for GBM. By molecular dynamics simulations, we identified N-(3-Methoxybenzyl)-(9Z,12Z,15Z)- octadecatrienamide (DK5) as the most promising natural inhibitor for PARP-1 and stearic acid (GK4) for YAP-1. Although synthetic inhibitors, such as Olaparib (ODK) for PARP-1 and Verteporfin (VER) for YAP-1, only VER was superior to the naturally occurring molecule and proved a promising alternative. In conclusion, natural compounds from <i>Lepidium meyenii</i> (Peruvian Maca) offer a potentially innovative approach to improve GBM treatment, complementing existing therapies with their inhibitory action on PARP-1 and YAP-1.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methyl Canthin-6-one-2-carboxylate Inhibits the Activation of the NLRP3 Inflammasome in Synovial Macrophages by Upregulating Nrf2 Expression.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-09 DOI: 10.3390/cimb47010038
Yuanyuan Chen, Zongying Zhang, Yuan Yao, Xiaorong Zhou, Yong Ling, Liming Mao, Zhifeng Gu

Rheumatoid arthritis (RA) is an autoimmune disorder that leads to severe cartilage deterioration and synovial impairment in the joints. Previous studies have indicated that the aberrant activation of the NLRP3 inflammasome in synovial macrophages plays a significant role in the pathogenesis of RA and has been regarded as a therapeutic target for the disease. In this study, we synthesized a novel canthin-6-one alkaloid, namely methyl canthin-6-one-2-carboxylate (Cant), and assessed its effects on NLRP3 inflammasome activation in macrophages. Our data reveal that exposure to Cant significantly suppressed the transcription and secretion of multiple pro-inflammatory mediators, including IL-1β, IL-6, IL-18, TNF-α, NO, and COX2, in a dose-dependent manner. These alterations were associated with changes in the activation of various signaling pathways, including NF-kB, MAPK, and PI3K-AKT pathways. Notably, pretreatment with Cant significantly reduced LPS/ATP-induced activation of the NLRP3 inflammasome, as evidenced by the decline in the cleaved forms of IL-1β and caspase-1 in cell culture supernatants of BMDMs. Regarding the mechanisms, our data show that Cant could enhance the expression of Nrf2 in macrophages, which play an inhibitory role in ROS production. Collectively, our data demonstrate that Cant might suppress the activation of the NLRP3 inflammasome by upregulating the production of Nrf2, suggesting that Cant could serve as a candidate for the further development of anti-RA drugs.

{"title":"Methyl Canthin-6-one-2-carboxylate Inhibits the Activation of the NLRP3 Inflammasome in Synovial Macrophages by Upregulating Nrf2 Expression.","authors":"Yuanyuan Chen, Zongying Zhang, Yuan Yao, Xiaorong Zhou, Yong Ling, Liming Mao, Zhifeng Gu","doi":"10.3390/cimb47010038","DOIUrl":"10.3390/cimb47010038","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is an autoimmune disorder that leads to severe cartilage deterioration and synovial impairment in the joints. Previous studies have indicated that the aberrant activation of the NLRP3 inflammasome in synovial macrophages plays a significant role in the pathogenesis of RA and has been regarded as a therapeutic target for the disease. In this study, we synthesized a novel canthin-6-one alkaloid, namely methyl canthin-6-one-2-carboxylate (Cant), and assessed its effects on NLRP3 inflammasome activation in macrophages. Our data reveal that exposure to Cant significantly suppressed the transcription and secretion of multiple pro-inflammatory mediators, including IL-1β, IL-6, IL-18, TNF-α, NO, and COX2, in a dose-dependent manner. These alterations were associated with changes in the activation of various signaling pathways, including NF-kB, MAPK, and PI3K-AKT pathways. Notably, pretreatment with Cant significantly reduced LPS/ATP-induced activation of the NLRP3 inflammasome, as evidenced by the decline in the cleaved forms of IL-1β and caspase-1 in cell culture supernatants of BMDMs. Regarding the mechanisms, our data show that Cant could enhance the expression of Nrf2 in macrophages, which play an inhibitory role in ROS production. Collectively, our data demonstrate that Cant might suppress the activation of the NLRP3 inflammasome by upregulating the production of Nrf2, suggesting that Cant could serve as a candidate for the further development of anti-RA drugs.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Development of Methods of BLOTCHIP®-MS for Peptidome: Small Samples in Tuberous Sclerosis.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-07 DOI: 10.3390/cimb47010034
Kunio Yui, George Imataka, Kotaro Yuge, Hitomi Sasaki, Tadashi Shiohama, Kyoichi Asada, Hidehisa Tachiki

Mutations in TSC1 or TSC2 in axons induce tuberous sclerosis complex. Neurological manifestations mainly include epilepsy and autism spectrum disorder (ASD). ASD is the presenting symptom (25-50% of patients). ASD was observed at significantly higher frequencies in participants with TSC2 than those with TSC1 mutations. The occurrence of TSC2 mutations is about 50% larger than TSC1. Therefore, ASD may develop due to TSC2 deficiency. TSC2 regulates microRNA biogenesis and Microprocessor activity via GSK3β. Of reference, everolimus has the best treatment target because of the higher potency of interactions with mTORC2 rather than rapamycin. Mutations in the TSC1 and TSC2 genes result in the constitutive hyperactivation of the mammalian target of the rapamycin (mTOR) pathway, contributing to the growth of benign tumors or hamartomas in various organs. TSC2 mutations were associated with a more severe phenotypic spectrum than TSC1 mutations because of the inhibition of the mTOR cascade. There are few studies on the peptide analysis of this disorder in relation to everolimus. Only one study reported that, in ten plasma samples, pre-melanosome protein (PMEL) and S-adenosylmethionine (SAM) were significantly changed as diagnostic prognostic effects. Our study on peptide analysis in Protosera Inc (Osaka, Japan) revealed that three peptides that were related to inflammation in two patients with tuberous sclerosis, who showed a 30% decrease in ASD symptoms following everolimus treatment. TSC2 mutations were associated with a more severe phenotypic spectrum due to the inhibition of the mTOR cascade. PMEL and SAM were significantly changed as diagnostic effects.

{"title":"The Development of Methods of BLOTCHIP<sup>®</sup>-MS for Peptidome: Small Samples in Tuberous Sclerosis.","authors":"Kunio Yui, George Imataka, Kotaro Yuge, Hitomi Sasaki, Tadashi Shiohama, Kyoichi Asada, Hidehisa Tachiki","doi":"10.3390/cimb47010034","DOIUrl":"10.3390/cimb47010034","url":null,"abstract":"<p><p>Mutations in TSC1 or TSC2 in axons induce tuberous sclerosis complex. Neurological manifestations mainly include epilepsy and autism spectrum disorder (ASD). ASD is the presenting symptom (25-50% of patients). ASD was observed at significantly higher frequencies in participants with TSC2 than those with TSC1 mutations. The occurrence of TSC2 mutations is about 50% larger than TSC1. Therefore, ASD may develop due to TSC2 deficiency. TSC2 regulates microRNA biogenesis and Microprocessor activity via GSK3β. Of reference, everolimus has the best treatment target because of the higher potency of interactions with mTORC2 rather than rapamycin. Mutations in the TSC1 and TSC2 genes result in the constitutive hyperactivation of the mammalian target of the rapamycin (mTOR) pathway, contributing to the growth of benign tumors or hamartomas in various organs. TSC2 mutations were associated with a more severe phenotypic spectrum than TSC1 mutations because of the inhibition of the mTOR cascade. There are few studies on the peptide analysis of this disorder in relation to everolimus. Only one study reported that, in ten plasma samples, pre-melanosome protein (PMEL) and S-adenosylmethionine (SAM) were significantly changed as diagnostic prognostic effects. Our study on peptide analysis in Protosera Inc (Osaka, Japan) revealed that three peptides that were related to inflammation in two patients with tuberous sclerosis, who showed a 30% decrease in ASD symptoms following everolimus treatment. TSC2 mutations were associated with a more severe phenotypic spectrum due to the inhibition of the mTOR cascade. PMEL and SAM were significantly changed as diagnostic effects.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antiedemic Effect of the Myosin Light Chain Kinase Inhibitor PIK7 in the Rat Model of Myocardial Ischemia Reperfusion Injury.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/cimb47010033
Dmitry L Sonin, Mikhail S Medved, Asker Y Khapchaev, Maria V Sidorova, Marina E Palkeeva, Olga A Kazakova, Garry V Papayan, Daniil A Mochalov, Sarkis M Minasyan, Ilya E Anufriev, Daria V Mukhametdinova, Natalia M Paramonova, Ksenia M Balabanova, Anastasia S Lopatina, Ilia V Aleksandrov, Natalya Yu Semenova, Anna A Kordyukova, Kirill V Zaichenko, Vladimir P Shirinsky, Michael M Galagudza

Myocardial ischemia-reperfusion injury increases myocardial microvascular permeability, leading to enhanced microvascular filtration and interstitial fluid accumulation that is associated with greater microvascular obstruction and inadequate myocardial perfusion. A burst of reactive oxygen species and inflammatory mediators during reperfusion causes myosin light chain kinase (MLCK)-dependent endothelial hyperpermeability, which is considered a preventable cause of reperfusion injury. In the present study, a single intravenous injection of MLCK peptide inhibitor PIK7 (2.5 mg/kg or 40 mg/kg) was found to suppress the vascular hyperpermeability caused by ischemia/reperfusion injury in an in vivo rat model. The antiedemic effect of PIK7 is transient and ceases within 90 min of reperfusion. The early no-reflow detected for the first time after 30 min ischemia in this model of myocardial infarction reduces the area accessible for PIK7. Electron microscopy has shown membrane-bound blebs of endotheliocytes, which partially or completely obturate the capillary lumen, and few capillaries with signs of intercellular gap formation in samples obtained from the center of the early no-reflow zone in control and PIK7-injected rats. Co-injection of PIK7 with NO donor sodium nitroprusside (SNP) increases blood flow in the zone of early no-reflow, while reducing the increased vascular permeability caused by SNP.

{"title":"Antiedemic Effect of the Myosin Light Chain Kinase Inhibitor PIK7 in the Rat Model of Myocardial Ischemia Reperfusion Injury.","authors":"Dmitry L Sonin, Mikhail S Medved, Asker Y Khapchaev, Maria V Sidorova, Marina E Palkeeva, Olga A Kazakova, Garry V Papayan, Daniil A Mochalov, Sarkis M Minasyan, Ilya E Anufriev, Daria V Mukhametdinova, Natalia M Paramonova, Ksenia M Balabanova, Anastasia S Lopatina, Ilia V Aleksandrov, Natalya Yu Semenova, Anna A Kordyukova, Kirill V Zaichenko, Vladimir P Shirinsky, Michael M Galagudza","doi":"10.3390/cimb47010033","DOIUrl":"10.3390/cimb47010033","url":null,"abstract":"<p><p>Myocardial ischemia-reperfusion injury increases myocardial microvascular permeability, leading to enhanced microvascular filtration and interstitial fluid accumulation that is associated with greater microvascular obstruction and inadequate myocardial perfusion. A burst of reactive oxygen species and inflammatory mediators during reperfusion causes myosin light chain kinase (MLCK)-dependent endothelial hyperpermeability, which is considered a preventable cause of reperfusion injury. In the present study, a single intravenous injection of MLCK peptide inhibitor PIK7 (2.5 mg/kg or 40 mg/kg) was found to suppress the vascular hyperpermeability caused by ischemia/reperfusion injury in an in vivo rat model. The antiedemic effect of PIK7 is transient and ceases within 90 min of reperfusion. The early no-reflow detected for the first time after 30 min ischemia in this model of myocardial infarction reduces the area accessible for PIK7. Electron microscopy has shown membrane-bound blebs of endotheliocytes, which partially or completely obturate the capillary lumen, and few capillaries with signs of intercellular gap formation in samples obtained from the center of the early no-reflow zone in control and PIK7-injected rats. Co-injection of PIK7 with NO donor sodium nitroprusside (SNP) increases blood flow in the zone of early no-reflow, while reducing the increased vascular permeability caused by SNP.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763459/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Potential Selective PAK4 Inhibitors Through Shape and Protein Conformation Ensemble Screening and Electrostatic-Surface-Matching Optimization.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/cimb47010029
Xiaoxuan Zhang, Meile Zhang, Yihao Li, Ping Deng

P21-activated kinase 4 (PAK4) plays a crucial role in the proliferation and metastasis of various cancers. However, developing selective PAK4 inhibitors remains challenging due to the high homology within the PAK family. Therefore, developing highly selective PAK4 inhibitors is critical to overcoming the limitations of existing inhibitors. We analyzed the structural differences in the binding pockets of PAK1 and PAK4 by combining cross-docking and molecular dynamics simulations to identify key binding regions and unique structural features of PAK4. We then performed screening using shape and protein conformation ensembles, followed by a re-evaluation of the docking results with deep-learning-driven GNINA to identify the candidate molecule, STOCK7S-56165. Based on this, we applied a fragment-replacement strategy under electrostatic-surface-matching conditions to obtain Compd 26. This optimization significantly improved electrostatic interactions and reduced binding energy, highlighting its potential for selectivity. Our findings provide a novel approach for developing selective PAK4 inhibitors and lay the theoretical foundation for future anticancer drug design.

{"title":"Identification of Potential Selective PAK4 Inhibitors Through Shape and Protein Conformation Ensemble Screening and Electrostatic-Surface-Matching Optimization.","authors":"Xiaoxuan Zhang, Meile Zhang, Yihao Li, Ping Deng","doi":"10.3390/cimb47010029","DOIUrl":"10.3390/cimb47010029","url":null,"abstract":"<p><p>P21-activated kinase 4 (PAK4) plays a crucial role in the proliferation and metastasis of various cancers. However, developing selective PAK4 inhibitors remains challenging due to the high homology within the PAK family. Therefore, developing highly selective PAK4 inhibitors is critical to overcoming the limitations of existing inhibitors. We analyzed the structural differences in the binding pockets of PAK1 and PAK4 by combining cross-docking and molecular dynamics simulations to identify key binding regions and unique structural features of PAK4. We then performed screening using shape and protein conformation ensembles, followed by a re-evaluation of the docking results with deep-learning-driven GNINA to identify the candidate molecule, STOCK7S-56165. Based on this, we applied a fragment-replacement strategy under electrostatic-surface-matching conditions to obtain Compd 26. This optimization significantly improved electrostatic interactions and reduced binding energy, highlighting its potential for selectivity. Our findings provide a novel approach for developing selective PAK4 inhibitors and lay the theoretical foundation for future anticancer drug design.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prognostic Value of PSMB5 and Correlations with LC3II and Reactive Oxygen Species Levels in the Bone Marrow Mononuclear Cells of Bortezomib-Resistant Multiple Myeloma Patients.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/cimb47010032
Eva Plakoula, Georgios Kalampounias, Spyridon Alexis, Evgenia Verigou, Alexandra Kourakli, Kalliopi Zafeiropoulou, Argiris Symeonidis

Proteasome inhibitors (PIs) constitute the most common type of induction treatment for multiple myeloma. Interactions between the proteasome, autophagy, and reactive oxygen species (ROS) have been shown in the past, thus emphasizing the need for a better understanding of the underlying pathophysiology. For this study, bone marrow mononuclear cells from 110 myeloma patients were collected at different disease stages. PSMB5 and LC3I/II protein levels were determined using Western blot, proteasome proteolytic activity (PPA) with spectrofluorometry, and ROS with flow cytometry. PSMB5 accumulation was found to diminish after PI treatment (p-value = 0.014), and the same pattern was observed in PPA (p-value < 0.001). Conversely, LC3II protein levels were elevated at both remission and relapse compared to baseline levels (p-value = 0.041). Patients with a baseline PSMB5 accumulation lower than 1.06 units had longer disease-free survival compared to those with values above 1.06 units (12.0 ± 6.7 vs. 36 ± 12.1 months; p-value < 0.001). Median ROS levels in plasma cells were significantly higher at relapse compared to both baseline and remission levels (p-value < 0.001), implying poor prognosis. Overall, post-treatment PSMB5 reduction could indicate a shift from proteasomal to autophagic degradation as a main proteostatic mechanism, thus explaining resistance. The elevated oxidative stress in PI-treated patients could possibly serve as an additional compensatory mechanism.

{"title":"Prognostic Value of PSMB5 and Correlations with LC3II and Reactive Oxygen Species Levels in the Bone Marrow Mononuclear Cells of Bortezomib-Resistant Multiple Myeloma Patients.","authors":"Eva Plakoula, Georgios Kalampounias, Spyridon Alexis, Evgenia Verigou, Alexandra Kourakli, Kalliopi Zafeiropoulou, Argiris Symeonidis","doi":"10.3390/cimb47010032","DOIUrl":"10.3390/cimb47010032","url":null,"abstract":"<p><p>Proteasome inhibitors (PIs) constitute the most common type of induction treatment for multiple myeloma. Interactions between the proteasome, autophagy, and reactive oxygen species (ROS) have been shown in the past, thus emphasizing the need for a better understanding of the underlying pathophysiology. For this study, bone marrow mononuclear cells from 110 myeloma patients were collected at different disease stages. PSMB5 and LC3I/II protein levels were determined using Western blot, proteasome proteolytic activity (PPA) with spectrofluorometry, and ROS with flow cytometry. PSMB5 accumulation was found to diminish after PI treatment (<i>p</i>-value = 0.014), and the same pattern was observed in PPA (<i>p</i>-value < 0.001). Conversely, LC3II protein levels were elevated at both remission and relapse compared to baseline levels (<i>p</i>-value = 0.041). Patients with a baseline PSMB5 accumulation lower than 1.06 units had longer disease-free survival compared to those with values above 1.06 units (12.0 ± 6.7 vs. 36 ± 12.1 months; <i>p</i>-value < 0.001). Median ROS levels in plasma cells were significantly higher at relapse compared to both baseline and remission levels (<i>p</i>-value < 0.001), implying poor prognosis. Overall, post-treatment PSMB5 reduction could indicate a shift from proteasomal to autophagic degradation as a main proteostatic mechanism, thus explaining resistance. The elevated oxidative stress in PI-treated patients could possibly serve as an additional compensatory mechanism.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763810/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Autologous Dendritic Cell Immunotherapy on Kidney Function and Endothelial Dysfunction of Patients with Diabetic Kidney Disease (DKD): An Open Label Clinical Trial.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/cimb47010031
Martina Lily Yana, Enda Cindylosa Sitepu, Jonny, Linda Chiuman, I Nyoman Ehrich Lister, Terawan Agus Putranto

This study aimed to evaluate the effects of autologous dendritic cell (DC) immunotherapy on clinical outcomes (glomerular filtration rate/GFR and urine creatinine albumin ratio/UACR) and endothelial dysfunction (ICAM, VCAM, VEGF) in patients with diabetic kidney disease (DKD). Endothelial dysfunction induced by inflammation is one of the key factors in the pathogenesis of DKD. In this one-group pretest-posttest quasi-experimental study, 69 subjects with DKD were administered a single dose of autologous DC immunotherapy ex vivo. UACR was measured at baseline and at weeks 1, 2, 3, and 4, while ICAM, VCAM, VEGF, and GFR were measured at baseline and at week 4 post-immunotherapy. The results showed a significant reduction in median UACR from 250 (IQR 71-668) mg/g at baseline to 164 (IQR 49-576) mg/g at week 4 (p < 0.05). GFR did not show any significant changes after immunotherapy. HbA1c (B = -33.270, p = 0.021) and baseline UACR (B = -0.185, p < 0.001) were identified as significant predictors of UACR change. Although there were no significant changes in ICAM, VCAM, and VEGF, subgroup analysis revealed a decrease in VCAM in macroalbuminuria patients and an increase in those with good glycemic control, suggesting differing endothelial responses. In conclusion, autologous DC immunotherapy effectively reduced UACR in DKD patients, and significant VCAM changes were found in macroalbuminuria and good glycemic control subjects. Further research is needed to understand the mechanisms behind UACR reduction and the long-term impact of this therapy.

{"title":"The Effect of Autologous Dendritic Cell Immunotherapy on Kidney Function and Endothelial Dysfunction of Patients with Diabetic Kidney Disease (DKD): An Open Label Clinical Trial.","authors":"Martina Lily Yana, Enda Cindylosa Sitepu, Jonny, Linda Chiuman, I Nyoman Ehrich Lister, Terawan Agus Putranto","doi":"10.3390/cimb47010031","DOIUrl":"10.3390/cimb47010031","url":null,"abstract":"<p><p>This study aimed to evaluate the effects of autologous dendritic cell (DC) immunotherapy on clinical outcomes (glomerular filtration rate/GFR and urine creatinine albumin ratio/UACR) and endothelial dysfunction (ICAM, VCAM, VEGF) in patients with diabetic kidney disease (DKD). Endothelial dysfunction induced by inflammation is one of the key factors in the pathogenesis of DKD. In this one-group pretest-posttest quasi-experimental study, 69 subjects with DKD were administered a single dose of autologous DC immunotherapy ex vivo. UACR was measured at baseline and at weeks 1, 2, 3, and 4, while ICAM, VCAM, VEGF, and GFR were measured at baseline and at week 4 post-immunotherapy. The results showed a significant reduction in median UACR from 250 (IQR 71-668) mg/g at baseline to 164 (IQR 49-576) mg/g at week 4 (<i>p</i> < 0.05). GFR did not show any significant changes after immunotherapy. HbA1c (B = -33.270, <i>p</i> = 0.021) and baseline UACR (B = -0.185, <i>p</i> < 0.001) were identified as significant predictors of UACR change. Although there were no significant changes in ICAM, VCAM, and VEGF, subgroup analysis revealed a decrease in VCAM in macroalbuminuria patients and an increase in those with good glycemic control, suggesting differing endothelial responses. In conclusion, autologous DC immunotherapy effectively reduced UACR in DKD patients, and significant VCAM changes were found in macroalbuminuria and good glycemic control subjects. Further research is needed to understand the mechanisms behind UACR reduction and the long-term impact of this therapy.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review.
IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.3390/cimb47010030
Adil Farooq Wali, Jayachithra Ramakrishna Pillai, Sirajunisa Talath, Pooja Shivappa, Sathvik Belagodu Sridhar, Mohamed El-Tanani, Imran Rashid Rangraze, Omnia Ibrahim Mohamed, Nowar Nizar Al Ani

Extensive investigation has been conducted on plant-based resources for their pharmacological usefulness, including various cancer types. The scope of this review is wider than several studies with a particular focus on breast cancer, which is an international health concern while studying sources of flavonoids, carotenoids, polyphenols, saponins, phenolic compounds, terpenoids, and glycosides apart from focusing on nursing. Important findings from prior studies are synthesized to explore these compounds' sources, mechanisms of action, complementary and synergistic effects, and associated side effects. It was reviewed that the exposure to certain doses of catechins, piperlongumine, lycopene, isoflavones and cucurbitacinfor a sufficient period can provide profound anticancer benefits through biological events such as cell cycle arrest, cells undergoing apoptosis and disruption of signaling pathways including, but not limited to JAK-STAT3, HER2-integrin, and MAPK. Besides, the study also covers the potential adverse effects of these phytochemicals. Regarding mechanisms, the widest attention is paid to Complementary and synergistic strategies are discussed which indicate that it would be realistic to alter the dosage and delivery systems of liposomes, nanoparticles, nanoemulsions, and films to enhance efficacy. Future research directions include refining these delivery approaches, further elucidating molecular mechanisms, and conducting clinical trials to validate findings. These efforts could significantly advance the role of phytocompounds in breast cancer management.

{"title":"Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review.","authors":"Adil Farooq Wali, Jayachithra Ramakrishna Pillai, Sirajunisa Talath, Pooja Shivappa, Sathvik Belagodu Sridhar, Mohamed El-Tanani, Imran Rashid Rangraze, Omnia Ibrahim Mohamed, Nowar Nizar Al Ani","doi":"10.3390/cimb47010030","DOIUrl":"10.3390/cimb47010030","url":null,"abstract":"<p><p>Extensive investigation has been conducted on plant-based resources for their pharmacological usefulness, including various cancer types. The scope of this review is wider than several studies with a particular focus on breast cancer, which is an international health concern while studying sources of flavonoids, carotenoids, polyphenols, saponins, phenolic compounds, terpenoids, and glycosides apart from focusing on nursing. Important findings from prior studies are synthesized to explore these compounds' sources, mechanisms of action, complementary and synergistic effects, and associated side effects. It was reviewed that the exposure to certain doses of catechins, piperlongumine, lycopene, isoflavones and cucurbitacinfor a sufficient period can provide profound anticancer benefits through biological events such as cell cycle arrest, cells undergoing apoptosis and disruption of signaling pathways including, but not limited to JAK-STAT3, HER2-integrin, and MAPK. Besides, the study also covers the potential adverse effects of these phytochemicals. Regarding mechanisms, the widest attention is paid to Complementary and synergistic strategies are discussed which indicate that it would be realistic to alter the dosage and delivery systems of liposomes, nanoparticles, nanoemulsions, and films to enhance efficacy. Future research directions include refining these delivery approaches, further elucidating molecular mechanisms, and conducting clinical trials to validate findings. These efforts could significantly advance the role of phytocompounds in breast cancer management.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current Issues in Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1