首页 > 最新文献

Crystals最新文献

英文 中文
Microwave Bow-Tie Diodes on Bases of 2D Semiconductor Structures 基于二维半导体结构的微波煲呔二极管
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-11 DOI: 10.3390/cryst14080720
Steponas Ašmontas, Maksimas Anbinderis, Aurimas Čerškus, Jonas Gradauskas, Andžej Lučun, Algirdas Sužiedėlis
Planar microwave bow-tie diodes on bases of selectively doped semiconductor structures are successfully used in the detection and imaging of electromagnetic radiation in millimeter and submillimeter wavelength ranges. Although the signal formation mechanism in these high-frequency diodes is said to be based on charge-carrier heating in a semiconductor in a strong electric field, the nature of the electrical signal across the bow-tie diodes is not yet properly identified. In this research paper, we present a comprehensive study of a series of various planar bow-tie diodes, starting with a simple asymmetrically shaped submicrometer-thick n-GaAs layer and finishing with bow-tie diodes based on selectively doped GaAs/AlGaAs structures of different electrical conductivity. The planar bow-tie diodes were fabricated on two different types of high-resistivity substrates: bulky semi-insulating GaAs substrate and elastic dielectric polyimide film of micrometer thickness. The microwave diodes were investigated using DC and high-frequency probe stations, which allowed us to examine a sufficient number of diodes and collect a large amount of data to perform a statistical analysis of the electrical parameters of these diodes. The use of probe stations made it possible to analyze the properties of the bow-tie diodes and clarify the nature of the detected voltage in the dark and under white-light illumination. The investigation revealed that the properties of various bow-tie diodes are largely determined by the energy states residing in semiconductor bulk, surface, and interfaces. It is most likely that these energy states are responsible for the slow relaxation processes observed in the studied bow-tie diodes.
基于选择性掺杂半导体结构的平面微波领结二极管已成功用于毫米和亚毫米波段电磁辐射的探测和成像。虽然这些高频二极管的信号形成机制据说是基于半导体在强电场中的电荷载流子加热,但弓形二极管上电信号的性质尚未得到正确的确定。在这篇研究论文中,我们从简单的不对称亚微米厚 n-GaAs 层开始,到基于不同导电率的选择性掺杂 GaAs/AlGaAs 结构的领结二极管,对一系列不同的平面领结二极管进行了全面研究。平面弓形二极管是在两种不同类型的高电阻率衬底上制造的:笨重的半绝缘砷化镓衬底和微米厚的弹性电介质聚酰亚胺薄膜。使用直流和高频探测站对微波二极管进行了研究,这使我们能够检查足够数量的二极管并收集大量数据,以便对这些二极管的电气参数进行统计分析。探针站的使用使我们能够分析弓形二极管的特性,并弄清在黑暗和白光照明下检测到的电压的性质。调查显示,各种弓形拉杆二极管的特性在很大程度上取决于半导体体、表面和界面的能态。在所研究的弓形拉杆二极管中观察到的缓慢弛豫过程很可能就是这些能态造成的。
{"title":"Microwave Bow-Tie Diodes on Bases of 2D Semiconductor Structures","authors":"Steponas Ašmontas, Maksimas Anbinderis, Aurimas Čerškus, Jonas Gradauskas, Andžej Lučun, Algirdas Sužiedėlis","doi":"10.3390/cryst14080720","DOIUrl":"https://doi.org/10.3390/cryst14080720","url":null,"abstract":"Planar microwave bow-tie diodes on bases of selectively doped semiconductor structures are successfully used in the detection and imaging of electromagnetic radiation in millimeter and submillimeter wavelength ranges. Although the signal formation mechanism in these high-frequency diodes is said to be based on charge-carrier heating in a semiconductor in a strong electric field, the nature of the electrical signal across the bow-tie diodes is not yet properly identified. In this research paper, we present a comprehensive study of a series of various planar bow-tie diodes, starting with a simple asymmetrically shaped submicrometer-thick n-GaAs layer and finishing with bow-tie diodes based on selectively doped GaAs/AlGaAs structures of different electrical conductivity. The planar bow-tie diodes were fabricated on two different types of high-resistivity substrates: bulky semi-insulating GaAs substrate and elastic dielectric polyimide film of micrometer thickness. The microwave diodes were investigated using DC and high-frequency probe stations, which allowed us to examine a sufficient number of diodes and collect a large amount of data to perform a statistical analysis of the electrical parameters of these diodes. The use of probe stations made it possible to analyze the properties of the bow-tie diodes and clarify the nature of the detected voltage in the dark and under white-light illumination. The investigation revealed that the properties of various bow-tie diodes are largely determined by the energy states residing in semiconductor bulk, surface, and interfaces. It is most likely that these energy states are responsible for the slow relaxation processes observed in the studied bow-tie diodes.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"41 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic Simulation Studies of Na4SiO4 Na4SiO4 的原子模拟研究
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-10 DOI: 10.3390/cryst14080718
Mallikage Shalani Shanika, Poobalasingam Abiman, Poobalasuntharam Iyngaran, Navaratnarajah Kuganathan
Tetrasodium silicate (Na4SiO4) has emerged as a promising candidate for battery applications due to its favorable ionic transport properties. Atomic-scale simulations employing classical pair potentials have elucidated the defect mechanisms and ion migration dynamics in Na4SiO4. The Na Frenkel defect, characterized by the creation of a Na vacancy and an interstitial Na⁺ ion, is identified as the most energetically favorable defect process, facilitating efficient vacancy-assisted Na⁺ ion migration. This process results in three-dimensional ion diffusion with a low activation energy of 0.55 eV, indicating rapid ion movement within the material. Among monovalent dopants (Li⁺, K⁺, and Rb⁺), K⁺ was found to be the most advantageous for substitution on the Na site. For trivalent doping, Al is the most favorable on the Si site, generating additional Na⁺ ions and potentially enhancing ionic conductivity. Ge was identified as a promising isovalent dopant for the Si site. These theoretical findings suggest that Na4SiO4 could offer high ionic conductivity and stability when optimized through appropriate doping. Experimental validation of these predictions could lead to the development of advanced battery materials with improved performance and durability.
硅酸四钠(Na4SiO4)因其良好的离子传输特性而成为电池应用的理想候选材料。采用经典对电位进行的原子尺度模拟阐明了 Na4SiO4 中的缺陷机制和离子迁移动力学。Na Frenkel 缺陷的特征是产生一个 Na 空位和一个间隙 Na⁺ 离子,它被确定为能量上最有利的缺陷过程,可促进有效的空位辅助 Na⁺ 离子迁移。这一过程导致三维离子扩散,激活能低至 0.55 eV,表明离子在材料内快速移动。在单价掺杂剂(Li⁺、K⁺和Rb⁺)中,K⁺被认为是对 Na 位点最有利的替代物。对于三价掺杂,Al 对 Si 位点最有利,可产生额外的 Na⁺离子,并有可能提高离子导电性。Ge 被认为是对 Si 位点很有前途的异价掺杂剂。这些理论研究结果表明,如果通过适当的掺杂进行优化,Na4SiO4 可以提供高离子电导率和稳定性。对这些预测的实验验证将有助于开发出性能更好、更耐用的先进电池材料。
{"title":"Atomistic Simulation Studies of Na4SiO4","authors":"Mallikage Shalani Shanika, Poobalasingam Abiman, Poobalasuntharam Iyngaran, Navaratnarajah Kuganathan","doi":"10.3390/cryst14080718","DOIUrl":"https://doi.org/10.3390/cryst14080718","url":null,"abstract":"Tetrasodium silicate (Na4SiO4) has emerged as a promising candidate for battery applications due to its favorable ionic transport properties. Atomic-scale simulations employing classical pair potentials have elucidated the defect mechanisms and ion migration dynamics in Na4SiO4. The Na Frenkel defect, characterized by the creation of a Na vacancy and an interstitial Na⁺ ion, is identified as the most energetically favorable defect process, facilitating efficient vacancy-assisted Na⁺ ion migration. This process results in three-dimensional ion diffusion with a low activation energy of 0.55 eV, indicating rapid ion movement within the material. Among monovalent dopants (Li⁺, K⁺, and Rb⁺), K⁺ was found to be the most advantageous for substitution on the Na site. For trivalent doping, Al is the most favorable on the Si site, generating additional Na⁺ ions and potentially enhancing ionic conductivity. Ge was identified as a promising isovalent dopant for the Si site. These theoretical findings suggest that Na4SiO4 could offer high ionic conductivity and stability when optimized through appropriate doping. Experimental validation of these predictions could lead to the development of advanced battery materials with improved performance and durability.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"14 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape-Memory Effect of 4D-Printed Gamma-Irradiated Low-Density Polyethylene 4D 印刷伽马辐照低密度聚乙烯的形状记忆效应
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-10 DOI: 10.3390/cryst14080717
Yunke Huang, Yongxiang Tao, Yan Wang
Four-dimensional-printed smart materials have a wide range of applications in areas such as biomedicine, aerospace, and soft robotics. Among 3D printing technologies, fused deposition molding (FDM) is economical, simple, and apply to thermoplastics. Cross-linked polyethylene (XLPE) forms a stable chemical cross-linking structure and shows good shape-memory properties, but the sample is not soluble or fusible, which makes it hard to be applied in FDM printing. Therefore, in this work, a new idea of printing followed by irradiation was developed to prepare 4D-printed XLPE. First, low-density polyethylene (LDPE) was used to print the products using FDM technology and then cross-linked by gamma irradiation was used. The printing parameters were optimized, and the gel content, mechanical properties, and shape-memory behaviors were characterized. After gamma irradiation, the samples showed no new peak in FTIR spectra. And the samples exhibited good shape-memory capabilities. Increasing the irradiation dose increased the cross-linking degree and tensile strength and improved the shape-memory properties. However, it also decreased the elongation at break, and it did not affect the crystallization or melting behaviors of LDPE. With 120 kGy of irradiation, the shape recovery and fixity ratios (Rr and Rf) of the samples were 97.69% and 98.65%, respectively. After eight cycles, Rr and Rf remained at 96.30% and 97.76%, respectively, indicating excellent shape-memory performance.
四维打印智能材料在生物医学、航空航天和软机器人等领域有着广泛的应用。在三维打印技术中,熔融沉积成型(FDM)经济、简单,适用于热塑性塑料。交联聚乙烯(XLPE)形成了稳定的化学交联结构,具有良好的形状记忆性能,但由于样品不溶解、不熔融,很难应用于 FDM 打印。因此,本研究提出了先印刷后辐照的新思路来制备 4D 印刷 XLPE。首先使用低密度聚乙烯(LDPE)通过 FDM 技术打印产品,然后使用伽马辐照交联。对印刷参数进行了优化,并对凝胶含量、机械性能和形状记忆行为进行了表征。经过伽马射线辐照后,样品的傅立叶变换红外光谱中没有出现新的峰值。样品表现出良好的形状记忆能力。增加辐照剂量可提高交联度和拉伸强度,改善形状记忆性能。但同时也降低了断裂伸长率,且不影响低密度聚乙烯的结晶或熔化行为。在 120 kGy 的辐照下,样品的形状恢复率和固定率(Rr 和 Rf)分别为 97.69% 和 98.65%。经过八次循环后,Rr 和 Rf 分别保持在 96.30% 和 97.76%,表明其具有出色的形状记忆性能。
{"title":"Shape-Memory Effect of 4D-Printed Gamma-Irradiated Low-Density Polyethylene","authors":"Yunke Huang, Yongxiang Tao, Yan Wang","doi":"10.3390/cryst14080717","DOIUrl":"https://doi.org/10.3390/cryst14080717","url":null,"abstract":"Four-dimensional-printed smart materials have a wide range of applications in areas such as biomedicine, aerospace, and soft robotics. Among 3D printing technologies, fused deposition molding (FDM) is economical, simple, and apply to thermoplastics. Cross-linked polyethylene (XLPE) forms a stable chemical cross-linking structure and shows good shape-memory properties, but the sample is not soluble or fusible, which makes it hard to be applied in FDM printing. Therefore, in this work, a new idea of printing followed by irradiation was developed to prepare 4D-printed XLPE. First, low-density polyethylene (LDPE) was used to print the products using FDM technology and then cross-linked by gamma irradiation was used. The printing parameters were optimized, and the gel content, mechanical properties, and shape-memory behaviors were characterized. After gamma irradiation, the samples showed no new peak in FTIR spectra. And the samples exhibited good shape-memory capabilities. Increasing the irradiation dose increased the cross-linking degree and tensile strength and improved the shape-memory properties. However, it also decreased the elongation at break, and it did not affect the crystallization or melting behaviors of LDPE. With 120 kGy of irradiation, the shape recovery and fixity ratios (Rr and Rf) of the samples were 97.69% and 98.65%, respectively. After eight cycles, Rr and Rf remained at 96.30% and 97.76%, respectively, indicating excellent shape-memory performance.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"54 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extended Caking Method for Strain Analysis of Polycrystalline Diffraction Debye–Scherrer Rings 用于多晶衍射德拜-舍勒环应变分析的扩展结块法
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-09 DOI: 10.3390/cryst14080716
Fatih Uzun, Dominik Daisenberger, Konstantinos Liogas, Zifan Ivan Wang, Jingwei Chen, Cyril Besnard, Alexander M. Korsunsky
Polycrystalline diffraction is a robust methodology employed to assess elastic strain within crystalline components. The Extended Caking (exCaking) method represents a progression of this methodology beyond the conventional azimuthal segmentation (Caking) method for the quantification of elastic strains using Debye–Scherrer 2D X-ray diffraction rings. The proposed method is based on the premise that each complete diffraction ring contains comprehensive information about the complete elastic strain variation in the plane normal to the incident beam, which allows for the introduction of a novel algorithm that analyses Debye–Scherrer rings with complete angular variation using ellipse geometry, ensuring accuracy even for small eccentricity values and offering greater accuracy overall. The console application of the exCaking method allows for the accurate analysis of polycrystalline X-ray diffraction data according to the up-to-date rules presented in the project repository. This study presents both numerical and empirical examinations and error analysis to substantiate the method’s reliability and accuracy. A specific validation case study is also presented to analyze the distribution of residual elastic strains in terms of force balance in a Ti-6Al-4V titanium alloy bar plastically deformed by four-point bending.
多晶衍射是一种用于评估晶体成分内部弹性应变的可靠方法。在使用 Debye-Scherrer 二维 X 射线衍射环量化弹性应变的传统方位角分割(Caking)方法之外,扩展 Caking(exCaking)方法代表了这一方法的进步。所提出方法的前提是,每个完整的衍射环都包含入射光束法线平面上完整弹性应变变化的全面信息,因此可以引入一种新颖的算法,利用椭圆几何对具有完整角度变化的 Debye-Scherrer 衍射环进行分析,即使偏心值较小也能确保精确度,并提供更高的总体精确度。通过控制台应用 exCaking 方法,可以根据项目资料库中提供的最新规则对多晶 X 射线衍射数据进行精确分析。本研究通过数值和经验检验以及误差分析,证实了该方法的可靠性和准确性。本研究还介绍了一个具体的验证案例研究,分析了 Ti-6Al-4V 钛合金棒材通过四点弯曲发生塑性变形时的力平衡残余弹性应变分布。
{"title":"Extended Caking Method for Strain Analysis of Polycrystalline Diffraction Debye–Scherrer Rings","authors":"Fatih Uzun, Dominik Daisenberger, Konstantinos Liogas, Zifan Ivan Wang, Jingwei Chen, Cyril Besnard, Alexander M. Korsunsky","doi":"10.3390/cryst14080716","DOIUrl":"https://doi.org/10.3390/cryst14080716","url":null,"abstract":"Polycrystalline diffraction is a robust methodology employed to assess elastic strain within crystalline components. The Extended Caking (exCaking) method represents a progression of this methodology beyond the conventional azimuthal segmentation (Caking) method for the quantification of elastic strains using Debye–Scherrer 2D X-ray diffraction rings. The proposed method is based on the premise that each complete diffraction ring contains comprehensive information about the complete elastic strain variation in the plane normal to the incident beam, which allows for the introduction of a novel algorithm that analyses Debye–Scherrer rings with complete angular variation using ellipse geometry, ensuring accuracy even for small eccentricity values and offering greater accuracy overall. The console application of the exCaking method allows for the accurate analysis of polycrystalline X-ray diffraction data according to the up-to-date rules presented in the project repository. This study presents both numerical and empirical examinations and error analysis to substantiate the method’s reliability and accuracy. A specific validation case study is also presented to analyze the distribution of residual elastic strains in terms of force balance in a Ti-6Al-4V titanium alloy bar plastically deformed by four-point bending.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"8 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof 使用广义梯度逼近法--Perdew-Burke-Ernzerhof,研究 Ca、Ba、Be、Mg 和 Sr 取代对 XNb2Bi2O9 电子和光学特性的影响,以实现能量转换应用
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-07 DOI: 10.3390/cryst14080710
Fatima Kainat, Nawishta Jabeen, Ali Yaqoob, Najam Ul Hassan, Ahmad Hussain, Mohamed E. Khalifa
Bismuth layered structure ferroelectrics (BLSFs), also known as Aurivillius phase materials, are ideal for energy-efficient applications, particularly for solar cells. This work reports the first comprehensive detailed theoretical study on the fascinating structural, electronic, and optical properties of XNb2Bi2O9 (X = Ca, Ba, Be, Mg, Sr). The Perdew–Burke–Ernzerhof approach and generalized gradient approximation (GGA) are implemented to thoroughly investigate the structural, bandgap, optical, and electronic properties of the compounds. The optical conductivity, band topologies, dielectric function, bandgap values, absorption coefficient, reflectivity, extinction coefficient, refractive index, and partial and total densities of states are thoroughly investigated from a photovoltaics standpoint. The material exhibits distinct behaviors, including significant optical anisotropy and an elevated absorption coefficient > 105 cm−1 in the region of visible; ultraviolet energy is observed, the elevated transparency lies in the visible and infrared regions for the imaginary portion of the dielectric function, and peaks in the optical spectra caused by inter-band transitions are detected. According to the data reported, it becomes obvious that XNb2Bi2O9 (X = Ca, Ba, Be, Mg, and Sr) is a suitable candidate for implementation in solar energy conversion applications.
铋层结构铁电体(BLSFs)又称奥里维利相材料,是高能效应用,尤其是太阳能电池的理想材料。本研究首次对 XNb2Bi2O9(X = Ca、Ba、Be、Mg、Sr)的结构、电子和光学特性进行了全面详细的理论研究。研究采用 Perdew-Burke-Ernzerhof 方法和广义梯度近似(GGA)来深入研究化合物的结构、带隙、光学和电子特性。从光伏学的角度出发,深入研究了光导率、带拓扑结构、介电常数、带隙值、吸收系数、反射率、消光系数、折射率以及部分态密度和总态密度。该材料表现出明显的行为特征,包括显著的光学各向异性,在可见光区域的吸收系数大于 105 cm-1,观察到紫外线能量,介电常数虚部在可见光和红外区域的透明度升高,并在光学光谱中检测到由带间跃迁引起的峰值。根据所报告的数据,XNb2Bi2O9(X = Ca、Ba、Be、Mg 和 Sr)显然是太阳能转换应用的合适候选材料。
{"title":"Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof","authors":"Fatima Kainat, Nawishta Jabeen, Ali Yaqoob, Najam Ul Hassan, Ahmad Hussain, Mohamed E. Khalifa","doi":"10.3390/cryst14080710","DOIUrl":"https://doi.org/10.3390/cryst14080710","url":null,"abstract":"Bismuth layered structure ferroelectrics (BLSFs), also known as Aurivillius phase materials, are ideal for energy-efficient applications, particularly for solar cells. This work reports the first comprehensive detailed theoretical study on the fascinating structural, electronic, and optical properties of XNb2Bi2O9 (X = Ca, Ba, Be, Mg, Sr). The Perdew–Burke–Ernzerhof approach and generalized gradient approximation (GGA) are implemented to thoroughly investigate the structural, bandgap, optical, and electronic properties of the compounds. The optical conductivity, band topologies, dielectric function, bandgap values, absorption coefficient, reflectivity, extinction coefficient, refractive index, and partial and total densities of states are thoroughly investigated from a photovoltaics standpoint. The material exhibits distinct behaviors, including significant optical anisotropy and an elevated absorption coefficient > 105 cm−1 in the region of visible; ultraviolet energy is observed, the elevated transparency lies in the visible and infrared regions for the imaginary portion of the dielectric function, and peaks in the optical spectra caused by inter-band transitions are detected. According to the data reported, it becomes obvious that XNb2Bi2O9 (X = Ca, Ba, Be, Mg, and Sr) is a suitable candidate for implementation in solar energy conversion applications.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"15 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unexpected Formation of 6-(1H-Benzo[d]imidazol-2-yl)-1-phenyl-hexan-1-one and Its Structure in Solution and Solid State Analyzed in the Context of Tautomerism 从同分异构的角度分析 6-(1H-苯并[d]咪唑-2-基)-1-苯基-己-1-酮的意外形成及其在溶液和固态中的结构
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-02 DOI: 10.3390/cryst14080704
Ryszard B. Nazarski, Małgorzata Domagała
The structure of the title compound (4d), unexpectedly obtained in the reaction between o-phenylenediamine and 2-benzoylcyclohexanone instead of the target 3H-benzo[b][1,4]diazepine derivative 3d, was determined spectroscopically in solution and by a single-crystal X-ray diffraction (XRD) study. It involves two enantiomeric rotamers, called forms D and U, of which the structure was elucidated based on NMR spectra measured and predicted in DFT-GIAO calculations. An averaging of δCs for all tautomeric positions in the benzimidazole part of the 4d hydrate studied in wet (probably slightly acidic) CDCl3 unambiguously indicates tautomeric exchange in its imidazole unit. An XRD analysis of this material confirms the existence of only one tautomer in the solid phase. The non-covalent interactions forming between molecules of water and benzimidazole derivative are shorter than the sum of van der Waals radii and create an infinite-chain hydrogen bond motif along the b-axis. A possible mechanism for the observed cyclocondensation is also proposed.
通过溶液光谱和单晶 X 射线衍射 (XRD) 研究,确定了在邻苯二胺和 2-苯甲酰基环己酮反应中意外得到的标题化合物 (4d) 的结构,而不是目标 3H-苯并[b][1,4]二氮杂卓衍生物 3d。该衍生物包含两种对映异构体,分别称为 D 型和 U 型,其结构是根据 DFT-GIAO 计算所测得和预测的核磁共振光谱而阐明的。在湿的(可能是微酸性的)CDCl3 中研究了 4d 水合物苯并咪唑部分的所有同分异构体位置的 δCs 平均值,结果明确表明其咪唑单元中存在同分异构体交换。对这种材料的 XRD 分析证实,固相中只存在一种同分异构体。水分子和苯并咪唑衍生物之间形成的非共价相互作用比范德华半径之和还要短,并沿着 b 轴形成了无限链氢键图案。此外,还提出了观察到的环缩合现象的可能机理。
{"title":"Unexpected Formation of 6-(1H-Benzo[d]imidazol-2-yl)-1-phenyl-hexan-1-one and Its Structure in Solution and Solid State Analyzed in the Context of Tautomerism","authors":"Ryszard B. Nazarski, Małgorzata Domagała","doi":"10.3390/cryst14080704","DOIUrl":"https://doi.org/10.3390/cryst14080704","url":null,"abstract":"The structure of the title compound (4d), unexpectedly obtained in the reaction between o-phenylenediamine and 2-benzoylcyclohexanone instead of the target 3H-benzo[b][1,4]diazepine derivative 3d, was determined spectroscopically in solution and by a single-crystal X-ray diffraction (XRD) study. It involves two enantiomeric rotamers, called forms D and U, of which the structure was elucidated based on NMR spectra measured and predicted in DFT-GIAO calculations. An averaging of δCs for all tautomeric positions in the benzimidazole part of the 4d hydrate studied in wet (probably slightly acidic) CDCl3 unambiguously indicates tautomeric exchange in its imidazole unit. An XRD analysis of this material confirms the existence of only one tautomer in the solid phase. The non-covalent interactions forming between molecules of water and benzimidazole derivative are shorter than the sum of van der Waals radii and create an infinite-chain hydrogen bond motif along the b-axis. A possible mechanism for the observed cyclocondensation is also proposed.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"7 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the Amino Acid L-Histidine as a Corrosion Inhibitor for a 1018 Carbon Steel in Aqueous Sodium Chloride Solution 评估氨基酸 L-组氨酸作为 1018 碳钢在氯化钠水溶液中的缓蚀剂的作用
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-02 DOI: 10.3390/cryst14080703
Milena Jacinto da Silva Moura, Roberta Bastos Vasques, Saulo Jose de melo Magalhães, Francisco Wagner de Queiroz Almeida Neto, Pedro de Lima Neto, Luís Paulo Mourão dos Santos, Mauro Andres Cerra Florez, Gemma Fargas Ribas, Samuel Lucas Santos Medeiros, Francisco Carlos Carneiro Soares Salomão, Eduardo Bedê Barros, Walney Silva Araújo
The amino acid L-histidine, which has an imidazole ring, was investigated as a corrosion inhibitor for AISI 1018 carbon steel in chloride solution based on the effectiveness of inhibitors containing imidazole in their composition. A neutral environment was chosen for this study due to the scarcity of research on this amino acid in this environment type. Concentrations of 250, 500, and 1000 ppm were evaluated. Various methods were used to determine inhibition effectiveness, including mass loss, open circuit potential, linear potentiodynamic polarization, and electrochemical impedance spectroscopy. For mass loss, the inhibition efficiency varied from 83 to 88% according to the increase in concentration. For the electrochemical tests, the efficiency variation ranged from 62 to 90% with increasing amino acid concentration. Furthermore, a simulation analysis using quantum chemical calculations within the scope of Density Functional Theory (DFT) revealed that histidine’s nucleophilic character is crucial for its corrosion inhibitory capacity in an aqueous medium at pH 7. The inhibition efficiency increased with increasing concentration in a neutral medium, following the Langmuir isotherm for the adsorption of L-histidine. Additional studies were carried out using Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). Analysis of the substrate surface by scanning electron microscopy (SEM) showed greater preservation with the addition of L-histidine, confirming its adsorption on the steel. Atomic Force Microscopy (AFM) also demonstrated an improvement in surface roughness in the presence of amino acids compared to the medium without an inhibitor.
根据成分中含有咪唑的抑制剂的有效性,研究了具有咪唑环的氨基酸 L-组氨酸作为 AISI 1018 碳钢在氯化物溶液中的缓蚀剂。由于有关这种氨基酸在中性环境中的研究较少,因此本研究选择了中性环境。对 250、500 和 1000 ppm 的浓度进行了评估。采用了多种方法来确定抑制效果,包括质量损失、开路电位、线性电位极化和电化学阻抗光谱。在质量损失方面,随着浓度的增加,抑制效率从 83% 到 88% 不等。在电化学测试中,随着氨基酸浓度的增加,效率变化范围为 62% 至 90%。此外,利用密度泛函理论(DFT)范围内的量子化学计算进行的模拟分析表明,组氨酸的亲核特性对其在 pH 值为 7 的水介质中的缓蚀能力至关重要。 在中性介质中,根据 L-组氨酸的朗缪尔吸附等温线,缓蚀效率随浓度的增加而增加。此外,还使用傅立叶变换红外光谱法(FTIR)和热重分析法(TGA)进行了研究。通过扫描电子显微镜(SEM)对基底表面进行的分析表明,加入 L-组氨酸后,基底表面的保存率更高,这证实了 L-组氨酸对钢的吸附作用。原子力显微镜(AFM)也显示,与不添加抑制剂的介质相比,添加氨基酸的介质表面粗糙度有所改善。
{"title":"Assessment of the Amino Acid L-Histidine as a Corrosion Inhibitor for a 1018 Carbon Steel in Aqueous Sodium Chloride Solution","authors":"Milena Jacinto da Silva Moura, Roberta Bastos Vasques, Saulo Jose de melo Magalhães, Francisco Wagner de Queiroz Almeida Neto, Pedro de Lima Neto, Luís Paulo Mourão dos Santos, Mauro Andres Cerra Florez, Gemma Fargas Ribas, Samuel Lucas Santos Medeiros, Francisco Carlos Carneiro Soares Salomão, Eduardo Bedê Barros, Walney Silva Araújo","doi":"10.3390/cryst14080703","DOIUrl":"https://doi.org/10.3390/cryst14080703","url":null,"abstract":"The amino acid L-histidine, which has an imidazole ring, was investigated as a corrosion inhibitor for AISI 1018 carbon steel in chloride solution based on the effectiveness of inhibitors containing imidazole in their composition. A neutral environment was chosen for this study due to the scarcity of research on this amino acid in this environment type. Concentrations of 250, 500, and 1000 ppm were evaluated. Various methods were used to determine inhibition effectiveness, including mass loss, open circuit potential, linear potentiodynamic polarization, and electrochemical impedance spectroscopy. For mass loss, the inhibition efficiency varied from 83 to 88% according to the increase in concentration. For the electrochemical tests, the efficiency variation ranged from 62 to 90% with increasing amino acid concentration. Furthermore, a simulation analysis using quantum chemical calculations within the scope of Density Functional Theory (DFT) revealed that histidine’s nucleophilic character is crucial for its corrosion inhibitory capacity in an aqueous medium at pH 7. The inhibition efficiency increased with increasing concentration in a neutral medium, following the Langmuir isotherm for the adsorption of L-histidine. Additional studies were carried out using Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). Analysis of the substrate surface by scanning electron microscopy (SEM) showed greater preservation with the addition of L-histidine, confirming its adsorption on the steel. Atomic Force Microscopy (AFM) also demonstrated an improvement in surface roughness in the presence of amino acids compared to the medium without an inhibitor.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"364 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnon Confinement on the Two-Dimensional Penrose Lattice: Perpendicular-Space Analysis of the Dynamic Structure Factor 二维彭罗斯晶格上的磁子约束:动态结构因子的垂直空间分析
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-01 DOI: 10.3390/cryst14080702
Shoji Yamamoto, Takashi Inoue
Employing the spin-wave formalism within and beyond the harmonic-oscillator approx-imation, we study the dynamic structure factors of spin-12 nearest-neighbor quantum Heisenberg antiferromagnets on two-dimensional quasiperiodic lattices with particular emphasis on a mag-netic analog to the well-known confined states of a hopping Hamiltonian for independent electrons on a two-dimensional Penrose lattice. We present comprehensive calculations on the C5v Penrose tiling in comparison with the C8v Ammann–Beenker tiling, revealing their decagonal and octagonal antiferromagnetic microstructures. Their dynamic spin structure factors both exhibit linear soft modes emergent at magnetic Bragg wavevectors and have nearly or fairly flat scattering bands, signifying magnetic excitations localized in some way, at several different energies in a self-similar manner. In particular, the lowest-lying highly flat mode is distinctive of the Penrose lattice, which is mediated by its unique antiferromagnons confined within tricoordinated sites only, unlike their itinerant electron counterparts involving pentacoordinated, as well as tricoordinated, sites. Bringing harmonic antiferromagnons into higher-order quantum interaction splits, the lowest-lying nearly flat scattering band in two, each mediated by further confined antiferromagnons, which is fully demonstrated and throughly visualized in the perpendicular as well as real spaces. We disclose superconfined antiferromagnons on the two-dimensional Penrose lattice.
我们在谐振子近似和超越谐振子近似的范围内运用自旋波形式主义,研究了二维准周期晶格上自旋-12近邻量子海森堡反铁磁体的动态结构因子,特别强调了二维彭罗斯晶格上独立电子的跳变哈密顿著名的约束态的磁学模拟。我们对 C5v 彭罗斯网格与 C8v 阿曼-贝克尔网格进行了全面的计算比较,揭示了它们的十边形和八边形反铁磁微结构。它们的动态自旋结构因子都表现出在磁布拉格波向处出现的线性软模式,并具有近似或相当平坦的散射带,这表明磁激发以某种方式在几个不同的能量处以自相似的方式局部化。与涉及五配位和三配位的巡回电子对应物不同的是,彭罗斯晶格的独特之处在于其独特的反铁磁子只局限于三配位内,而最低的高度平坦模式则是彭罗斯晶格的独特之处。将谐波反铁磁子引入高阶量子相互作用会将最低的近乎平坦的散射带一分为二,每个散射带都由进一步限制的反铁磁子介导。我们揭示了二维彭罗斯晶格上的超约束反铁磁子。
{"title":"Magnon Confinement on the Two-Dimensional Penrose Lattice: Perpendicular-Space Analysis of the Dynamic Structure Factor","authors":"Shoji Yamamoto, Takashi Inoue","doi":"10.3390/cryst14080702","DOIUrl":"https://doi.org/10.3390/cryst14080702","url":null,"abstract":"Employing the spin-wave formalism within and beyond the harmonic-oscillator approx-imation, we study the dynamic structure factors of spin-12 nearest-neighbor quantum Heisenberg antiferromagnets on two-dimensional quasiperiodic lattices with particular emphasis on a mag-netic analog to the well-known confined states of a hopping Hamiltonian for independent electrons on a two-dimensional Penrose lattice. We present comprehensive calculations on the C5v Penrose tiling in comparison with the C8v Ammann–Beenker tiling, revealing their decagonal and octagonal antiferromagnetic microstructures. Their dynamic spin structure factors both exhibit linear soft modes emergent at magnetic Bragg wavevectors and have nearly or fairly flat scattering bands, signifying magnetic excitations localized in some way, at several different energies in a self-similar manner. In particular, the lowest-lying highly flat mode is distinctive of the Penrose lattice, which is mediated by its unique antiferromagnons confined within tricoordinated sites only, unlike their itinerant electron counterparts involving pentacoordinated, as well as tricoordinated, sites. Bringing harmonic antiferromagnons into higher-order quantum interaction splits, the lowest-lying nearly flat scattering band in two, each mediated by further confined antiferromagnons, which is fully demonstrated and throughly visualized in the perpendicular as well as real spaces. We disclose superconfined antiferromagnons on the two-dimensional Penrose lattice.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrosynthesis of Co-ZIF Using Bio-Derived Solvents: Electrochemical Evaluation of Synthesised MOFs as a Binder-Free Supercapacitor Electrode in Alkaline Electrolyte 利用生物衍生溶剂电合成 Co-ZIF:在碱性电解液中将合成的 MOFs 用作无粘结剂超级电容器电极的电化学评估
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-01 DOI: 10.3390/cryst14080700
Vijayakumar Manavalan, Brad Coward, Vesna Najdanovic-Visak, Stephen D. Worrall
Supercapacitors hold promise for energy storage due to their exceptional power density and fast charge/discharge cycles. However, their performance hinges on the electrode material. Zeolitic imidazolate frameworks (ZIFs) are attractive options due to their tailorable structure and high surface area. But traditional ZIF synthesis relies on toxic solvents derived from fossil fuels, hindering their envisioned environmental benefit. This study explores using bio-derived solvents for a greener and potentially superior approach. The researchers employed anodic electrodeposition to synthesise cobalt-based ZIFs (Co-ZIFs) as supercapacitor electrode materials. Two linkers (2-methylimidazole and benzimidazole) and two bio-derived solvents (CyreneTM and γ-valerolactone (GVL)) were investigated. X-ray diffraction analysis revealed that bio-derived solvents enhanced the crystallinity of Co-ZIFs compared to traditional solvents. Notably, CyreneTM promoted better crystallinity for Co-bIM/Co-mIM structures. The Full Width at Half Maximum (FWHM) analysis suggests CyreneTM promotes Co-bIM/Co-mIM crystallinity (lower FWHM). Co-mIM in CyreneTM exhibits the best crystallinity (FWHM = 0.233) compared to other ZIF samples. Scanning electron microscopy confirmed these findings, showing larger and well-defined crystals for bio-derived solvent-synthesised ZIFs. The choice of solvent significantly impacted the final ZIF structure. While 2-methylimidazole consistently formed ZIF-67 regardless of the solvent, benzimidazole exhibited solvent-dependent behaviour. GVL yielded the highly porous Co-ZIF-12 structure, whereas DMF (N,N-dimethylformamide) and CyreneTM produced the less porous ZIF-9. This work reports the first-ever instance of ZIF-12 synthesis via an electrochemical method, highlighting the crucial interplay between solvent and precursor molecule in determining the final ZIF product. The synthesised binder-free Co-ZIF electrodes were evaluated for supercapacitor performance. The capacitance data revealed GVL as the most effective solvent, followed by DMF and then CyreneTM. This suggests GVL is the preferred choice for this reaction due to its superior performance. The ZIF-12-based electrode exhibits an impressive specific capacitance (Csp) of 44 F g⁻1, significantly higher than those achieved by ZIF-9-Cyrene (1.2 F g⁻1), ZIF-9-DMF (2.5 F g⁻1), ZIF-67-GVL (35 F g⁻1), ZIF-67-Cyrene (6 F g⁻1), and ZIF-67-DMF (16 F g⁻1) at 1 A g−1. This surpasses the Csp of all other ZIFs studied, including high-performing ZIF-67(GVL). ZIF-12(GVL) maintained superior Csp even at higher current densities, demonstrating exceptional rate capability. Among the bio-derived solvents, GVL outperformed CyreneTM. Notably, the Co-bIM in the GVL sample exhibited a ZIF-12-like structure, offering potential advantages due to its larger pores and potentially higher surface area compared to traditional ZIF-67 and ZIF-9 structures. This work presents a significant advancement in Co-ZIF synthesis. By uti
超级电容器因其超高的功率密度和快速充放电循环而在能量存储方面大有可为。然而,其性能取决于电极材料。沸石咪唑啉框架(ZIF)因其可定制的结构和高表面积而成为极具吸引力的选择。但传统的 ZIF 合成依赖于从化石燃料中提取的有毒溶剂,阻碍了其预期的环境效益。本研究探讨了使用生物衍生溶剂的更环保、更优越的方法。研究人员采用阳极电沉积法合成了钴基 ZIF(Co-ZIF)作为超级电容器电极材料。研究人员对两种连接剂(2-甲基咪唑和苯并咪唑)和两种生物衍生溶剂(CyreneTM 和 γ-戊内酯 (GVL))进行了研究。X 射线衍射分析表明,与传统溶剂相比,生物衍生溶剂提高了 Co-ZIF 的结晶度。值得注意的是,CyreneTM 提高了 Co-bIM/Co-mIM 结构的结晶度。半最大值全宽(FWHM)分析表明,CyreneTM 提高了 Co-bIM/Co-mIM 的结晶度(FWHM 较低)。与其他 ZIF 样品相比,CyreneTM 中的 Co-mIM 结晶性最好(FWHM = 0.233)。扫描电子显微镜证实了这些发现,显示生物衍生溶剂合成的 ZIF 晶体更大、更清晰。溶剂的选择对最终的 ZIF 结构有很大影响。无论使用何种溶剂,2-甲基咪唑都能形成 ZIF-67,而苯并咪唑则表现出溶剂依赖性。GVL 产生了高孔隙率的 Co-ZIF-12 结构,而 DMF(N,N-二甲基甲酰胺)和 CyreneTM 则产生了孔隙率较低的 ZIF-9。这项工作首次报道了通过电化学方法合成 ZIF-12 的实例,强调了溶剂和前驱体分子之间在决定最终 ZIF 产品方面的重要相互作用。对合成的无粘合剂 Co-ZIF 电极进行了超级电容器性能评估。电容数据显示,GVL 是最有效的溶剂,其次是 DMF,然后是 CyreneTM。这表明 GVL 因其卓越的性能而成为该反应的首选。基于 ZIF-12 的电极显示出 44 F g-1 的惊人比电容 (Csp),明显高于 ZIF-9-Cyrene (1.2 F g-1)、ZIF-9-DMF (2.5 F g-1)、ZIF-67-GVL (35 F g-1)、ZIF-67-Cyrene (6 F g-1) 和 ZIF-67-DMF (16 F g-1) 在 1 A g-1 下的比电容。这超过了所研究的所有其他 ZIF 的 Csp,包括高性能的 ZIF-67(GVL)。即使在更高的电流密度下,ZIF-12(GVL) 也能保持出色的 Csp,显示出卓越的速率能力。在生物衍生溶剂中,GVL 的性能优于 CyreneTM。值得注意的是,GVL 样品中的 Co-bIM 显示出类似 ZIF-12 的结构,与传统的 ZIF-67 和 ZIF-9 结构相比,它具有更大的孔隙和潜在的更高表面积,因而具有潜在的优势。这项工作是 Co-ZIF 合成技术的一大进步。通过利用生物衍生溶剂,它提供了一种更具可持续性和潜在优势的替代方法。这为以生态友好的方式生产出性能更好的 Co-ZIF,用于超级电容器、气体分离、催化和其他应用铺平了道路。
{"title":"Electrosynthesis of Co-ZIF Using Bio-Derived Solvents: Electrochemical Evaluation of Synthesised MOFs as a Binder-Free Supercapacitor Electrode in Alkaline Electrolyte","authors":"Vijayakumar Manavalan, Brad Coward, Vesna Najdanovic-Visak, Stephen D. Worrall","doi":"10.3390/cryst14080700","DOIUrl":"https://doi.org/10.3390/cryst14080700","url":null,"abstract":"Supercapacitors hold promise for energy storage due to their exceptional power density and fast charge/discharge cycles. However, their performance hinges on the electrode material. Zeolitic imidazolate frameworks (ZIFs) are attractive options due to their tailorable structure and high surface area. But traditional ZIF synthesis relies on toxic solvents derived from fossil fuels, hindering their envisioned environmental benefit. This study explores using bio-derived solvents for a greener and potentially superior approach. The researchers employed anodic electrodeposition to synthesise cobalt-based ZIFs (Co-ZIFs) as supercapacitor electrode materials. Two linkers (2-methylimidazole and benzimidazole) and two bio-derived solvents (CyreneTM and γ-valerolactone (GVL)) were investigated. X-ray diffraction analysis revealed that bio-derived solvents enhanced the crystallinity of Co-ZIFs compared to traditional solvents. Notably, CyreneTM promoted better crystallinity for Co-bIM/Co-mIM structures. The Full Width at Half Maximum (FWHM) analysis suggests CyreneTM promotes Co-bIM/Co-mIM crystallinity (lower FWHM). Co-mIM in CyreneTM exhibits the best crystallinity (FWHM = 0.233) compared to other ZIF samples. Scanning electron microscopy confirmed these findings, showing larger and well-defined crystals for bio-derived solvent-synthesised ZIFs. The choice of solvent significantly impacted the final ZIF structure. While 2-methylimidazole consistently formed ZIF-67 regardless of the solvent, benzimidazole exhibited solvent-dependent behaviour. GVL yielded the highly porous Co-ZIF-12 structure, whereas DMF (N,N-dimethylformamide) and CyreneTM produced the less porous ZIF-9. This work reports the first-ever instance of ZIF-12 synthesis via an electrochemical method, highlighting the crucial interplay between solvent and precursor molecule in determining the final ZIF product. The synthesised binder-free Co-ZIF electrodes were evaluated for supercapacitor performance. The capacitance data revealed GVL as the most effective solvent, followed by DMF and then CyreneTM. This suggests GVL is the preferred choice for this reaction due to its superior performance. The ZIF-12-based electrode exhibits an impressive specific capacitance (Csp) of 44 F g⁻1, significantly higher than those achieved by ZIF-9-Cyrene (1.2 F g⁻1), ZIF-9-DMF (2.5 F g⁻1), ZIF-67-GVL (35 F g⁻1), ZIF-67-Cyrene (6 F g⁻1), and ZIF-67-DMF (16 F g⁻1) at 1 A g−1. This surpasses the Csp of all other ZIFs studied, including high-performing ZIF-67(GVL). ZIF-12(GVL) maintained superior Csp even at higher current densities, demonstrating exceptional rate capability. Among the bio-derived solvents, GVL outperformed CyreneTM. Notably, the Co-bIM in the GVL sample exhibited a ZIF-12-like structure, offering potential advantages due to its larger pores and potentially higher surface area compared to traditional ZIF-67 and ZIF-9 structures. This work presents a significant advancement in Co-ZIF synthesis. By uti","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"8 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast One-Step Microwave-Assisted Synthesis of Iron-Doped ZnS for Photocatalytic Applications 微波辅助一步法快速合成用于光催化应用的掺铁 ZnS
IF 2.7 4区 材料科学 Q2 CRYSTALLOGRAPHY Pub Date : 2024-08-01 DOI: 10.3390/cryst14080699
Sonia J. Bailón-Ruiz, Yarilyn Cedeño-Mattei, Angelie M. Núñez-Colón, Kerianys Torres-Torres
Semiconductor Zn-based nanomaterials have emerged as promising agents for the photocatalytic degradation of organic pollutants in wastewater treatment. However, achieving efficient synthesis protocols capable of rapidly producing small structures directly in aqueous environments remains challenging. Microwave-assisted synthesis presents a viable solution by enabling one-step particle generation swiftly and directly in water through increased pressure, thereby easily elevating the boiling point. This study investigates the microwave-assisted one-step synthesis of pure and iron-doped ZnS nanoparticles and assesses their efficacy in photodegrading Quinoline Yellow (QY) in aqueous suspensions. The results demonstrate a significant degradation of QY in the presence of 1% iron-doped ZnS nanoparticles, achieving approximately 66.3% degradation with 500 ppm of doped nanoparticles after 270 min. These findings highlight the considerable potential of 1% iron-doped ZnS nanoparticles as effective nanocatalysts.
半导体锌基纳米材料已成为在废水处理中光催化降解有机污染物的一种有前途的制剂。然而,实现能够直接在水环境中快速生成小型结构的高效合成方案仍具有挑战性。微波辅助合成是一种可行的解决方案,它通过增加压力,从而轻松提高沸点,在水中直接快速地一步生成颗粒。本研究探讨了微波辅助一步合成纯 ZnS 纳米粒子和掺铁 ZnS 纳米粒子的方法,并评估了它们在水悬浮液中光降解喹啉黄(QY)的功效。结果表明,在含有 1%掺铁 ZnS 纳米粒子的情况下,QY 的降解效果非常明显,在 270 分钟后,掺有 500 ppm 掺杂纳米粒子的 QY 降解率约为 66.3%。这些发现凸显了 1%掺铁 ZnS 纳米粒子作为有效纳米催化剂的巨大潜力。
{"title":"Fast One-Step Microwave-Assisted Synthesis of Iron-Doped ZnS for Photocatalytic Applications","authors":"Sonia J. Bailón-Ruiz, Yarilyn Cedeño-Mattei, Angelie M. Núñez-Colón, Kerianys Torres-Torres","doi":"10.3390/cryst14080699","DOIUrl":"https://doi.org/10.3390/cryst14080699","url":null,"abstract":"Semiconductor Zn-based nanomaterials have emerged as promising agents for the photocatalytic degradation of organic pollutants in wastewater treatment. However, achieving efficient synthesis protocols capable of rapidly producing small structures directly in aqueous environments remains challenging. Microwave-assisted synthesis presents a viable solution by enabling one-step particle generation swiftly and directly in water through increased pressure, thereby easily elevating the boiling point. This study investigates the microwave-assisted one-step synthesis of pure and iron-doped ZnS nanoparticles and assesses their efficacy in photodegrading Quinoline Yellow (QY) in aqueous suspensions. The results demonstrate a significant degradation of QY in the presence of 1% iron-doped ZnS nanoparticles, achieving approximately 66.3% degradation with 500 ppm of doped nanoparticles after 270 min. These findings highlight the considerable potential of 1% iron-doped ZnS nanoparticles as effective nanocatalysts.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"108 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Crystals
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1