Background: Hematologic diseases have seriously threatened human health. Although hematopoietic stem cell transplantation (HSCT) is an effective curative option, the complications, especially graft-versus-host disease (GVHD), are a big problem.
Methods: TNF-α pretreatment of hematopoietic stem cells. Apoptosis was detected by flow cytometry, Transwell, and wound healing assays were used to assess cell migration and invasion, E-selectin expression was observed by fluorescence imaging, the levels of NO were measured by a kit, the expression of Ecadherin, MMP2, and MMP9 was detected in cells by qRT-PCR, and western blot was used to analyze the expression of E-cadherin, CXCL12, MCP-1, MCP-3, MMP2, and MMP9.
Results: TNF-α induces a high apoptosis rate of CD3, CD19, and CD133 and a low apoptosis rate of CD34. The level of Fas and TNF-R1 was significantly high than that of TNF-R2. HSCs treated with TNF- α declined the invasion and migration of HUVECs. E-selectin, MMP2 and MMP9 mRNA levels of HUVECs and MMP2, CXCL12, MCP-1, and MCP-3 were decreased after HSCs-TNF-α treatment, while the E-cadherin mRNA and protein level of HUVECs was enhanced with HSCs-TNF-α treatment.
Conclusion: TNF-α pretreated HSCs can lead to reduced levels of migration, adhesion, and chemokines of HUVECs, thereby declining the inflammatory response and GVHD.
{"title":"TNF-α Pretreated Hematopoietic Stem Cells Inhibit the Migration and Inflammatory Response of HUVECs and Attenuate GVHD.","authors":"Jilei Sun, Tingting Zhou, Shiyuan Qin, Yaolei Zhang, Yong Yang, Zhitao Wei","doi":"10.2174/1574888X18666230731150317","DOIUrl":"10.2174/1574888X18666230731150317","url":null,"abstract":"<p><strong>Background: </strong>Hematologic diseases have seriously threatened human health. Although hematopoietic stem cell transplantation (HSCT) is an effective curative option, the complications, especially graft-versus-host disease (GVHD), are a big problem.</p><p><strong>Methods: </strong>TNF-α pretreatment of hematopoietic stem cells. Apoptosis was detected by flow cytometry, Transwell, and wound healing assays were used to assess cell migration and invasion, E-selectin expression was observed by fluorescence imaging, the levels of NO were measured by a kit, the expression of Ecadherin, MMP2, and MMP9 was detected in cells by qRT-PCR, and western blot was used to analyze the expression of E-cadherin, CXCL12, MCP-1, MCP-3, MMP2, and MMP9.</p><p><strong>Results: </strong>TNF-α induces a high apoptosis rate of CD3, CD19, and CD133 and a low apoptosis rate of CD34. The level of Fas and TNF-R1 was significantly high than that of TNF-R2. HSCs treated with TNF- α declined the invasion and migration of HUVECs. E-selectin, MMP2 and MMP9 mRNA levels of HUVECs and MMP2, CXCL12, MCP-1, and MCP-3 were decreased after HSCs-TNF-α treatment, while the E-cadherin mRNA and protein level of HUVECs was enhanced with HSCs-TNF-α treatment.</p><p><strong>Conclusion: </strong>TNF-α pretreated HSCs can lead to reduced levels of migration, adhesion, and chemokines of HUVECs, thereby declining the inflammatory response and GVHD.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"735-742"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9914216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1574888X19666230914123443
Wanyun Feng, Chaohua Zhu, Ruoxiang Miao, Danni Li, Xi Xiong, Ruyu Wang, Guobin Liu, Jun Ma
Background: Cartilage defects remain a challenge in diseases such as osteoarthritis (OA) and fractures. Scientists have explored the use of hydrogels in conjunction with stem cell technology as a tissue engineering method to treat cartilage defects in joints. In recent years, research into hydrogels containing stem cell technology for cartilage repair has mainly focused on two categories: stem cell-loaded hydrogels and endogenous stem cell recruiting hydrogels. The latter, utilizing cell-free products, represents a novel concept with several advantages, including easier dose standardization, wider sources, and simpler storage. This meta-analysis aims to assess and compare the therapeutic effects of endogenous stem cell recruiting hydrogels and stem cell-loaded hydrogels in promoting articular cartilage regeneration in animal models, with the goal of exploring endogenous stem cell recruiting hydrogels as a promising replacement therapy for knee cartilage regeneration in preclinical animal studies.
Methods: We systematically searched PubMed, Web of Science, Cochrane Library, and Embase until January 2023 using key words related to stem cells, cartilage regeneration and hydrogel. A random-effects meta-analysis was performed to evaluate the therapeutic effect on newborn cartilage formation. Stratified analyses were also carried out by independently classifying trials according to similar characteristics. The level of evidence was determined using the GRADE method.
Results: Twenty-eight studies satisfied the inclusion criteria. Comprehensive analyses revealed that the use of endogenous stem cell recruiting hydrogels significantly promoted the formation of new cartilage in the knee joint, as evidenced by the histological score (3.77, 95% CI 2.40, 5.15; p < 0.0001) and the International Cartilage Repair Society (ICRS) macroscopic score (3.00, 95% CI 1.83, 4.18; p = 0.04), compared with the control group. The stem cell-loaded hydrogels also increased cartilage regeneration in the knee with the histological score (3.13, 95% CI 2.22, 4.04; p = 0.02) and the ICRS macroscopic score (2.49, 95% CI 1.16, 3.82; p = 0.03) in comparison to the control. Significant heterogeneity between studies was observed, and further stratified and sensitivity analyses identified the transplant site and modelling method as the sources of heterogeneity.
Conclusion: The current study indicates that both endogenous stem cell recruiting hydrogels and stem cell loaded hydrogels can effectively promote knee joint cartilage regeneration in animal trials.
背景:软骨缺损仍是骨关节炎(OA)和骨折等疾病的难题。科学家们探索了水凝胶与干细胞技术结合使用的组织工程方法,以治疗关节软骨缺损。近年来,含有干细胞技术的软骨修复水凝胶研究主要集中在两类:干细胞负载水凝胶和内源性干细胞招募水凝胶。后者利用无细胞产品,代表了一种新概念,具有多种优势,包括剂量更容易标准化、来源更广泛、储存更简单。本荟萃分析旨在评估和比较内源性干细胞募集水凝胶和干细胞负载水凝胶在动物模型中促进关节软骨再生的治疗效果,目的是在临床前动物研究中探索内源性干细胞募集水凝胶作为膝关节软骨再生的一种有前景的替代疗法:我们使用与干细胞、软骨再生和水凝胶相关的关键词系统地检索了PubMed、Web of Science、Cochrane Library和Embase,直至2023年1月。随机效应荟萃分析评估了新生儿软骨形成的治疗效果。此外,还根据相似特征对试验进行了独立分类,从而进行了分层分析。采用 GRADE 方法确定证据等级:28项研究符合纳入标准。综合分析表明,与对照组相比,使用内源性干细胞招募水凝胶可显著促进膝关节新软骨的形成,组织学评分(3.77,95% CI 2.40,5.15;p < 0.0001)和国际软骨修复协会(ICRS)宏观评分(3.00,95% CI 1.83,4.18;p = 0.04)可证明这一点。与对照组相比,干细胞负载水凝胶也增加了膝关节软骨再生,组织学评分(3.13,95% CI 2.22,4.04;p = 0.02)和ICRS宏观评分(2.49,95% CI 1.16,3.82;p = 0.03)均高于对照组。研究之间存在显著的异质性,进一步的分层和敏感性分析发现移植部位和建模方法是异质性的来源:目前的研究表明,在动物试验中,内源性干细胞招募水凝胶和干细胞负载水凝胶都能有效促进膝关节软骨再生。
{"title":"Comparative Efficacy of Endogenous Stem Cells Recruiting Hydrogels and Stem Cell-loaded Hydrogels in Knee Cartilage Regeneration: A Meta- analysis.","authors":"Wanyun Feng, Chaohua Zhu, Ruoxiang Miao, Danni Li, Xi Xiong, Ruyu Wang, Guobin Liu, Jun Ma","doi":"10.2174/1574888X19666230914123443","DOIUrl":"10.2174/1574888X19666230914123443","url":null,"abstract":"<p><strong>Background: </strong>Cartilage defects remain a challenge in diseases such as osteoarthritis (OA) and fractures. Scientists have explored the use of hydrogels in conjunction with stem cell technology as a tissue engineering method to treat cartilage defects in joints. In recent years, research into hydrogels containing stem cell technology for cartilage repair has mainly focused on two categories: stem cell-loaded hydrogels and endogenous stem cell recruiting hydrogels. The latter, utilizing cell-free products, represents a novel concept with several advantages, including easier dose standardization, wider sources, and simpler storage. This meta-analysis aims to assess and compare the therapeutic effects of endogenous stem cell recruiting hydrogels and stem cell-loaded hydrogels in promoting articular cartilage regeneration in animal models, with the goal of exploring endogenous stem cell recruiting hydrogels as a promising replacement therapy for knee cartilage regeneration in preclinical animal studies.</p><p><strong>Methods: </strong>We systematically searched PubMed, Web of Science, Cochrane Library, and Embase until January 2023 using key words related to stem cells, cartilage regeneration and hydrogel. A random-effects meta-analysis was performed to evaluate the therapeutic effect on newborn cartilage formation. Stratified analyses were also carried out by independently classifying trials according to similar characteristics. The level of evidence was determined using the GRADE method.</p><p><strong>Results: </strong>Twenty-eight studies satisfied the inclusion criteria. Comprehensive analyses revealed that the use of endogenous stem cell recruiting hydrogels significantly promoted the formation of new cartilage in the knee joint, as evidenced by the histological score (3.77, 95% CI 2.40, 5.15; p < 0.0001) and the International Cartilage Repair Society (ICRS) macroscopic score (3.00, 95% CI 1.83, 4.18; p = 0.04), compared with the control group. The stem cell-loaded hydrogels also increased cartilage regeneration in the knee with the histological score (3.13, 95% CI 2.22, 4.04; p = 0.02) and the ICRS macroscopic score (2.49, 95% CI 1.16, 3.82; p = 0.03) in comparison to the control. Significant heterogeneity between studies was observed, and further stratified and sensitivity analyses identified the transplant site and modelling method as the sources of heterogeneity.</p><p><strong>Conclusion: </strong>The current study indicates that both endogenous stem cell recruiting hydrogels and stem cell loaded hydrogels can effectively promote knee joint cartilage regeneration in animal trials.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"993-1008"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There has been a lot of interest in stem cell therapy as a means of curing disease in recent years. Despite extensive usage of stem cell therapy in the treatment of a wide range of medical diseases, it has been hypothesized that it plays a key part in the progression of cancer. Breast cancer is still the most frequent malignancy in women globally. However, the latest treatments, such as stem cell targeted therapy, are considered to be more effective in preventing recurrence, metastasis, and chemoresistance of breast cancer than older methods like chemotherapy and radiation. This review discusses the characteristics of stem cells and how stem cells may be used to treat breast cancer.
{"title":"The Potential of Stem Cells in Treating Breast Cancer.","authors":"Deepika Yadav, Pramod Kumar Sharma, Prem Shankar Mishra, Rishabha Malviya","doi":"10.2174/1574888X18666230428094056","DOIUrl":"10.2174/1574888X18666230428094056","url":null,"abstract":"<p><p>There has been a lot of interest in stem cell therapy as a means of curing disease in recent years. Despite extensive usage of stem cell therapy in the treatment of a wide range of medical diseases, it has been hypothesized that it plays a key part in the progression of cancer. Breast cancer is still the most frequent malignancy in women globally. However, the latest treatments, such as stem cell targeted therapy, are considered to be more effective in preventing recurrence, metastasis, and chemoresistance of breast cancer than older methods like chemotherapy and radiation. This review discusses the characteristics of stem cells and how stem cells may be used to treat breast cancer.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"324-333"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9399917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: Periodontal ligament stem cells (PDLSCs) are ideal seed cells for periodontal tissue regeneration. Our previous studies have indicated that the histone methyltransferase PRDM9 plays an important role in human periodontal ligament stem cells (hPDLSCs). Whether FBLN5, which is a downstream gene of PRDM9, also has a potential impact on hPDLSCs is still unclear.
Methods: Senescence was assessed using β-galactosidase and Enzyme-linked immunosorbent assay (ELISA). Osteogenic differentiation potential of hPDLSCs was measured through Alkaline phosphatase (ALP) activity assay and Alizarin red detection, while gene expression levels were evaluated using western blot and RT-qPCR analysis.
Results: FBLN5 overexpression promoted the osteogenic differentiation and senescence of hPDLSCs. FBLN5 knockdown inhibited the osteogenic differentiation and senescence of hPDLSCs. Knockdown of PRDM9 decreased the expression of FBLN5 in hPDLSCs and inhibited senescence of hPDLSCs. Additionally, both FBLN5 and PRDM9 promoted the expression of phosphorylated p38 MAPK, Erk1/2 and JNK. The p38 MAPK pathway inhibitor SB203580 and the Erk1/2 pathway inhibitor PD98059 have the same effects on inhibiting the osteogenic differentiation and senescence of hPDLSCs. The JNK pathway inhibitor SP600125 reduced the senescence of hPDLSCs.
Conclusion: FBLN5 promoted senescence and osteogenic differentiation of hPDLSCs via activation of the MAPK signaling pathway. FBLN5 was positively targeted by PRDM9, which also activated the MAPK signaling pathway.
{"title":"FBLN5 was Regulated by PRDM9, and Promoted Senescence and Osteogenic Differentiation of Human Periodontal Ligament Stem Cells.","authors":"Mengyao Zhao, Rong Rong, Chen Zhang, Haoqing Yang, Xiao Han, Zhipeng Fan, Ying Zheng, Jianpeng Zhang","doi":"10.2174/1574888X18666230822100054","DOIUrl":"10.2174/1574888X18666230822100054","url":null,"abstract":"<p><strong>Objectives: </strong>Periodontal ligament stem cells (PDLSCs) are ideal seed cells for periodontal tissue regeneration. Our previous studies have indicated that the histone methyltransferase PRDM9 plays an important role in human periodontal ligament stem cells (hPDLSCs). Whether FBLN5, which is a downstream gene of PRDM9, also has a potential impact on hPDLSCs is still unclear.</p><p><strong>Methods: </strong>Senescence was assessed using β-galactosidase and Enzyme-linked immunosorbent assay (ELISA). Osteogenic differentiation potential of hPDLSCs was measured through Alkaline phosphatase (ALP) activity assay and Alizarin red detection, while gene expression levels were evaluated using western blot and RT-qPCR analysis.</p><p><strong>Results: </strong>FBLN5 overexpression promoted the osteogenic differentiation and senescence of hPDLSCs. FBLN5 knockdown inhibited the osteogenic differentiation and senescence of hPDLSCs. Knockdown of PRDM9 decreased the expression of FBLN5 in hPDLSCs and inhibited senescence of hPDLSCs. Additionally, both FBLN5 and PRDM9 promoted the expression of phosphorylated p38 MAPK, Erk1/2 and JNK. The p38 MAPK pathway inhibitor SB203580 and the Erk1/2 pathway inhibitor PD98059 have the same effects on inhibiting the osteogenic differentiation and senescence of hPDLSCs. The JNK pathway inhibitor SP600125 reduced the senescence of hPDLSCs.</p><p><strong>Conclusion: </strong>FBLN5 promoted senescence and osteogenic differentiation of hPDLSCs via activation of the MAPK signaling pathway. FBLN5 was positively targeted by PRDM9, which also activated the MAPK signaling pathway.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"417-425"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10407784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1574888X18666230823091017
Guo-Dong Yang, Da-Shi Ma, Chun-Ye Ma, Yang Bai
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
{"title":"Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction.","authors":"Guo-Dong Yang, Da-Shi Ma, Chun-Ye Ma, Yang Bai","doi":"10.2174/1574888X18666230823091017","DOIUrl":"10.2174/1574888X18666230823091017","url":null,"abstract":"<p><p>Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"942-958"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10414931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1574888X18666230504094233
Han-Shi Wang, Shu Lin, Hai-Ming Yu
Intervertebral disc degeneration (IVDD) is a serious condition that manifests as low back pain, intervertebral disc protrusion, and spinal canal stenosis. At present, the main treatment methods for IVDD are surgical interventions such as discectomy, total disc replacement, and spinal fusion. However, these interventions have shown limitations, such as recurrent lumbar disc herniation after discectomy, lesions in adjacent segments, and failure of fixation. To overcome these shortcomings, researchers have been exploring stem cell transplantation therapy, such as mesenchymal stem cell (MSC) transplantation, but the treatment results are still controversial. Therefore, researchers are in search of new methods that are more efficient and have better outcomes. The exosomes from stem cells contain a variety of bioactive molecules that mediate cell interactions, and these components have been investigated for their potential therapeutic role in the repair of various tissue injuries. Recent studies have shown that MSC-derived miRNAs in exosomes and vesicles have therapeutic effects on nucleus pulposus cells, annulus fibrosus, and cartilage endplate. miRNAs play a role in many cell activities, such as cell proliferation, apoptosis, and cytokine release, by acting on mRNA translation, and they may have immense therapeutic potential, especially when combined with stem cell therapy. This article reviews the current status of research on intervertebral disc repair, especially with regard to the latest research findings on the molecular biological mechanisms of miRNAs in MSC-derived exosomes in intervertebral disc repair.
{"title":"Exosome-mediated Repair of Intervertebral Disc Degeneration: The Potential Role of miRNAs.","authors":"Han-Shi Wang, Shu Lin, Hai-Ming Yu","doi":"10.2174/1574888X18666230504094233","DOIUrl":"10.2174/1574888X18666230504094233","url":null,"abstract":"<p><p>Intervertebral disc degeneration (IVDD) is a serious condition that manifests as low back pain, intervertebral disc protrusion, and spinal canal stenosis. At present, the main treatment methods for IVDD are surgical interventions such as discectomy, total disc replacement, and spinal fusion. However, these interventions have shown limitations, such as recurrent lumbar disc herniation after discectomy, lesions in adjacent segments, and failure of fixation. To overcome these shortcomings, researchers have been exploring stem cell transplantation therapy, such as mesenchymal stem cell (MSC) transplantation, but the treatment results are still controversial. Therefore, researchers are in search of new methods that are more efficient and have better outcomes. The exosomes from stem cells contain a variety of bioactive molecules that mediate cell interactions, and these components have been investigated for their potential therapeutic role in the repair of various tissue injuries. Recent studies have shown that MSC-derived miRNAs in exosomes and vesicles have therapeutic effects on nucleus pulposus cells, annulus fibrosus, and cartilage endplate. miRNAs play a role in many cell activities, such as cell proliferation, apoptosis, and cytokine release, by acting on mRNA translation, and they may have immense therapeutic potential, especially when combined with stem cell therapy. This article reviews the current status of research on intervertebral disc repair, especially with regard to the latest research findings on the molecular biological mechanisms of miRNAs in MSC-derived exosomes in intervertebral disc repair.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"798-808"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9425084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Critical-sized bone defects are a challenging issue during bone regeneration. Bone tissue engineering is aimed to repair such defects using biomimicking scaffolds and stem cells. Electrospinning allows the fabrication of biocompatible, biodegradable, and strengthened scaffolds for bone regeneration. Natural and synthetic polymers, alone or in combination, have been employed to fabricate scaffolds with appropriate properties for the osteogenic differentiation of stem cells. Dental pulps are rich in stem cells, and dental pulp stem cells (DPSCs) have a high capacity for proliferation, differentiation, immunomodulation, and trophic factor expression. Researchers have tried to enhance osteogenesis through scaffold modification approaches, including incorporation or coating with mineral, inorganic materials, and herbal extract components. Among them, the incorporation of nanofibers with hyaluronic acid (HA) has been widely used to promote osteogenesis. In this review, the electrospun scaffolds and their modifications used in combination with DPSCs for bone regeneration are discussed.
{"title":"Recent Approaches to Enhance Osteogenesis of Dental Pulp Stem Cells on Electrospun Scaffolds.","authors":"Zahra Safari, Seyedeh Sara Aghili, Sahar Hassantash, Ehsan Iranmanesh, Mehdi Abouali, Mobina Bagherianlemraski, Shabnam Ghasemzadeh, Esmaeel Dadgar, Ghasem Barati, Ehsan Saburi","doi":"10.2174/1574888X18666230530153521","DOIUrl":"10.2174/1574888X18666230530153521","url":null,"abstract":"<p><p>Critical-sized bone defects are a challenging issue during bone regeneration. Bone tissue engineering is aimed to repair such defects using biomimicking scaffolds and stem cells. Electrospinning allows the fabrication of biocompatible, biodegradable, and strengthened scaffolds for bone regeneration. Natural and synthetic polymers, alone or in combination, have been employed to fabricate scaffolds with appropriate properties for the osteogenic differentiation of stem cells. Dental pulps are rich in stem cells, and dental pulp stem cells (DPSCs) have a high capacity for proliferation, differentiation, immunomodulation, and trophic factor expression. Researchers have tried to enhance osteogenesis through scaffold modification approaches, including incorporation or coating with mineral, inorganic materials, and herbal extract components. Among them, the incorporation of nanofibers with hyaluronic acid (HA) has been widely used to promote osteogenesis. In this review, the electrospun scaffolds and their modifications used in combination with DPSCs for bone regeneration are discussed.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"712-724"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9551895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1574888X18666230523155659
Amin Firoozi, Mehri Shadi, Zohre Aghaei, Mohammad Reza Namavar
Alzheimer's disease (AD) is a neurodegenerative disorder accompanied by a reduction in cognition and memory. Till now, there is no definite cure for AD, although, there are treatments available that may improve some symptoms. Currently, in regenerative medicine stem cells are widely used, mainly for treating neurodegenerative diseases. There are numerous forms of stem cells to treat AD aiming at the expansion of the treatment methods for this particular disease. Since 10 years ago, science has gained abundant knowledge to treat AD by understanding the sorts of stem cells, methods, and phasing of injection. Besides, due to the side effects of stem cell therapy like the potentiation for cancer, and as it is hard to follow the cells through the matrix of the brain, researchers have presented a new therapy for AD. They prefer to use conditioned media (CM) that are full of different growth factors, cytokines, chemokines, enzymes, etc. without tumorigenicity or immunogenicity such as stem cells. Another benefit of CM is that CM could be kept in the freezer, easily packaged, and transported, and doesn't need to fit with the donor. Due to the beneficial effects of CM, in this paper, we intend to evaluate the effects of various types of CM of stem cells on AD.
{"title":"Conditioned Media Therapy in Alzheimer's Disease: Current Findings and Future Challenges.","authors":"Amin Firoozi, Mehri Shadi, Zohre Aghaei, Mohammad Reza Namavar","doi":"10.2174/1574888X18666230523155659","DOIUrl":"10.2174/1574888X18666230523155659","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disorder accompanied by a reduction in cognition and memory. Till now, there is no definite cure for AD, although, there are treatments available that may improve some symptoms. Currently, in regenerative medicine stem cells are widely used, mainly for treating neurodegenerative diseases. There are numerous forms of stem cells to treat AD aiming at the expansion of the treatment methods for this particular disease. Since 10 years ago, science has gained abundant knowledge to treat AD by understanding the sorts of stem cells, methods, and phasing of injection. Besides, due to the side effects of stem cell therapy like the potentiation for cancer, and as it is hard to follow the cells through the matrix of the brain, researchers have presented a new therapy for AD. They prefer to use conditioned media (CM) that are full of different growth factors, cytokines, chemokines, enzymes, etc. without tumorigenicity or immunogenicity such as stem cells. Another benefit of CM is that CM could be kept in the freezer, easily packaged, and transported, and doesn't need to fit with the donor. Due to the beneficial effects of CM, in this paper, we intend to evaluate the effects of various types of CM of stem cells on AD.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"700-711"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9570489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurodegenerative disorders (NDs) including Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease are all incurable and can only be managed with drugs for the associated symptoms. Animal models of human illnesses help to advance our understanding of the pathogenic processes of diseases. Understanding the pathogenesis as well as drug screening using appropriate disease models of neurodegenerative diseases (NDs) are vital for identifying novel therapies. Human-derived induced pluripotent stem cell (iPSC) models can be an efficient model to create disease in a dish and thereby can proceed with drug screening and identifying appropriate drugs. This technology has many benefits, including efficient reprogramming and regeneration potential, multidirectional differentiation, and the lack of ethical concerns, which open up new avenues for studying neurological illnesses in greater depth. The review mainly focuses on the use of iPSC technology in neuronal disease modeling, drug screening, and cell therapy.
{"title":"Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy.","authors":"Sihan Dai, Linhui Qiu, Vishnu Priya Veeraraghavan, Chia-Lin Sheu, Ullas Mony","doi":"10.2174/1574888X18666230608105703","DOIUrl":"10.2174/1574888X18666230608105703","url":null,"abstract":"<p><p>Neurodegenerative disorders (NDs) including Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease are all incurable and can only be managed with drugs for the associated symptoms. Animal models of human illnesses help to advance our understanding of the pathogenic processes of diseases. Understanding the pathogenesis as well as drug screening using appropriate disease models of neurodegenerative diseases (NDs) are vital for identifying novel therapies. Human-derived induced pluripotent stem cell (iPSC) models can be an efficient model to create disease in a dish and thereby can proceed with drug screening and identifying appropriate drugs. This technology has many benefits, including efficient reprogramming and regeneration potential, multidirectional differentiation, and the lack of ethical concerns, which open up new avenues for studying neurological illnesses in greater depth. The review mainly focuses on the use of iPSC technology in neuronal disease modeling, drug screening, and cell therapy.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"809-819"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9598931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1574888X18666230411111320
Diana Esquivel, Rangnath Mishra, Anand Srivastava
Diabetes mellitus (DM) is a multifaceted pathological condition, which at present is being considered an epidemic disease keeping the rampant rate of its increase in almost all population groups of the world in consideration. Out of the two types of DM described, T1D is characterized as an autoimmune condition that leads to the destruction of pancreatic β-cells by macrophages and T-cells, thereby, adversely affecting the production of insulin. On the other hand, T2D, often caused by insulin resistance, is commonly related to unhealthy habits, and therefore, it can be prevented in most cases. In both of the conditions, high levels of proinflammatory cytokines like IL-6, TNF-α, and INF-ƴ, lead to chronic inflammation, and elevated oxidative stress resulting in apoptosis and destruction of tissues. Although several treatments are available to treat the symptoms, the underlying causes are not well addressed. One of the most promising approaches to tackle the ill effects and the primary causes of DM is mesenchymal stem cell (MSC) therapy. The use of MSC therapy, because of the immunomodulatory and regenerative properties recorded in this type of cells in a number of experiments carried out in animal models and clinical trials of the disease, has reported positive outcomes. This review covers the principal mechanisms of action induced during MSC therapy in reference to the described pathophysiological pathways of both T1D and T2D. In addition, how this therapeutic intervention can counteract the ill effects of this condition leading to the promotion of tissue regeneration has been covered.
{"title":"Mesenchymal Stem Cell Therapy for Treating the Underlying Causes of Diabetes Mellitus and Its Consequences.","authors":"Diana Esquivel, Rangnath Mishra, Anand Srivastava","doi":"10.2174/1574888X18666230411111320","DOIUrl":"10.2174/1574888X18666230411111320","url":null,"abstract":"<p><p>Diabetes mellitus (DM) is a multifaceted pathological condition, which at present is being considered an epidemic disease keeping the rampant rate of its increase in almost all population groups of the world in consideration. Out of the two types of DM described, T1D is characterized as an autoimmune condition that leads to the destruction of pancreatic β-cells by macrophages and T-cells, thereby, adversely affecting the production of insulin. On the other hand, T2D, often caused by insulin resistance, is commonly related to unhealthy habits, and therefore, it can be prevented in most cases. In both of the conditions, high levels of proinflammatory cytokines like IL-6, TNF-α, and INF-ƴ, lead to chronic inflammation, and elevated oxidative stress resulting in apoptosis and destruction of tissues. Although several treatments are available to treat the symptoms, the underlying causes are not well addressed. One of the most promising approaches to tackle the ill effects and the primary causes of DM is mesenchymal stem cell (MSC) therapy. The use of MSC therapy, because of the immunomodulatory and regenerative properties recorded in this type of cells in a number of experiments carried out in animal models and clinical trials of the disease, has reported positive outcomes. This review covers the principal mechanisms of action induced during MSC therapy in reference to the described pathophysiological pathways of both T1D and T2D. In addition, how this therapeutic intervention can counteract the ill effects of this condition leading to the promotion of tissue regeneration has been covered.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"662-668"},"PeriodicalIF":2.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9648478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}