Exosomes are extracellular vesicles (EVs) that originate from endocytic membranes. The transfer of biomolecules and biological compounds such as enzymes, proteins, RNA, lipids, and cellular waste disposal through exosomes plays an essential function in cell-cell communication and regulation of pathological and physiological processes in skin disease. The skin is one of the vital organs that makes up about 8% of the total body mass. This organ consists of three layers, epidermis, dermis, and hypodermis that cover the outer surface of the body. Heterogeneity and endogeneity of exosomes is an advantage that distinguishes them from nanoparticles and liposomes and leads to their widespread usage in the remedy of dermal diseases. The biocompatible nature of these extracellular vesicles has attracted the attention of many health researchers. In this review article, we will first discuss the biogenesis of exosomes, their contents, separation methods, and the advantages and disadvantages of exosomes. Then we will highlight recent developments related to the therapeutic applications of exosomes in the treatment of common skin disorders like atopic dermatitis, alopecia, epidermolysis bullosa, keloid, melanoma, psoriasis, and systemic sclerosis.
Today, treatments of cartilage and osteochondral lesions are routine clinical procedures. The avascular and hard-to-self-repair nature of cartilage tissue has posed a clinical challenge for the replacement and reconstruction of damaged cartilage. Treatment of large articular cartilage defects is technically difficult and complex, often accompanied by failure. Articular cartilage cannot repair itself after injury due to a lack of blood vessels, lymph, and nerves. Various treatments for cartilage regeneration have shown encouraging results, but unfortunately, none have been the perfect solution. New minimally invasive and effective techniques are being developed. The development of tissue engineering technology has created hope for articular cartilage reconstruction. This technology mainly supplies stem cells with various sources of pluripotent and mesenchymal stem cells. This article describes the treatments in detail, including types, grades of cartilage lesions, and immune mechanisms in cartilage injuries.
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Parkinson's disease (PD) is a progressive neurodegenerative disease marked by comparatively focal dopaminergic neuron degeneration in the substantia nigra of the midbrain and dopamine loss in the striatum, which causes motor and non-motor symptoms. Currently, pharmacological therapy and deep brain stimulation (DBS) are the primary treatment modalities for PD in clinical practice. While these approaches offer temporary symptom control, they do not address the underlying neurodegenerative process, and complications often arise. Stem cell replacement therapy is anticipated to prevent further progression of the disease due to its regenerative capacity, and considering the cost of immunosuppression and the potential immune dysfunctions, autologous stem cell transplantation holds promise as a significant method against allogeneic one to treat Parkinson's disease. In this review, the safety concerns surrounding tumorigenicity and complications associated with transplantation are discussed, along with methods utilized to evaluate the efficacy of such procedures. Subsequently, we summarize the preclinical and clinical studies involving autologous stem cell transplantation for PD, and finally talk about the benefits of autologous stem cell transplantation against allogeneic transplants.
Background: Cancer stem cells (CSCs) contribute to metastasis and drug resistance to immunotherapy in lung adenocarcinoma (LUAD), so the stemness evaluation of cancer cells is of great significance.
Method: The single-cell RNA sequencing (scRNA-seq) data of the GSE149655 dataset were collected and analyzed. Malignant cells were distinguished by CopyKAT. CytoTRACE score of marker genes in malignant cells was counted by CytoTRACE to construct the stemness score formula. Sample stemness score in TCGA was determined by the formula and divided into high-, medium- and low-stemness score groups. LASSO and COX regression analyses were carried out to screen the key genes related to the prognosis of LUAD from the differentially expressed genes (DEGs) in high- and low-stemness score groups and a risk score model was constructed.
Result: Seven types of cells were identified from a total of 4 samples, and 193 marker genes of 3455 malignant cells were identified. There were 1098 DEGs between low- and high-stemness score groups of TCGA, of which CPS1, CENPK, GJB3, and TPSB2 constituted gene signatures. The 4-gene signature could independently evaluate LUAD survival in the training and validation sets and showed an acceptable area under the receiver operator characteristic (ROC) curves (AUCs).
Conclusion: This study provides insights into the cellular heterogeneity of LUAD and develops a new cancer stemness evaluation indicator and a 4-gene signature as a potential tool for evaluating the response of LUAD to immune checkpoint blockade (ICB) therapy or antineoplastic therapy.
Background: Several types of stem cells are available for the treatment of stroke patients. However, the optimal type of stem cell remains unclear.
Objective: To analyze the effects of bone marrow-derived stem cell therapy in patients with ischemic stroke by integrating all available direct and indirect evidence in network meta-analyses.
Methods: We searched several databases to identify randomized clinical trials comparing clinical outcomes of bone marrow-derived stem cell therapy vs. conventional treatment in stroke patients. Pooled relative risks (RRs) and mean differences (MDs) were reported. The surface under the cumulative ranking (SUCRA) was used to rank the probabilities of each agent regarding different outcomes.
Results: Overall, 11 trials with 576 patients were eligible for analysis. Three different therapies, including mesenchymal stem cells (MSCs), mononuclear stem cells (MNCs), and multipotent adult progenitor cells (MAPCs), were assessed. The direct analysis demonstrated that stem cell therapy was associated with significantly reduced all-cause mortality rates (RR 0.55, 95% CI 0.33 to 0.93; I2=0%). Network analysis demonstrated MSCs ranked first in reducing mortality (RR 0.42, 95% CrI 0.15 to 0.86) and improving modified Rankin Scale score (MD -0.59 95% CI -1.09 to -0.09), with SUCRA values 80%, and 98%, respectively. Subgroup analysis showed intravenous transplantation was superior to conventional therapy in reducing all-cause mortality (RR 0.53, 95% CrI 0.29 to 0.88).
Conclusion: Using stem cell transplantation was associated with reduced risk of death and improved functional outcomes in patients with ischemic stroke. Additional large trials are warranted to provide more conclusive evidence.
Exosomal-microRNAs (Exo-miRNAs) are key regulators of islet cell function, including insulin expression, processing, and secretion. Exo-miRNAs have a significant impact on the outcomes of islet transplantation as biomarkers for evaluating islet cell function and survival. Furthermore, they have been linked to vascular remodeling and immune regulation following islet transplantation. Mesenchymal stem cell-derived exosomes have been shown in preliminary studies to improve islet cell viability and function when injected or transplanted into mice. Overall, Exo-miRNAs have emerged as novel agents for improving islet transplantation success rates. The role of islet-derived Exo-miRNAs and mesenchymal stem cells-derived Exo-miRNAs as biomarkers and immunomodulators in islet regeneration, as well as their role in improving islet cell viability and function in islet transplantation, are discussed in this review.
Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/ volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.

