首页 > 最新文献

Discrete & Continuous Dynamical Systems - S最新文献

英文 中文
Quantitative destruction of invariant circles 不变圆的定量破坏
Pub Date : 2021-09-17 DOI: 10.3934/dcds.2021164
Lin Wang

For area-preserving twist maps on the annulus, we consider the problem on quantitative destruction of invariant circles with a given frequency begin{document}$ omega $end{document} of an integrable system by a trigonometric polynomial of degree begin{document}$ N $end{document} perturbation begin{document}$ R_N $end{document} with begin{document}$ |R_N|_{C^r}. We obtain a relation among begin{document}$ N $end{document}, begin{document}$ r $end{document}, begin{document}$ epsilon $end{document} and the arithmetic property of begin{document}$ omega $end{document}, for which the area-preserving map admit no invariant circles with begin{document}$ omega $end{document}.

对于环空上的保面积扭转映射,我们考虑了用阶数为begin{document}$ N $end{document}的扰动begin{document}$ R_N $end{document}与begin{document}$ |R_N|_{C^r}的三角多项式对给定频率begin{document}$ omega $end{document}的不变圆的定量破坏问题。得到了begin{document}$ N $end{document}、begin{document}$ r $end{document}、begin{document}$ epsilon $end{document}与begin{document}$ omega $end{document}的算术性质之间的关系,使得保面积映射不允许有begin{document}$ omega $end{document}的不变圆。
{"title":"Quantitative destruction of invariant circles","authors":"Lin Wang","doi":"10.3934/dcds.2021164","DOIUrl":"https://doi.org/10.3934/dcds.2021164","url":null,"abstract":"<p style='text-indent:20px;'>For area-preserving twist maps on the annulus, we consider the problem on quantitative destruction of invariant circles with a given frequency <inline-formula><tex-math id=\"M1\">begin{document}$ omega $end{document}</tex-math></inline-formula> of an integrable system by a trigonometric polynomial of degree <inline-formula><tex-math id=\"M2\">begin{document}$ N $end{document}</tex-math></inline-formula> perturbation <inline-formula><tex-math id=\"M3\">begin{document}$ R_N $end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M4\">begin{document}$ |R_N|_{C^r}<epsilon $end{document}</tex-math></inline-formula>. We obtain a relation among <inline-formula><tex-math id=\"M5\">begin{document}$ N $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">begin{document}$ r $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M7\">begin{document}$ epsilon $end{document}</tex-math></inline-formula> and the arithmetic property of <inline-formula><tex-math id=\"M8\">begin{document}$ omega $end{document}</tex-math></inline-formula>, for which the area-preserving map admit no invariant circles with <inline-formula><tex-math id=\"M9\">begin{document}$ omega $end{document}</tex-math></inline-formula>.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82054257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Global well-posedness for fractional Sobolev-Galpern type equations 分数阶Sobolev-Galpern型方程的全局适定性
Pub Date : 2021-08-17 DOI: 10.3934/dcds.2021206
Huy Tuan Nguyen, N. Tuan, Chaoxia Yang
This article is a comparative study on an initial-boundary value problem for a class of semilinear pseudo-parabolic equations with the fractional Caputo derivative, also called the fractional Sobolev-Galpern type equations. The purpose of this work is to reveal the influence of the degree of the source nonlinearity on the well-posedness of the solution. By considering four different types of nonlinearities, we derive the global well-posedness of mild solutions to the problem corresponding to the four cases of the nonlinear source terms. For the advection source function case, we apply a nontrivial limit technique for singular integral and some appropriate choices of weighted Banach space to prove the global existence result. For the gradient nonlinearity as a local Lipschitzian, we use the Cauchy sequence technique to show that the solution either exists globally in time or blows up at finite time. For the polynomial form nonlinearity, by assuming the smallness of the initial data we derive the global well-posed results. And for the case of exponential nonlinearity in two-dimensional space, we derive the global well-posedness by additionally using an Orlicz space.
本文比较研究了一类具有分数阶Caputo导数的半线性伪抛物型方程(也称为分数阶Sobolev-Galpern型方程)的初边值问题。本工作的目的是揭示源非线性程度对解的适定性的影响。通过考虑四种不同类型的非线性,我们得到了这四种非线性源项对应的温和解的全局适定性。对于平流源函数,我们应用奇异积分的非平凡极限技术和加权巴拿赫空间的适当选择来证明整体存在性结果。对于作为局部Lipschitzian的梯度非线性,我们利用Cauchy序列技术证明了其解要么在时间上全局存在,要么在有限时间内爆炸。对于多项式形式的非线性,通过假设初始数据的小,我们得到了全局适定的结果。对于二维空间中的指数非线性,我们利用Orlicz空间导出了全局适定性。
{"title":"Global well-posedness for fractional Sobolev-Galpern type equations","authors":"Huy Tuan Nguyen, N. Tuan, Chaoxia Yang","doi":"10.3934/dcds.2021206","DOIUrl":"https://doi.org/10.3934/dcds.2021206","url":null,"abstract":"This article is a comparative study on an initial-boundary value problem for a class of semilinear pseudo-parabolic equations with the fractional Caputo derivative, also called the fractional Sobolev-Galpern type equations. The purpose of this work is to reveal the influence of the degree of the source nonlinearity on the well-posedness of the solution. By considering four different types of nonlinearities, we derive the global well-posedness of mild solutions to the problem corresponding to the four cases of the nonlinear source terms. For the advection source function case, we apply a nontrivial limit technique for singular integral and some appropriate choices of weighted Banach space to prove the global existence result. For the gradient nonlinearity as a local Lipschitzian, we use the Cauchy sequence technique to show that the solution either exists globally in time or blows up at finite time. For the polynomial form nonlinearity, by assuming the smallness of the initial data we derive the global well-posed results. And for the case of exponential nonlinearity in two-dimensional space, we derive the global well-posedness by additionally using an Orlicz space.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74921836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term 具有质量项控制的Cahn-Hilliard-Oono系统的适定性和最优控制
Pub Date : 2021-08-06 DOI: 10.3934/dcdss.2022001
P. Colli, G. Gilardi, E. Rocca, J. Sprekels

The paper treats the problem of optimal distributed control of a Cahn–Hilliard–Oono system in begin{document}$ {{mathbb{R}}}^d $end{document}, begin{document}$ 1leq dleq 3 $end{document}, with the control located in the mass term and admitting general potentials that include both the case of a regular potential and the case of some singular potential. The first part of the paper is concerned with the dependence of the phase variable on the control variable. For this purpose, suitable regularity and continuous dependence results are shown. In particular, in the case of a logarithmic potential, we need to prove an ad hoc strict separation property, and for this reason we have to restrict ourselves to the case begin{document}$ d = 2 $end{document}. In the rest of the work, we study the necessary first-order optimality conditions, which are proved under suitable compatibility conditions on the initial datum of the phase variable and the time derivative of the control, at least in case of potentials having unbounded domain.

The paper treats the problem of optimal distributed control of a Cahn–Hilliard–Oono system in begin{document}$ {{mathbb{R}}}^d $end{document}, begin{document}$ 1leq dleq 3 $end{document}, with the control located in the mass term and admitting general potentials that include both the case of a regular potential and the case of some singular potential. The first part of the paper is concerned with the dependence of the phase variable on the control variable. For this purpose, suitable regularity and continuous dependence results are shown. In particular, in the case of a logarithmic potential, we need to prove an ad hoc strict separation property, and for this reason we have to restrict ourselves to the case begin{document}$ d = 2 $end{document}. In the rest of the work, we study the necessary first-order optimality conditions, which are proved under suitable compatibility conditions on the initial datum of the phase variable and the time derivative of the control, at least in case of potentials having unbounded domain.
{"title":"Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term","authors":"P. Colli, G. Gilardi, E. Rocca, J. Sprekels","doi":"10.3934/dcdss.2022001","DOIUrl":"https://doi.org/10.3934/dcdss.2022001","url":null,"abstract":"<p style='text-indent:20px;'>The paper treats the problem of optimal distributed control of a Cahn–Hilliard–Oono system in <inline-formula><tex-math id=\"M1\">begin{document}$ {{mathbb{R}}}^d $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">begin{document}$ 1leq dleq 3 $end{document}</tex-math></inline-formula>, with the control located in the mass term and admitting general potentials that include both the case of a regular potential and the case of some singular potential. The first part of the paper is concerned with the dependence of the phase variable on the control variable. For this purpose, suitable regularity and continuous dependence results are shown. In particular, in the case of a logarithmic potential, we need to prove an ad hoc strict separation property, and for this reason we have to restrict ourselves to the case <inline-formula><tex-math id=\"M3\">begin{document}$ d = 2 $end{document}</tex-math></inline-formula>. In the rest of the work, we study the necessary first-order optimality conditions, which are proved under suitable compatibility conditions on the initial datum of the phase variable and the time derivative of the control, at least in case of potentials having unbounded domain.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79690962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
On $ n $-tuplewise IP-sensitivity and thick sensitivity $ n $-tuplewise的ip敏感性和厚度敏感性
Pub Date : 2021-08-03 DOI: 10.3934/dcds.2021211
Jian Li, Yini Yang

Let begin{document}$ (X,T) $end{document} be a topological dynamical system and begin{document}$ ngeq 2 $end{document}. We say that begin{document}$ (X,T) $end{document} is begin{document}$ n $end{document}-tuplewise IP-sensitive (resp. begin{document}$ n $end{document}-tuplewise thickly sensitive) if there exists a constant begin{document}$ delta>0 $end{document} with the property that for each non-empty open subset begin{document}$ U $end{document} of begin{document}$ X $end{document}, there exist begin{document}$ x_1,x_2,dotsc,x_nin U $end{document} such that

is an IP-set (resp. a thick set).

We obtain several sufficient and necessary conditions of a dynamical system to be begin{document}$ n $end{document}-tuplewise IP-sensitive or begin{document}$ n $end{document}-tuplewise thickly sensitive and show that any non-trivial weakly mixing system is begin{document}$ n $end{document}-tuplewise IP-sensitive for all begin{document}$ ngeq 2 $end{document}, while it is begin{document}$ n $end{document}-tuplewise thickly sensitive if and only if it has at least begin{document}$ n $end{document} minimal points. We characterize two kinds of sensitivity by considering some kind of factor maps. We introduce the opposite side of pairwise IP-sensitivity and pairwise thick sensitivity, named (almost) pairwise IPbegin{document}$ ^* $end{document}-equicontinuity and (almost) pairwise syndetic equicontinuity, and obtain dichotomies results for them. In particular, we show that a minimal system is distal if and only if it is pairwise IPbegin{document}$ ^* $end{document}-equicontinuous. We show that every minimal system adm

Let begin{document}$ (X,T) $end{document} be a topological dynamical system and begin{document}$ ngeq 2 $end{document}. We say that begin{document}$ (X,T) $end{document} is begin{document}$ n $end{document}-tuplewise IP-sensitive (resp. begin{document}$ n $end{document}-tuplewise thickly sensitive) if there exists a constant begin{document}$ delta>0 $end{document} with the property that for each non-empty open subset begin{document}$ U $end{document} of begin{document}$ X $end{document}, there exist begin{document}$ x_1,x_2,dotsc,x_nin U $end{document} such that begin{document}$ Bigl{kin mathbb{N}colon minlimits_{1le ideltaBigr} $end{document} is an IP-set (resp. a thick set).We obtain several sufficient and necessary conditions of a dynamical system to be begin{document}$ n $end{document}-tuplewise IP-sensitive or begin{document}$ n $end{document}-tuplewise thickly sensitive and show that any non-trivial weakly mixing system is begin{document}$ n $end{document}-tuplewise IP-sensitive for all begin{document}$ ngeq 2 $end{document}, while it is begin{document}$ n $end{document}-tuplewise thickly sensitive if and only if it has at least begin{document}$ n $end{document} minimal points. We characterize two kinds of sensitivity by considering some kind of factor maps. We introduce the opposite side of pairwise IP-sensitivity and pairwise thick sensitivity, named (almost) pairwise IPbegin{document}$ ^* $end{document}-equicontinuity and (almost) pairwise syndetic equicontinuity, and obtain dichotomies results for them. In particular, we show that a minimal system is distal if and only if it is pairwise IPbegin{document}$ ^* $end{document}-equicontinuous. We show that every minimal system admits a maximal almost pairwise IPbegin{document}$ ^* $end{document}-equicontinuous factor and admits a maximal pairwise syndetic equicontinuous factor, and characterize them by the factor maps to their maximal distal factors.
{"title":"On $ n $-tuplewise IP-sensitivity and thick sensitivity","authors":"Jian Li, Yini Yang","doi":"10.3934/dcds.2021211","DOIUrl":"https://doi.org/10.3934/dcds.2021211","url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M2\">begin{document}$ (X,T) $end{document}</tex-math></inline-formula> be a topological dynamical system and <inline-formula><tex-math id=\"M3\">begin{document}$ ngeq 2 $end{document}</tex-math></inline-formula>. We say that <inline-formula><tex-math id=\"M4\">begin{document}$ (X,T) $end{document}</tex-math></inline-formula> is <inline-formula><tex-math id=\"M5\">begin{document}$ n $end{document}</tex-math></inline-formula>-tuplewise IP-sensitive (resp. <inline-formula><tex-math id=\"M6\">begin{document}$ n $end{document}</tex-math></inline-formula>-tuplewise thickly sensitive) if there exists a constant <inline-formula><tex-math id=\"M7\">begin{document}$ delta>0 $end{document}</tex-math></inline-formula> with the property that for each non-empty open subset <inline-formula><tex-math id=\"M8\">begin{document}$ U $end{document}</tex-math></inline-formula> of <inline-formula><tex-math id=\"M9\">begin{document}$ X $end{document}</tex-math></inline-formula>, there exist <inline-formula><tex-math id=\"M10\">begin{document}$ x_1,x_2,dotsc,x_nin U $end{document}</tex-math></inline-formula> such that</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> begin{document}$ Bigl{kin mathbb{N}colon minlimits_{1le i<jle n}d(T^k x_i,T^k x_j)>deltaBigr} $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>is an IP-set (resp. a thick set).</p><p style='text-indent:20px;'>We obtain several sufficient and necessary conditions of a dynamical system to be <inline-formula><tex-math id=\"M11\">begin{document}$ n $end{document}</tex-math></inline-formula>-tuplewise IP-sensitive or <inline-formula><tex-math id=\"M12\">begin{document}$ n $end{document}</tex-math></inline-formula>-tuplewise thickly sensitive and show that any non-trivial weakly mixing system is <inline-formula><tex-math id=\"M13\">begin{document}$ n $end{document}</tex-math></inline-formula>-tuplewise IP-sensitive for all <inline-formula><tex-math id=\"M14\">begin{document}$ ngeq 2 $end{document}</tex-math></inline-formula>, while it is <inline-formula><tex-math id=\"M15\">begin{document}$ n $end{document}</tex-math></inline-formula>-tuplewise thickly sensitive if and only if it has at least <inline-formula><tex-math id=\"M16\">begin{document}$ n $end{document}</tex-math></inline-formula> minimal points. We characterize two kinds of sensitivity by considering some kind of factor maps. We introduce the opposite side of pairwise IP-sensitivity and pairwise thick sensitivity, named (almost) pairwise IP<inline-formula><tex-math id=\"M17\">begin{document}$ ^* $end{document}</tex-math></inline-formula>-equicontinuity and (almost) pairwise syndetic equicontinuity, and obtain dichotomies results for them. In particular, we show that a minimal system is distal if and only if it is pairwise IP<inline-formula><tex-math id=\"M18\">begin{document}$ ^* $end{document}</tex-math></inline-formula>-equicontinuous. We show that every minimal system adm","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82998315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity 具有部分吸收边界数据和退化粘弹性的线性MGT方程的边界稳定
Pub Date : 2021-07-21 DOI: 10.3934/dcdss.2022020
Marcelo Bongarti, I. Lasiecka, J. H. Rodrigues
The Jordan–Moore–Gibson–Thompson (JMGT) equation is a well-established and recently widely studied model for nonlinear acoustics (NLA). It is a third–order (in time) semilinear Partial Differential Equation (PDE) with a distinctive feature of predicting the propagation of ultrasound waves at finite speed. This is due to the heat phenomenon known as second sound which leads to hyperbolic heat-wave propagation. In this paper, we consider the problem in the so called "critical" case, where free dynamics is unstable. In order to stabilize, we shall use boundary feedback controls supported on a portion of the boundary only. Since the remaining part of the boundary is not "controlled", and the imposed boundary conditions of Neumann type fail to saitsfy Lopatinski condition, several mathematical issues typical for mixed problems within the context o boundary stabilizability arise. To resolve these, special geometric constructs along with sharp trace estimates will be developed. The imposed geometric conditions are motivated by the geometry that is suitable for modeling the problem of controlling (from the boundary) the acoustic pressure involved in medical treatments such as lithotripsy, thermotherapy, sonochemistry, or any other procedure involving High Intensity Focused Ultrasound (HIFU).
Jordan-Moore-Gibson-Thompson (JMGT)方程是一个建立良好的非线性声学模型,近年来得到了广泛的研究。它是一个三阶(在时间上)半线性偏微分方程(PDE),具有预测有限速度下超声波传播的独特特征。这是由于被称为第二声的热现象导致双曲热波传播。在本文中,我们考虑所谓的“临界”情况下的问题,其中自由动力学是不稳定的。为了稳定,我们将使用仅支持部分边界的边界反馈控制。由于边界的其余部分不受“控制”,并且所施加的Neumann型边界条件不满足Lopatinski条件,因此出现了边界稳定性背景下混合问题的几个典型数学问题。为了解决这些问题,将开发特殊的几何结构以及尖锐的轨迹估计。所施加的几何条件是由适合建模控制(从边界)声压问题的几何形状驱动的,这些问题涉及医学治疗,如碎石、热疗法、声化学或任何其他涉及高强度聚焦超声(HIFU)的程序。
{"title":"Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity","authors":"Marcelo Bongarti, I. Lasiecka, J. H. Rodrigues","doi":"10.3934/dcdss.2022020","DOIUrl":"https://doi.org/10.3934/dcdss.2022020","url":null,"abstract":"The Jordan–Moore–Gibson–Thompson (JMGT) equation is a well-established and recently widely studied model for nonlinear acoustics (NLA). It is a third–order (in time) semilinear Partial Differential Equation (PDE) with a distinctive feature of predicting the propagation of ultrasound waves at finite speed. This is due to the heat phenomenon known as second sound which leads to hyperbolic heat-wave propagation. In this paper, we consider the problem in the so called \"critical\" case, where free dynamics is unstable. In order to stabilize, we shall use boundary feedback controls supported on a portion of the boundary only. Since the remaining part of the boundary is not \"controlled\", and the imposed boundary conditions of Neumann type fail to saitsfy Lopatinski condition, several mathematical issues typical for mixed problems within the context o boundary stabilizability arise. To resolve these, special geometric constructs along with sharp trace estimates will be developed. The imposed geometric conditions are motivated by the geometry that is suitable for modeling the problem of controlling (from the boundary) the acoustic pressure involved in medical treatments such as lithotripsy, thermotherapy, sonochemistry, or any other procedure involving High Intensity Focused Ultrasound (HIFU).","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73457258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources 具有双曲动力边界条件、内部和边界非线性阻尼和源的波动方程的爆破
Pub Date : 2021-07-17 DOI: 10.3934/dcdss.2021130
Enzo Vitillaro

The aim of this paper is to give global nonexistence and blow–up results for the problem

where begin{document}$ Omega $end{document} is a bounded open begin{document}$ C^1 $end{document} subset of begin{document}$ {mathbb R}^N $end{document}, begin{document}$ Nge 2 $end{document}, begin{document}$ Gamma = partialOmega $end{document}, begin{document}$ (Gamma_0,Gamma_1) $end{document} is a partition of begin{document}$ Gamma $end{document}, begin{document}$ Gamma_1not = emptyset $end{document} being relatively open in begin{document}$ Gamma $end{document}, begin{document}$ Delta_Gamma $end{document} denotes the Laplace–Beltrami operator on begin{document}$ Gamma $end{document}, begin{document}$ nu $end{document} is the outward normal to begin{document}$ Omega $end{document}, and the terms begin{document}$ P $end{document} and begin{document}$ Q $end{document} represent nonlinear damping terms, while begin{document}$ f $end{document} and begin{document}$ g $end{document} are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.

The aim of this paper is to give global nonexistence and blow–up results for the problem begin{document}$ begin{cases} u_{tt}-Delta u+P(x,u_t) = f(x,u) qquad &text{in $(0, infty) timesOmega$,} u = 0 &text{on $ (0, infty) timesGamma _0 $,} u_{tt}+partial_nu u-Delta_Gamma u+Q(x,u_t) = g(x,u)qquad &text{on $ (0, infty) timesGamma _1$,} u(0,x) = u_0(x),quad u_t(0,x) = u_1(x) & text{in $overline{Omega}$,} end{cases} $end{document} where begin{document}$ Omega $end{document} is a bounded open begin{document}$ C^1 $end{document} subset of begin{document}$ {mathbb R}^N $end{document}, begin{document}$ Nge 2 $end{document}, begin{document}$ Gamma = partialOmega $end{document}, begin{document}$ (Gamma_0,Gamma_1) $end{document} is a partition of begin{document}$ Gamma $end{document}, begin{document}$ Gamma_1not = emptyset $end{document} being relatively open in begin{document}$ Gamma $end{document}, begin{document}$ Delta_Gamma $end{document} denotes the Laplace–Beltrami operator on begin{document}$ Gamma $end{document}, begin{document}$ nu $end{document} is the outward normal to begin{document}$ Omega $end{document}, and the terms begin{document}$ P $end{document} and begin{document}$ Q $end{document} represent nonlinear damping terms, while begin{document}$ f $end{document} and begin{document}$ g $end{document} are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.
{"title":"Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources","authors":"Enzo Vitillaro","doi":"10.3934/dcdss.2021130","DOIUrl":"https://doi.org/10.3934/dcdss.2021130","url":null,"abstract":"<p style='text-indent:20px;'>The aim of this paper is to give global nonexistence and blow–up results for the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> begin{document}$ begin{cases} u_{tt}-Delta u+P(x,u_t) = f(x,u) qquad &text{in $(0,infty)timesOmega$,} u = 0 &text{on $(0,infty)times Gamma_0$,} u_{tt}+partial_nu u-Delta_Gamma u+Q(x,u_t) = g(x,u)qquad &text{on $(0,infty)times Gamma_1$,} u(0,x) = u_0(x),quad u_t(0,x) = u_1(x) & text{in $overline{Omega}$,} end{cases} $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">begin{document}$ Omega $end{document}</tex-math></inline-formula> is a bounded open <inline-formula><tex-math id=\"M2\">begin{document}$ C^1 $end{document}</tex-math></inline-formula> subset of <inline-formula><tex-math id=\"M3\">begin{document}$ {mathbb R}^N $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">begin{document}$ Nge 2 $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">begin{document}$ Gamma = partialOmega $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">begin{document}$ (Gamma_0,Gamma_1) $end{document}</tex-math></inline-formula> is a partition of <inline-formula><tex-math id=\"M7\">begin{document}$ Gamma $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">begin{document}$ Gamma_1not = emptyset $end{document}</tex-math></inline-formula> being relatively open in <inline-formula><tex-math id=\"M9\">begin{document}$ Gamma $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M10\">begin{document}$ Delta_Gamma $end{document}</tex-math></inline-formula> denotes the Laplace–Beltrami operator on <inline-formula><tex-math id=\"M11\">begin{document}$ Gamma $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M12\">begin{document}$ nu $end{document}</tex-math></inline-formula> is the outward normal to <inline-formula><tex-math id=\"M13\">begin{document}$ Omega $end{document}</tex-math></inline-formula>, and the terms <inline-formula><tex-math id=\"M14\">begin{document}$ P $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M15\">begin{document}$ Q $end{document}</tex-math></inline-formula> represent nonlinear damping terms, while <inline-formula><tex-math id=\"M16\">begin{document}$ f $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M17\">begin{document}$ g $end{document}</tex-math></inline-formula> are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"103 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77961785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Aubry-Mather theory for contact Hamiltonian systems II 接触哈密顿系统的奥布里-马瑟理论2
Pub Date : 2021-07-15 DOI: 10.3934/dcds.2021128
Kaizhi Wang, Lin Wang, Jun Yan

In this paper, we continue to develop Aubry-Mather and weak KAM theories for contact Hamiltonian systems begin{document}$ H(x,u,p) $end{document} with certain dependence on the contact variable begin{document}$ u $end{document}. For the Lipschitz dependence case, we obtain some properties of the Mañé set. For the non-decreasing case, we provide some information on the Aubry set, such as the comparison property, graph property and a partially ordered relation for the collection of all projected Aubry sets with respect to backward weak KAM solutions. Moreover, we find a new flow-invariant set begin{document}$ tilde{mathcal{S}}_s $end{document} consists of strongly static orbits, which coincides with the Aubry set begin{document}$ tilde{mathcal{A}} $end{document} in classical Hamiltonian systems. Nevertheless, a class of examples are constructed to show begin{document}$ tilde{mathcal{S}}_ssubsetneqqtilde{mathcal{A}} $end{document} in the contact case. As their applications, we find some new phenomena appear even if the strictly increasing dependence of begin{document}$ H $end{document} on begin{document}$ u $end{document} fails at only one point, and we show that there is a difference for the vanishing discount problem from the negative direction between the minimal viscosity solution and non-minimal ones.

In this paper, we continue to develop Aubry-Mather and weak KAM theories for contact Hamiltonian systems begin{document}$ H(x,u,p) $end{document} with certain dependence on the contact variable begin{document}$ u $end{document}. For the Lipschitz dependence case, we obtain some properties of the Mañé set. For the non-decreasing case, we provide some information on the Aubry set, such as the comparison property, graph property and a partially ordered relation for the collection of all projected Aubry sets with respect to backward weak KAM solutions. Moreover, we find a new flow-invariant set begin{document}$ tilde{mathcal{S}}_s $end{document} consists of strongly static orbits, which coincides with the Aubry set begin{document}$ tilde{mathcal{A}} $end{document} in classical Hamiltonian systems. Nevertheless, a class of examples are constructed to show begin{document}$ tilde{mathcal{S}}_ssubsetneqqtilde{mathcal{A}} $end{document} in the contact case. As their applications, we find some new phenomena appear even if the strictly increasing dependence of begin{document}$ H $end{document} on begin{document}$ u $end{document} fails at only one point, and we show that there is a difference for the vanishing discount problem from the negative direction between the minimal viscosity solution and non-minimal ones.
{"title":"Aubry-Mather theory for contact Hamiltonian systems II","authors":"Kaizhi Wang, Lin Wang, Jun Yan","doi":"10.3934/dcds.2021128","DOIUrl":"https://doi.org/10.3934/dcds.2021128","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we continue to develop Aubry-Mather and weak KAM theories for contact Hamiltonian systems <inline-formula><tex-math id=\"M1\">begin{document}$ H(x,u,p) $end{document}</tex-math></inline-formula> with certain dependence on the contact variable <inline-formula><tex-math id=\"M2\">begin{document}$ u $end{document}</tex-math></inline-formula>. For the Lipschitz dependence case, we obtain some properties of the Mañé set. For the non-decreasing case, we provide some information on the Aubry set, such as the comparison property, graph property and a partially ordered relation for the collection of all projected Aubry sets with respect to backward weak KAM solutions. Moreover, we find a new flow-invariant set <inline-formula><tex-math id=\"M3\">begin{document}$ tilde{mathcal{S}}_s $end{document}</tex-math></inline-formula> consists of <i>strongly</i> static orbits, which coincides with the Aubry set <inline-formula><tex-math id=\"M4\">begin{document}$ tilde{mathcal{A}} $end{document}</tex-math></inline-formula> in classical Hamiltonian systems. Nevertheless, a class of examples are constructed to show <inline-formula><tex-math id=\"M5\">begin{document}$ tilde{mathcal{S}}_ssubsetneqqtilde{mathcal{A}} $end{document}</tex-math></inline-formula> in the contact case. As their applications, we find some new phenomena appear even if the strictly increasing dependence of <inline-formula><tex-math id=\"M6\">begin{document}$ H $end{document}</tex-math></inline-formula> on <inline-formula><tex-math id=\"M7\">begin{document}$ u $end{document}</tex-math></inline-formula> fails at only one point, and we show that there is a difference for the vanishing discount problem from the negative direction between the <i>minimal</i> viscosity solution and <i>non-minimal</i> ones.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85043416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Orbital stability for the mass-critical and supercritical pseudo-relativistic nonlinear Schrödinger equation 质量临界和超临界伪相对论非线性Schrödinger方程的轨道稳定性
Pub Date : 2021-07-12 DOI: 10.3934/dcds.2022010
Sangdon Jin, Younghun Hong
For the one-dimensional mass-critical and supercritical pseudo-relativistic nonlinear Schrödinger equation, a stationary solution can be constructed as an energy minimizer under an additional kinetic energy constraint and the set of energy minimizers is orbitally stable [2]. In this study, we proved the local uniqueness and established the orbital stability of the solitary wave by improving that of the energy minimizer set. A key aspect thereof is the reformulation of the variational problem in the non-relativistic regime, which we consider to be more natural because the proof extensively relies on the subcritical nature of the limiting model. Thus, the role of the additional constraint is clarified, a more suitable Gagliardo-Nirenberg inequality is introduced, and the non-relativistic limit is proved. Subsequently, this limit is employed to derive the local uniqueness and orbital stability.
对于一维质量临界和超临界伪相对论非线性Schrödinger方程,可以将平稳解构造为附加动能约束下的能量最小化器,并且该能量最小化器集是轨道稳定的[2]。本文通过改进能量最小集,证明了孤波的局部唯一性,建立了孤波的轨道稳定性。其中的一个关键方面是在非相对论状态下对变分问题的重新表述,我们认为这是更自然的,因为证明广泛依赖于极限模型的亚临界性质。从而澄清了附加约束的作用,引入了一个更合适的Gagliardo-Nirenberg不等式,并证明了非相对论性极限。然后,利用这一极限推导出了局部唯一性和轨道稳定性。
{"title":"Orbital stability for the mass-critical and supercritical pseudo-relativistic nonlinear Schrödinger equation","authors":"Sangdon Jin, Younghun Hong","doi":"10.3934/dcds.2022010","DOIUrl":"https://doi.org/10.3934/dcds.2022010","url":null,"abstract":"For the one-dimensional mass-critical and supercritical pseudo-relativistic nonlinear Schrödinger equation, a stationary solution can be constructed as an energy minimizer under an additional kinetic energy constraint and the set of energy minimizers is orbitally stable [2]. In this study, we proved the local uniqueness and established the orbital stability of the solitary wave by improving that of the energy minimizer set. A key aspect thereof is the reformulation of the variational problem in the non-relativistic regime, which we consider to be more natural because the proof extensively relies on the subcritical nature of the limiting model. Thus, the role of the additional constraint is clarified, a more suitable Gagliardo-Nirenberg inequality is introduced, and the non-relativistic limit is proved. Subsequently, this limit is employed to derive the local uniqueness and orbital stability.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84594968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On stochastic porous-medium equations with critical-growth conservative multiplicative noise 具有临界增长保守性乘性噪声的随机多孔介质方程
Pub Date : 2021-06-30 DOI: 10.3934/dcds.2020388
N. Dirr, Hubertus Grillmeier, Guenther Grün
First, we prove existence, nonnegativity, and pathwise uniqueness of martingale solutions to stochastic porous-medium equations driven by conservative multiplicative power-law noise in the Ito-sense. We rely on an energy approach based on finite-element discretization in space, homogeneity arguments and stochastic compactness. Secondly, we use Monte-Carlo simulations to investigate the impact noise has on waiting times and on free-boundary propagation. We find strong evidence that noise on average significantly accelerates propagation and reduces the size of waiting times – changing in particular scaling laws for the size of waiting times.
首先,我们证明了由保守幂律噪声驱动的随机多孔介质方程在伊托意义上的鞅解的存在性、非负性和路径唯一性。我们依赖于基于空间有限元离散化、齐次性参数和随机紧性的能量方法。其次,利用蒙特卡罗模拟研究了噪声对等待时间和自由边界传播的影响。我们发现有力的证据表明,平均而言,噪声显著地加速了传播,减少了等待时间的大小——特别是改变了等待时间大小的缩放规律。
{"title":"On stochastic porous-medium equations with critical-growth conservative multiplicative noise","authors":"N. Dirr, Hubertus Grillmeier, Guenther Grün","doi":"10.3934/dcds.2020388","DOIUrl":"https://doi.org/10.3934/dcds.2020388","url":null,"abstract":"First, we prove existence, nonnegativity, and pathwise uniqueness of martingale solutions to stochastic porous-medium equations driven by conservative multiplicative power-law noise in the Ito-sense. We rely on an energy approach based on finite-element discretization in space, homogeneity arguments and stochastic compactness. Secondly, we use Monte-Carlo simulations to investigate the impact noise has on waiting times and on free-boundary propagation. We find strong evidence that noise on average significantly accelerates propagation and reduces the size of waiting times – changing in particular scaling laws for the size of waiting times.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74378463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Necessary optimality conditions of a reaction-diffusion SIR model with ABC fractional derivatives 具有ABC分数阶导数的反应扩散SIR模型的必要最优性条件
Pub Date : 2021-06-29 DOI: 10.3934/dcdss.2021155
M. Ammi, M. Tahiri, Delfim F. M. Torres
The main aim of the present work is to study and analyze a reaction-diffusion fractional version of the SIR epidemic mathematical model by means of the non-local and non-singular ABC fractional derivative operator with complete memory effects. Existence and uniqueness of solution for the proposed fractional model is proved. Existence of an optimal control is also established. Then, necessary optimality conditions are derived. As a consequence, a characterization of the optimal control is given. Lastly, numerical results are given with the aim to show the effectiveness of the proposed control strategy, which provides significant results using the AB fractional derivative operator in the Caputo sense, comparing it with the classical integer one. The results show the importance of choosing very well the fractional characterization of the order of the operators.
本文的主要目的是利用具有完全记忆效应的非局部非奇异ABC分数阶导数算子,研究和分析SIR流行病数学模型的反应-扩散分数阶版本。证明了分数阶模型解的存在唯一性。并证明了最优控制的存在性。然后,导出了必要的最优性条件。因此,给出了最优控制的表征。最后,给出了数值结果,以验证所提控制策略的有效性。在Caputo意义上,将AB分数阶导数算子与经典整数算子进行比较,得到了显著的结果。结果表明,选择好算子阶的分数表征的重要性。
{"title":"Necessary optimality conditions of a reaction-diffusion SIR model with ABC fractional derivatives","authors":"M. Ammi, M. Tahiri, Delfim F. M. Torres","doi":"10.3934/dcdss.2021155","DOIUrl":"https://doi.org/10.3934/dcdss.2021155","url":null,"abstract":"The main aim of the present work is to study and analyze a reaction-diffusion fractional version of the SIR epidemic mathematical model by means of the non-local and non-singular ABC fractional derivative operator with complete memory effects. Existence and uniqueness of solution for the proposed fractional model is proved. Existence of an optimal control is also established. Then, necessary optimality conditions are derived. As a consequence, a characterization of the optimal control is given. Lastly, numerical results are given with the aim to show the effectiveness of the proposed control strategy, which provides significant results using the AB fractional derivative operator in the Caputo sense, comparing it with the classical integer one. The results show the importance of choosing very well the fractional characterization of the order of the operators.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89890846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Discrete & Continuous Dynamical Systems - S
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1