Pub Date : 2025-02-27DOI: 10.1080/03639045.2025.2470397
Sonia Valverde Cabeza, Pedro Luis González-R, María Luisa González-Rodríguez
Introduction: Optimization of pharmaceutical formulations requires advanced tools to ensure quality, safety, and efficacy. quality-by-design (QbD), introduced by the FDA, emphasizes understanding and controlling processes early in development. Advanced optimization methods, such as desirability, have surpassed traditional single-objective techniques. Others, such as weighted goal programming (WGP) offers unique advantages by integrating decision-maker preferences, enabling balanced solutions for complex drug delivery systems. This study applies WGP to optimize timolol (TM)-loaded nanoliposomes aligning with QbD principles.
Methods: The optimization process followed six steps: identifying factors and responses, developing a Design of Experiments (DoE) plan, defining ideal and anti-ideal points, setting aspiration levels, assigning relative weights, and applying WGP compared to desirability function. Minimized and balanced deviations from aspiration levels served as criteria for selecting the most robust optimization results. Six responses were analyzed: vesicle size , polydispersity index , zeta potential , deformability index , phosphorus content , and drug entrapment efficiency .
Results: WGP produced a more balanced formulation that simultaneously optimized multiple responses. By incorporating the importance of each response, the WGP approach improved control over size, colloidal stability, and drug entrapment, based on its mathematical formulation. Comparative analysis with the desirability function confirmed that WGP effectively addressed potential tradeoffs without oversimplifying conflicting objectives.
Conclusions: This case-study demonstrates WGP potential as an advanced multi-objective optimization tool for pharmaceutical applications, improving upon traditional methods in complex formulations. Its ability to harmonize multiple critical attributes in line with QbD highlights its value in developing high-quality pharmaceutical products.
{"title":"Enhancing quality-by-design through weighted goal programming: a case study on formulation of ultradeformable liposomes.","authors":"Sonia Valverde Cabeza, Pedro Luis González-R, María Luisa González-Rodríguez","doi":"10.1080/03639045.2025.2470397","DOIUrl":"10.1080/03639045.2025.2470397","url":null,"abstract":"<p><strong>Introduction: </strong>Optimization of pharmaceutical formulations requires advanced tools to ensure quality, safety, and efficacy. quality-by-design (QbD), introduced by the FDA, emphasizes understanding and controlling processes early in development. Advanced optimization methods, such as desirability, have surpassed traditional single-objective techniques. Others, such as weighted goal programming (WGP) offers unique advantages by integrating decision-maker preferences, enabling balanced solutions for complex drug delivery systems. This study applies WGP to optimize timolol (TM)-loaded nanoliposomes aligning with QbD principles.</p><p><strong>Methods: </strong>The optimization process followed six steps: identifying factors and responses, developing a Design of Experiments (DoE) plan, defining ideal and anti-ideal points, setting aspiration levels, assigning relative weights, and applying WGP compared to desirability function. Minimized and balanced deviations from aspiration levels served as criteria for selecting the most robust optimization results. Six responses were analyzed: vesicle size <math><mo>(</mo><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>)</mo></math>, polydispersity index <math><mo>(</mo><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>)</mo></math>, zeta potential <math><mo>(</mo><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mo>)</mo></math>, deformability index <math><mo>(</mo><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mo>)</mo></math>, phosphorus content <math><mo>(</mo><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>5</mn></mrow></msub></mrow><mo>)</mo></math>, and drug entrapment efficiency <math><mo>(</mo><mrow><msub><mrow><mi>z</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow><mo>)</mo></math>.</p><p><strong>Results: </strong>WGP produced a more balanced formulation that simultaneously optimized multiple responses. By incorporating the importance of each response, the WGP approach improved control over size, colloidal stability, and drug entrapment, based on its mathematical formulation. Comparative analysis with the desirability function confirmed that WGP effectively addressed potential tradeoffs without oversimplifying conflicting objectives.</p><p><strong>Conclusions: </strong>This case-study demonstrates WGP potential as an advanced multi-objective optimization tool for pharmaceutical applications, improving upon traditional methods in complex formulations. Its ability to harmonize multiple critical attributes in line with QbD highlights its value in developing high-quality pharmaceutical products.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143491262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-27DOI: 10.1080/03639045.2025.2471912
A Gaitán, S Ravetti, A G Garro, M Bonaterra, R V Alasino, S D Palma
Objective: This study evaluates the chemical and enzymatic stability of naringin (NRG), identifies its degradation metabolites, assesses its in vitro cytotoxicity, and validates a high-performance liquid chromatography (HPLC) method for precise quantification.
Significance: NRG, a flavonoid with antioxidant, anti-inflammatory, and anticancer properties, faces clinical limitations due to poor solubility, rapid degradation, and low bioavailability. While research efforts on this promising compound have largely focused on overcoming these limitations through formulation strategies, it is equally necessary and complementary to focus on preformulation studies to enhance NRG's therapeutic potential. These studies represent a fundamental step in drug development, providing key insights into the physicochemical and biological properties of NRG and serving as the basis for the rational design of safe and effective formulations in future research.
Methods: NRG stability was analyzed under various temperature and pH conditions. Cytotoxicity was evaluated in 3T3 cells, and an HPLC method was developed and validated to quantify NRG and its primary metabolite, naringenin (NRGN).
Results: NRG remained stable up to 100 °C and under physiological pH (1.2, 5.8, and 7.4) but degraded at extreme pH, forming NRGN. Cytotoxicity assays showed low toxicity at ≤1 mM (viability >80%), whereas 5 mM significantly reduced viability. The validated HPLC method exhibited high precision, specificity, and accuracy in distinguishing NRG from NRGN.
Discussion: This study provides critical insights into NRG's stability, safety, and quantification, supporting its potential therapeutic development. These findings establish a foundation for future research aimed at enhancing NRG bioavailability and clinical applicability.
意义柚皮苷(NRG)是一种具有抗氧化、抗炎和抗癌特性的类黄酮,但由于溶解性差、降解快和生物利用度低等原因,它在临床上面临着诸多限制。虽然对这种前景广阔的化合物的研究工作主要集中在通过制剂策略克服这些局限性上,但同样必要和互补的是,重点关注制剂前研究,以提高 NRG 的治疗潜力。这些研究代表了药物开发的基本步骤,为了解 NRG 的物理化学和生物学特性提供了重要依据,也为在未来研究中合理设计安全有效的制剂奠定了基础。结果NRG在100 °C和生理pH值(1.2、5.8、7.4)条件下保持稳定,但在极端pH值条件下发生降解,形成NRGN。细胞毒性试验表明,≤1 mM 时毒性较低(存活率大于 80%),而 5 mM 则会显著降低存活率。经验证的高效液相色谱法在区分 NRG 和 NRGN 方面具有高精确度、特异性和准确性。这些发现为今后旨在提高 NRG 生物利用率和临床适用性的研究奠定了基础。
{"title":"Preformulation studies and <i>in vitro</i> cytotoxicity of naringin.","authors":"A Gaitán, S Ravetti, A G Garro, M Bonaterra, R V Alasino, S D Palma","doi":"10.1080/03639045.2025.2471912","DOIUrl":"10.1080/03639045.2025.2471912","url":null,"abstract":"<p><strong>Objective: </strong>This study evaluates the chemical and enzymatic stability of naringin (NRG), identifies its degradation metabolites, assesses its <i>in vitro</i> cytotoxicity, and validates a high-performance liquid chromatography (HPLC) method for precise quantification.</p><p><strong>Significance: </strong>NRG, a flavonoid with antioxidant, anti-inflammatory, and anticancer properties, faces clinical limitations due to poor solubility, rapid degradation, and low bioavailability. While research efforts on this promising compound have largely focused on overcoming these limitations through formulation strategies, it is equally necessary and complementary to focus on preformulation studies to enhance NRG's therapeutic potential. These studies represent a fundamental step in drug development, providing key insights into the physicochemical and biological properties of NRG and serving as the basis for the rational design of safe and effective formulations in future research.</p><p><strong>Methods: </strong>NRG stability was analyzed under various temperature and pH conditions. Cytotoxicity was evaluated in 3T3 cells, and an HPLC method was developed and validated to quantify NRG and its primary metabolite, naringenin (NRGN).</p><p><strong>Results: </strong>NRG remained stable up to 100 °C and under physiological pH (1.2, 5.8, and 7.4) but degraded at extreme pH, forming NRGN. Cytotoxicity assays showed low toxicity at ≤1 mM (viability >80%), whereas 5 mM significantly reduced viability. The validated HPLC method exhibited high precision, specificity, and accuracy in distinguishing NRG from NRGN.</p><p><strong>Discussion: </strong>This study provides critical insights into NRG's stability, safety, and quantification, supporting its potential therapeutic development. These findings establish a foundation for future research aimed at enhancing NRG bioavailability and clinical applicability.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background & rationale: Celecoxib (CXB), with its anti-inflammatory and recently discovered antibacterial activity, especially against sensitive and methicillin-resistant Staphylococcus aureus (MRSA), could be promising in treating local pain, superficial skin infections, wounds and infected wounds. The study aims to develop and compare commercially scalable topical formulations of CXB to explore their antimicrobial and wound-healing potential.
Methods: Carbopol gel, o/w cream, polyethylene glycol (PEG) ointment, and paraffin ointment were selected as the vehicles for the preparation of 3% CXB topical formulations. Appearance, pH, viscosity, spreadability, drug content, stability, in vitro release and permeation, and skin retention studies were performed. Further, antimicrobial assay, in vivo wound-healing and histopathology studies were carried out for each formulation.
Results: The formulations had an acceptable appearance, viscosity, spreadability, and drug content. The drug release at 6h was the highest from gel (2428.8ug/cm2), followed by PEG ointment (2230.1ug/cm2), cream (1897.8ug/cm2), and lastly, the paraffin ointment (1217.2ug/cm2). PEG ointment and gel showed the highest skin permeation, whereas cream and gel were better able to retain the drug in the skin. All the formulations exhibited appreciable zones of inhibition against sensitive and the resistant strains of Staphylococcus aureus. PEG ointment exerted a significantly greater (p < 0.001) wound-healing effect. Accelerated stability studies confirmed good physicochemical stability of the formulations.
Conclusion: PEG ointment, with its optimal drug release profile, skin permeation ability, and greater wound-healing action, can be considered as a promising topical delivery vehicle for CXB. CXB's antimicrobial potential could further aid in the prevention as well as treatment of wound infection.
{"title":"<i>In vitro</i>, <i>ex vivo</i>, and <i>in vivo</i> studies of celecoxib topical platforms for antimicrobial activity and wound healing: a comparative assessment.","authors":"Priyanka Mundankar, Pankaj Neje, Shubhada Mangrulkar, Pranav Shah, Madhur Kulkarni","doi":"10.1080/03639045.2025.2469805","DOIUrl":"10.1080/03639045.2025.2469805","url":null,"abstract":"<p><strong>Background & rationale: </strong>Celecoxib (CXB), with its anti-inflammatory and recently discovered antibacterial activity, especially against sensitive and methicillin-resistant <i>Staphylococcus aureus (MRSA),</i> could be promising in treating local pain, superficial skin infections, wounds and infected wounds. The study aims to develop and compare commercially scalable topical formulations of CXB to explore their antimicrobial and wound-healing potential.</p><p><strong>Methods: </strong>Carbopol gel, o/w cream, polyethylene glycol (PEG) ointment, and paraffin ointment were selected as the vehicles for the preparation of 3% CXB topical formulations. Appearance, pH, viscosity, spreadability, drug content, stability, <i>in vitro</i> release and permeation, and skin retention studies were performed. Further, antimicrobial assay, <i>in vivo</i> wound-healing and histopathology studies were carried out for each formulation.</p><p><strong>Results: </strong>The formulations had an acceptable appearance, viscosity, spreadability, and drug content. The drug release at 6h was the highest from gel (2428.8ug/cm<sup>2</sup>), followed by PEG ointment (2230.1ug/cm<sup>2</sup>), cream (1897.8ug/cm<sup>2</sup>), and lastly, the paraffin ointment (1217.2ug/cm<sup>2</sup>). PEG ointment and gel showed the highest skin permeation, whereas cream and gel were better able to retain the drug in the skin. All the formulations exhibited appreciable zones of inhibition against sensitive and the resistant strains of <i>Staphylococcus aureus</i>. PEG ointment exerted a significantly greater (<i>p</i> < 0.001) wound-healing effect. Accelerated stability studies confirmed good physicochemical stability of the formulations.</p><p><strong>Conclusion: </strong>PEG ointment, with its optimal drug release profile, skin permeation ability, and greater wound-healing action, can be considered as a promising topical delivery vehicle for CXB. CXB's antimicrobial potential could further aid in the prevention as well as treatment of wound infection.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-13"},"PeriodicalIF":2.4,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-23DOI: 10.1080/03639045.2025.2469140
Safaa Khaled, Omar Mady, Asmaa Hedaya, Noorelhoda Abdine, Yusuf Haggag
Significance: Electrospinning presents a promising avenue for drug delivery applications by integrating traditional solid dispersion methods with nano-medicinal strategies. Electrospun nanofibers (NFs) can be tailored to control the composition, diameter, and orientation of the NFs based on the intended application.
Objectives: Herein, we aim to fabricate novel polymeric NFs loaded with sulpiride (SUL) utilizing Eudragit L100-55 (EL100-55) polymers to improve the dissolution and permeability of a model class IV drug.
Methods: Various factors were assessed to optimize the electrospun NF formulation, including polymer concentrations, flow rate, and drug amount.
Results: The electrospinning process yielded defect-free SUL-loaded EL100-55 NFs. The physicochemical analysis demonstrated favorable attributes in all formulations, encompassing high drug loading, encapsulation efficiency, and rapid drug release. Nanofiber formulations exhibited superior dissolution due to their extensive surface area. Modified non-everted sac experiments revealed a twofold increase in SUL permeation through the intestinal membrane upon EL100-55 encapsulation, emphasizing its impact on tight junction modulation in both NF and solid dispersion formulations. Enhanced drug permeation in the NF formulation involved dual mechanisms: transcellular diffusion and widening of the paracellular pathway. In contrast, the solid dispersion formulation prepared via solvent evaporation predominantly widened the paracellular pathway. Visualization techniques illustrated the NFs' robust affinity for the transcellular pathway.
Conclusion: Sulpiride encapsulation into EL100-55-NF is a promising solution for BCS class IV drugs facing solubility and permeability challenges.
{"title":"Enhanced intestinal permeation of novel sulpiride electrospun nanofibers: formulation, optimization, and <i>ex vivo</i> evaluation of drug absorption.","authors":"Safaa Khaled, Omar Mady, Asmaa Hedaya, Noorelhoda Abdine, Yusuf Haggag","doi":"10.1080/03639045.2025.2469140","DOIUrl":"10.1080/03639045.2025.2469140","url":null,"abstract":"<p><strong>Significance: </strong>Electrospinning presents a promising avenue for drug delivery applications by integrating traditional solid dispersion methods with nano-medicinal strategies. Electrospun nanofibers (NFs) can be tailored to control the composition, diameter, and orientation of the NFs based on the intended application.</p><p><strong>Objectives: </strong>Herein, we aim to fabricate novel polymeric NFs loaded with sulpiride (SUL) utilizing Eudragit L100-55 (EL100-55) polymers to improve the dissolution and permeability of a model class IV drug.</p><p><strong>Methods: </strong>Various factors were assessed to optimize the electrospun NF formulation, including polymer concentrations, flow rate, and drug amount.</p><p><strong>Results: </strong>The electrospinning process yielded defect-free SUL-loaded EL100-55 NFs. The physicochemical analysis demonstrated favorable attributes in all formulations, encompassing high drug loading, encapsulation efficiency, and rapid drug release. Nanofiber formulations exhibited superior dissolution due to their extensive surface area. Modified non-everted sac experiments revealed a twofold increase in SUL permeation through the intestinal membrane upon EL100-55 encapsulation, emphasizing its impact on tight junction modulation in both NF and solid dispersion formulations. Enhanced drug permeation in the NF formulation involved dual mechanisms: transcellular diffusion and widening of the paracellular pathway. In contrast, the solid dispersion formulation prepared via solvent evaporation predominantly widened the paracellular pathway. Visualization techniques illustrated the NFs' robust affinity for the transcellular pathway.</p><p><strong>Conclusion: </strong>Sulpiride encapsulation into EL100-55-NF is a promising solution for BCS class IV drugs facing solubility and permeability challenges.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-14"},"PeriodicalIF":2.4,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21DOI: 10.1080/03639045.2025.2469800
Amjad Khan, Abad Khan, Shabnam Nazir, Nauman Rahim Khan, Majeed Ullah, Naila Shahbaz, Noor Ul Ain Nawaz
Background: The presented study aimed to evaluate the effect of aging on the quality attributes of ODTs.
Experimental: ODTs prepared in one of our previous studies, packed in standard blister packing, were stored at ambient conditions in a laboratory (protected from direct sunlight) for 5 years and evaluated for their quality attributes, including physical parameters, mechanical strength (crushing strength, specific crushing strength, tensile strength, and friability), disintegration behavior (in vitro disintegration time, oral disintegration time, and wetting time), assay and dissolution rates. Drug content of all the samples was determined by HPLC.
Results: Physically, the ODTs were oval (10 mm), shallow, and convex with a bisection line, and their compression weight was 200 mg/tablet. With the passage of time, the moisture content of the ODTs increased from 2.4 ± 0.39% to 3.48 ± 0.62%. After 5 years, the drug content decreased to 92.38 ± 0.93%.
Discussion: Initially, there was an increase in the crushing strength of the ODTs (up to 3 years), and then it gradually decreased. At the time of preparation, disintegration time of the ODTs was 53 s, which gradually increased up to 89 s, at the 4th year. After completion of the study, it slightly decreased to 85 s. The dissolution rate of domperidone from the ODTs remained unaffected by aging. The FTIR spectra of the ODTs showed insignificant cahnges, indicating absence of degradation during the study period.
Conclusion: ODTs remained stable for five years and insignificant changes were observed in their quality attributes.
{"title":"An evaluation of the effect of aging on the quality attributes of orodispersible tablets prepared by the direct compression technique.","authors":"Amjad Khan, Abad Khan, Shabnam Nazir, Nauman Rahim Khan, Majeed Ullah, Naila Shahbaz, Noor Ul Ain Nawaz","doi":"10.1080/03639045.2025.2469800","DOIUrl":"10.1080/03639045.2025.2469800","url":null,"abstract":"<p><strong>Background: </strong>The presented study aimed to evaluate the effect of aging on the quality attributes of ODTs.</p><p><strong>Experimental: </strong>ODTs prepared in one of our previous studies, packed in standard blister packing, were stored at ambient conditions in a laboratory (protected from direct sunlight) for 5 years and evaluated for their quality attributes, including physical parameters, mechanical strength (crushing strength, specific crushing strength, tensile strength, and friability), disintegration behavior (<i>in vitro</i> disintegration time, oral disintegration time, and wetting time), assay and dissolution rates. Drug content of all the samples was determined by HPLC.</p><p><strong>Results: </strong>Physically, the ODTs were oval (10 mm), shallow, and convex with a bisection line, and their compression weight was 200 mg/tablet. With the passage of time, the moisture content of the ODTs increased from 2.4 ± 0.39% to 3.48 ± 0.62%. After 5 years, the drug content decreased to 92.38 ± 0.93%.</p><p><strong>Discussion: </strong>Initially, there was an increase in the crushing strength of the ODTs (up to 3 years), and then it gradually decreased. At the time of preparation, disintegration time of the ODTs was 53 s, which gradually increased up to 89 s, at the 4th year. After completion of the study, it slightly decreased to 85 s. The dissolution rate of domperidone from the ODTs remained unaffected by aging. The FTIR spectra of the ODTs showed insignificant cahnges, indicating absence of degradation during the study period.</p><p><strong>Conclusion: </strong>ODTs remained stable for five years and insignificant changes were observed in their quality attributes.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-20DOI: 10.1080/03639045.2025.2468811
Suriya Prakaash K K, Damodharan Narayansamy
Objective: This review aims to explore innovative therapeutic strategies, with a particular focus on recent advancements in drug delivery systems using bioinspired nanomaterials such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for the idiopathic pulmonary fibrosis (IPF).
Significance of the review: Current treatments for IPF, including the FDA-approved anti-fibrotic agents pirfenidone and nintedanib, primarily aim to slow disease progression rather than reverse fibrosis. Bioinspired nanomaterials like SLNs and NLCs have shown promise in enhancing the efficacy of anti-fibrotic agents by improving drug solubility, stability, and targeted delivery. These systems not only minimize systemic side effects but also maximize therapeutic impact in lung tissues, offering a new hope for improved patient management and outcomes in this debilitating disease.
Key findings: SLNs facilitate sustained drug release and have demonstrated potential in delivering phosphodiesterase type 5 inhibitors effectively to lung cells. NLCs, on the other hand, exhibit superior biocompatibility and controlled release properties, making them suitable for pulmonary applications. Studies indicate that both SLNs and NLCs can enhance the bioavailability of drugs like ciprofloxacin and montelukast, thereby improving treatment outcomes in pulmonary conditions.
Conclusion: The integration of nanotechnology into anti-fibrotic therapy represents a significant advancement in addressing the challenges posed by IPF. By leveraging the unique properties of SLNs and NLCs, there is potential to overcome the limitations of current treatments and provide new therapeutic options that offer better management and improved outcomes for patients suffering from this debilitating disease.
{"title":"Advancements in nanotechnology for targeted drug delivery in idiopathic pulmonary fibrosis: a focus on solid lipid nanoparticles and nanostructured lipid carriers.","authors":"Suriya Prakaash K K, Damodharan Narayansamy","doi":"10.1080/03639045.2025.2468811","DOIUrl":"10.1080/03639045.2025.2468811","url":null,"abstract":"<p><strong>Objective: </strong>This review aims to explore innovative therapeutic strategies, with a particular focus on recent advancements in drug delivery systems using bioinspired nanomaterials such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for the idiopathic pulmonary fibrosis (IPF).</p><p><strong>Significance of the review: </strong>Current treatments for IPF, including the FDA-approved anti-fibrotic agents pirfenidone and nintedanib, primarily aim to slow disease progression rather than reverse fibrosis. Bioinspired nanomaterials like SLNs and NLCs have shown promise in enhancing the efficacy of anti-fibrotic agents by improving drug solubility, stability, and targeted delivery. These systems not only minimize systemic side effects but also maximize therapeutic impact in lung tissues, offering a new hope for improved patient management and outcomes in this debilitating disease.</p><p><strong>Key findings: </strong>SLNs facilitate sustained drug release and have demonstrated potential in delivering phosphodiesterase type 5 inhibitors effectively to lung cells. NLCs, on the other hand, exhibit superior biocompatibility and controlled release properties, making them suitable for pulmonary applications. Studies indicate that both SLNs and NLCs can enhance the bioavailability of drugs like ciprofloxacin and montelukast, thereby improving treatment outcomes in pulmonary conditions.</p><p><strong>Conclusion: </strong>The integration of nanotechnology into anti-fibrotic therapy represents a significant advancement in addressing the challenges posed by IPF. By leveraging the unique properties of SLNs and NLCs, there is potential to overcome the limitations of current treatments and provide new therapeutic options that offer better management and improved outcomes for patients suffering from this debilitating disease.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: The objective of the study was to tackle the recurrence of prostate cancer (PCa) post-surgery and to re-sensitize the docetaxel (DTX)-resistant PC-3 cells to chemo-therapy using NIC.
Significance: Prolonged DTX therapy leads to the emergence of chemo-resistance by overexpression of PI3K-AKT pathway in PCa along with tumor recurrence post-surgery. Suppression of this pathway could be essential in improving the anticancer activity of DTX and re-sensitizing the resistant cells.
Method: Niclosamide (NIC), an anthelmintic drug has shown tremendous anticancer potential and has re-sensitized the resistant cells to various drugs. To mitigate the post-surgical tumor recurrence, an implant-based system facilitating the sustained release of DTX and NIC could be beneficial. DTX and NIC were incorporated within a nanofiber (NF) system to prevent on-site recurrence by local release and re-sensitize the DTX-resistant cells.
Key findings: The fabricated DTX-NIC NF via electrospinning were 334 ± 96.14 nm in diameter and demonstrated sustained release profile till 6 d. Elevated mitochondrial damage, reactive oxygen species levels and apoptotic index revealed improvement in the cytotoxicity of DTX-NIC post incorporation into the NF owing to their sustained release profile. Re-sensitization of PC-3/DTX cells was observed by introduction of NIC which could be due to the suppression of p-Akt1, which was overexpressed in resistant cells.
Conclusion: From superior activity of DTX-NIC NF and re-sensitization of resistant cells, we conclude that DTX-NIC NF could be a beneficial therapeutic regimen in preventing tumor recurrence in PCa.
目的:研究的目的是解决前列腺癌(PCa)术后复发,并使多西他赛(DTX)耐药的PC-3细胞对NIC化疗再敏感。意义:延长DTX治疗可导致PCa中PI3K-AKT通路过表达,并伴随术后肿瘤复发而出现化疗耐药。抑制这一途径可能对提高DTX的抗癌活性和使耐药细胞重新敏感至关重要。方法:奈洛沙胺(Niclosamide, NIC)是一种具有巨大抗癌潜力的驱虫药,可使耐药细胞对多种药物重新致敏。为了减轻术后肿瘤复发,一种基于植入体的系统可以促进DTX和NIC的持续释放。将DTX和NIC加入纳米纤维(NF)系统中,通过局部释放防止现场复发,并使DTX耐药细胞重新敏感。主要发现:静电纺丝法制得的DTX-NIC纳米膜直径为334±96.14 nm,具有持续释放6 d的特点。DTX-NIC与纳米膜结合后,线粒体损伤、活性氧水平和细胞凋亡指数升高,表明其细胞毒性得到改善。通过引入NIC观察到PC-3/DTX细胞的再敏化,这可能是由于抑制p-Akt1, p-Akt1在耐药细胞中过表达。结论:dtox - nic NF具有较强的抗肿瘤活性和对耐药细胞的再致敏作用,可作为预防前列腺癌复发的有效治疗方案。
{"title":"Docetaxel and niclosamide-loaded nanofiber systems for improved chemo-therapeutic activity and resistance reversal in prostate cancer.","authors":"Saurabh Shah, Paras Famta, Ganesh Vambhurkar, Rahul Kumar, Giriraj Pandey, Gurpreet Singh, Suraj Wagh, Shubham Kanaujiya, Dilip Kumar Arya, Abhishek Sharma, Akshay Shinde, Sajja Bhanu Prasad, Sachin Chandankar, Swapnil Shinde, Anamika Sharma, P S Rajinikanth, Dharmendra Kumar Khatri, Amit Asthana, Saurabh Srivastava","doi":"10.1080/03639045.2025.2453533","DOIUrl":"10.1080/03639045.2025.2453533","url":null,"abstract":"<p><strong>Objective: </strong>The objective of the study was to tackle the recurrence of prostate cancer (PCa) post-surgery and to re-sensitize the docetaxel (DTX)-resistant PC-3 cells to chemo-therapy using NIC.</p><p><strong>Significance: </strong>Prolonged DTX therapy leads to the emergence of chemo-resistance by overexpression of PI3K-AKT pathway in PCa along with tumor recurrence post-surgery. Suppression of this pathway could be essential in improving the anticancer activity of DTX and re-sensitizing the resistant cells.</p><p><strong>Method: </strong>Niclosamide (NIC), an anthelmintic drug has shown tremendous anticancer potential and has re-sensitized the resistant cells to various drugs. To mitigate the post-surgical tumor recurrence, an implant-based system facilitating the sustained release of DTX and NIC could be beneficial. DTX and NIC were incorporated within a nanofiber (NF) system to prevent on-site recurrence by local release and re-sensitize the DTX-resistant cells.</p><p><strong>Key findings: </strong>The fabricated DTX-NIC NF <i>via</i> electrospinning were 334 ± 96.14 nm in diameter and demonstrated sustained release profile till 6 d. Elevated mitochondrial damage, reactive oxygen species levels and apoptotic index revealed improvement in the cytotoxicity of DTX-NIC post incorporation into the NF owing to their sustained release profile. Re-sensitization of PC-3/DTX cells was observed by introduction of NIC which could be due to the suppression of p-Akt1, which was overexpressed in resistant cells.</p><p><strong>Conclusion: </strong>From superior activity of DTX-NIC NF and re-sensitization of resistant cells, we conclude that DTX-NIC NF could be a beneficial therapeutic regimen in preventing tumor recurrence in PCa.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"132-143"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-17DOI: 10.1080/03639045.2024.2449130
Ranieli Paiva Lopes, Millena Alves Máximo Vaz, Fernanda Lopes Ferreira, Grasiely Faria de Sousa, Cintia Lopes de Brito Magalhães, Sidney Augusto Vieira-Filho, Jaqueline Maria Siqueira Ferreira, Antônio Helvécio Tótola, Lucienir Pains Duarte, José Carlos de Magalhães
Background: Tontelea micrantha, a notable plant species, has garnered interest for its medicinal properties, including anti-inflammatory, antibacterial and antiviral effects. A vaccine for Chikungunia virus is still under evaluation and no specific antiviral drug has been licensed to date.
Objective: The work investigated antiviral activity of ethyl acetate (EAEF) and methanolic (EMF) extracts from T. micrantha leaves in mammalian cells exposed to Alphavirus chikungunya (CHIKV).
Methods: The cytotoxicity, antiviral activity, selectivity index, effect on viral gene expression, virus production, and mechanisms of action were evaluated.
Results: EAEF and EMF extracts showed anti-CHIKV effects at non-cytotoxic concentrations, with CC50 above 300 μg/mL, EC50 of 18 and 43 μg/mL respectively, and selectivity Index above 4. These concentrations drastically reduce viral yields and CHIKV gene expression and have shown activity both directly on viral particles and at different stages of the viral cycle.
Conclusion: EAEF and EMF showed robust antiviral activity against CHIKV, making them promising candidates for the development of anti-CHIKV drugs.
{"title":"Potent antiviral action detected in <i>Tontelea micrantha</i> extracts against <i>Alphavirus chikungunya</i>.","authors":"Ranieli Paiva Lopes, Millena Alves Máximo Vaz, Fernanda Lopes Ferreira, Grasiely Faria de Sousa, Cintia Lopes de Brito Magalhães, Sidney Augusto Vieira-Filho, Jaqueline Maria Siqueira Ferreira, Antônio Helvécio Tótola, Lucienir Pains Duarte, José Carlos de Magalhães","doi":"10.1080/03639045.2024.2449130","DOIUrl":"10.1080/03639045.2024.2449130","url":null,"abstract":"<p><strong>Background: </strong><i>Tontelea micrantha</i>, a notable plant species, has garnered interest for its medicinal properties, including anti-inflammatory, antibacterial and antiviral effects. A vaccine for Chikungunia virus is still under evaluation and no specific antiviral drug has been licensed to date.</p><p><strong>Objective: </strong>The work investigated antiviral activity of ethyl acetate (EAEF) and methanolic (EMF) extracts from <i>T. micrantha</i> leaves in mammalian cells exposed to <i>Alphavirus chikungunya</i> (CHIKV).</p><p><strong>Methods: </strong>The cytotoxicity, antiviral activity, selectivity index, effect on viral gene expression, virus production, and mechanisms of action were evaluated.</p><p><strong>Results: </strong>EAEF and EMF extracts showed anti-CHIKV effects at non-cytotoxic concentrations, with CC<sub>50</sub> above 300 μg/mL, EC<sub>50</sub> of 18 and 43 μg/mL respectively, and selectivity Index above 4. These concentrations drastically reduce viral yields and CHIKV gene expression and have shown activity both directly on viral particles and at different stages of the viral cycle.</p><p><strong>Conclusion: </strong>EAEF and EMF showed robust antiviral activity against CHIKV, making them promising candidates for the development of anti-CHIKV drugs.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"102-110"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Highly branched poly(β-amino ester) (HPAEs)-based gene therapy holds promise for treating lung cystic fibrosis (CF). However, the translation of HPAEs/DNA nanoparticles into clinical applications poses a significant challenge due to the requirement for high concentrations of the formulation.
Methods: In this work, a straightforward and scalable concentration method was developed for concentrating HPAEs/DNA polyplexes. A series of different buffers with various pH values and ionic components were initially tested to develop the optimized HPAEs/DNA polyplex formulation. Subsequently, the optimized HPAEs/DNA polyplex formulation was concentrated through lyophilization and ultrafiltration.
Results: The ultrafiltration outperformed the lyophilization in concentration capacity, showing a 24-fold increase in the concentrated formulation compared to the original non-concentrated formulation. The concentration does not disturb the transfection efficiency in lung CF epithelial cells, indicating its potential for lung delivery applications. Moreover, the concentrated HPAEs/DNA polyplex successfully restored the production of CF transmembrane conductance regulator (CFTR) protein in primary lung CF epithelial cells, surpassing the performance of the non-concentrated common gene transfection reagents such as Lipofectamine 3000 and Xfect.
Conclusion: The concentrated HPAEs/DNA formulation represents a promising step forward for preclinical testing (e.g. in vivo evaluation), with further research needed to confirm its potential for clinical use.
{"title":"Formulate a concentrated highly branched poly(β-amino ester)/DNA polyplex - one step closer to application in lung cystic fibrosis disease.","authors":"Bei Qiu, Yinghao Li, Zhonglei He, Zishan Li, Sébastien Terreau, Xianqing Wang, Jing Lyu, Wenxin Wang, Irene Lara-Sáez","doi":"10.1080/03639045.2024.2448271","DOIUrl":"10.1080/03639045.2024.2448271","url":null,"abstract":"<p><strong>Objective: </strong>Highly branched poly(β-amino ester) (HPAEs)-based gene therapy holds promise for treating lung cystic fibrosis (CF). However, the translation of HPAEs/DNA nanoparticles into clinical applications poses a significant challenge due to the requirement for high concentrations of the formulation.</p><p><strong>Methods: </strong>In this work, a straightforward and scalable concentration method was developed for concentrating HPAEs/DNA polyplexes. A series of different buffers with various pH values and ionic components were initially tested to develop the optimized HPAEs/DNA polyplex formulation. Subsequently, the optimized HPAEs/DNA polyplex formulation was concentrated through lyophilization and ultrafiltration.</p><p><strong>Results: </strong>The ultrafiltration outperformed the lyophilization in concentration capacity, showing a 24-fold increase in the concentrated formulation compared to the original non-concentrated formulation. The concentration does not disturb the transfection efficiency in lung CF epithelial cells, indicating its potential for lung delivery applications. Moreover, the concentrated HPAEs/DNA polyplex successfully restored the production of CF transmembrane conductance regulator (CFTR) protein in primary lung CF epithelial cells, surpassing the performance of the non-concentrated common gene transfection reagents such as Lipofectamine 3000 and Xfect.</p><p><strong>Conclusion: </strong>The concentrated HPAEs/DNA formulation represents a promising step forward for preclinical testing (e.g. <i>in vivo</i> evaluation), with further research needed to confirm its potential for clinical use.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"91-101"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2025-01-21DOI: 10.1080/03639045.2025.2453967
Shama Parveen, Jasveer Kaur, Om Silakari, Bharti Sapra
Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using in silico tools.
Methods: Poloxamer 407 and PEG 400 were selected as the components from in silico studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility. Different evaluation techniques used to select the optimized formulation. The in vitro antimicrobial activity against Candida albicans was determined for the optimized formulation to illustrate the efficacy of the developed formulation.
Results: Hydrogel containing 15% poloxamer exhibited gelation time of 92.67 ± 3.51 s, and gelation temperature of 36.67 °C with good spreadability of 13.00 ± 0.02 cm2. CED values for poloxamer 407, PEG 400, and Voriconazole individually were found to be 3.23 × 10-8, 3.21 × 10-8, 4.84 × 10-8, respectively, whereas in the combination of poloxamer 407 and PEG 400 was found to 3.85 × 10-8 and in ratio 9:1 was found to be 3.81 × 10-8 indicated the best miscibility between poloxamer 407 and PEG 400 in 9:1 ratio. Based on solvation-free energy of voriconazole (-48.343 kJ/mol) ethanol was selected as the solvent system. Optimized formulation showed the sustained release over the 36 h and good antimicrobial effect.
Conclusion: A thermoresponsive hydrogel of voriconazole was developed using Biovia Material Studio 2022, integrating computational predictions and molecular dynamics simulations to streamline polymer and solvent selection. This approach minimized trial-and-error experiments, enabling efficient formulation while enhancing understanding of polymer-polymer and drug-polymer interactions.
目的:制备伏立康唑热敏水凝胶,并对其性能进行评价。方法:选择波洛沙姆407和PEG 400作为伏立康唑热反应水凝胶的硅晶片组分。利用Biovia Material Studio 2022软件计算聚能密度(CED)和溶解度参数(SP),预测聚合物-聚合物混相和药物-聚合物混相。采用不同的评价技术选择最佳配方。对优化后的制剂进行了体外抗白色念珠菌活性测定,以验证所制制剂的有效性。结果:波洛沙姆含量为15%的水凝胶胶凝时间为92.67±3.51 s,胶凝温度为36.67℃,涂胶性为13.00±0.02 cm2。泊洛沙姆407、PEG 400和伏立康唑的CED值分别为3.23 × 10-8、3.21 × 10-8和4.84 × 10-8,而泊洛沙姆407与PEG 400合用的CED值为3.85 × 10-8,比例为9:1时,泊洛沙姆407与PEG 400的混溶性最佳,比例为3.81 × 10-8。根据伏立康唑的无溶剂能(-48.343 kJ/mol),选择乙醇作为溶剂体系。优化后的配方缓释36 h,抗菌效果良好。结论:利用Biovia Material Studio 2022开发了伏立康唑热响应水凝胶,将计算预测和分子动力学模拟相结合,简化了聚合物和溶剂的选择。这种方法最大限度地减少了反复试验,实现了有效的配方,同时增强了对聚合物和药物-聚合物相互作用的理解。
{"title":"Optimizing voriconazole-loaded thermoresponsive hydrogel: <i>in silico</i> tools and <i>ex vivo</i> studies.","authors":"Shama Parveen, Jasveer Kaur, Om Silakari, Bharti Sapra","doi":"10.1080/03639045.2025.2453967","DOIUrl":"10.1080/03639045.2025.2453967","url":null,"abstract":"<p><strong>Objective: </strong>The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using <i>in silico</i> tools.</p><p><strong>Methods: </strong>Poloxamer 407 and PEG 400 were selected as the components from <i>in silico</i> studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility. Different evaluation techniques used to select the optimized formulation. The <i>in vitro</i> antimicrobial activity against <i>Candida albicans</i> was determined for the optimized formulation to illustrate the efficacy of the developed formulation.</p><p><strong>Results: </strong>Hydrogel containing 15% poloxamer exhibited gelation time of 92.67 ± 3.51 s, and gelation temperature of 36.67 °C with good spreadability of 13.00 ± 0.02 cm<sup>2</sup>. CED values for poloxamer 407, PEG 400, and Voriconazole individually were found to be 3.23 × 10<sup>-8</sup>, 3.21 × 10<sup>-8</sup>, 4.84 × 10<sup>-8</sup>, respectively, whereas in the combination of poloxamer 407 and PEG 400 was found to 3.85 × 10<sup>-8</sup> and in ratio 9:1 was found to be 3.81 × 10<sup>-8</sup> indicated the best miscibility between poloxamer 407 and PEG 400 in 9:1 ratio. Based on solvation-free energy of voriconazole (-48.343 kJ/mol) ethanol was selected as the solvent system. Optimized formulation showed the sustained release over the 36 h and good antimicrobial effect.</p><p><strong>Conclusion: </strong>A thermoresponsive hydrogel of voriconazole was developed using Biovia Material Studio 2022, integrating computational predictions and molecular dynamics simulations to streamline polymer and solvent selection. This approach minimized trial-and-error experiments, enabling efficient formulation while enhancing understanding of polymer-polymer and drug-polymer interactions.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"144-155"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}