The Cadherin EGF LAG seven-pass G-type receptor (Celsr) family belongs to the adhesion G-protein coupled receptor superfamily. In most vertebrates, the Celsr family has three members (CELSR1–3), whereas zebrafish display four paralogues (celsr1a, 1b, 2, 3). Although studies have shown the importance of the Celsr family in planar cell polarity, axonal guidance, and dendritic growth, the molecular mechanisms of the Celsr family regulating these cellular processes in vertebrates remain elusive. Zebrafish is an experimentally more amenable model to study vertebrate development, as zebrafish embryos develop externally, optically transparent, remain alive with malformed organs, and zebrafish is genetically similar to humans. Understanding the detailed expression pattern is the first step of exploring the functional mechanisms of the genes involved in development. Thus, we report the spatiotemporal expression pattern of Celsr family members in zebrafish nervous tissues. Our analysis shows that celsr1b and celsr2 are expressed maternally. In embryos, celsr1a, celsr1b, and celsr2 are expressed in the neural progenitors, and celsr3 is expressed in all five primary neural clusters of the brain and mantle layer of the spinal cord. In juvenile zebrafish, celsr1a, celsr1b, and celsr2 are presumably expressed in the neural progenitor enriched regions of the CNS. Therefore, the expression pattern of zebrafish Celsr family members is reminiscent of patterns described in other vertebrates or mammalian speciate. This indicates the conserved role of Celsr family genes in nervous system development and suggests zebrafish as an excellent model to explore the cellular and molecular mechanisms of Celsr family genes in vertebrate neurogenesis.
{"title":"Celsr family genes are dynamically expressed in embryonic and juvenile zebrafish","authors":"Bhagyashri Joshi, Himanshu Gaur, Subhra Prakash Hui, Chinmoy Patra","doi":"10.1002/dneu.22868","DOIUrl":"10.1002/dneu.22868","url":null,"abstract":"<p>The Cadherin EGF LAG seven-pass G-type receptor (Celsr) family belongs to the adhesion G-protein coupled receptor superfamily. In most vertebrates, the Celsr family has three members (<i>CELSR1–3</i>), whereas zebrafish display four paralogues (<i>celsr1a, 1b, 2, 3</i>). Although studies have shown the importance of the Celsr family in planar cell polarity, axonal guidance, and dendritic growth, the molecular mechanisms of the Celsr family regulating these cellular processes in vertebrates remain elusive. Zebrafish is an experimentally more amenable model to study vertebrate development, as zebrafish embryos develop externally, optically transparent, remain alive with malformed organs, and zebrafish is genetically similar to humans. Understanding the detailed expression pattern is the first step of exploring the functional mechanisms of the genes involved in development. Thus, we report the spatiotemporal expression pattern of Celsr family members in zebrafish nervous tissues. Our analysis shows that <i>celsr1b</i> and <i>celsr2</i> are expressed maternally. In embryos, <i>celsr1a</i>, <i>celsr1b</i>, and <i>celsr2</i> are expressed in the neural progenitors, and <i>celsr3</i> is expressed in all five primary neural clusters of the brain and mantle layer of the spinal cord. In juvenile zebrafish, <i>celsr1a, celsr1b</i>, and <i>celsr2</i> are presumably expressed in the neural progenitor enriched regions of the CNS. Therefore, the expression pattern of zebrafish Celsr family members is reminiscent of patterns described in other vertebrates or mammalian speciate. This indicates the conserved role of Celsr family genes in nervous system development and suggests zebrafish as an excellent model to explore the cellular and molecular mechanisms of Celsr family genes in vertebrate neurogenesis.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 2","pages":"192-213"},"PeriodicalIF":3.0,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39657210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Fei Chen, Fei Wang, Nan-Xing Huang, Lan Xiao, Feng Mei
Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing by OLs and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases.
{"title":"Oligodendrocytes and myelin: Active players in neurodegenerative brains?","authors":"Jing-Fei Chen, Fei Wang, Nan-Xing Huang, Lan Xiao, Feng Mei","doi":"10.1002/dneu.22867","DOIUrl":"10.1002/dneu.22867","url":null,"abstract":"<p>Oligodendrocytes (OLs) are a major type of glial cells in the central nervous system that generate multiple myelin sheaths to wrap axons. Myelin ensures fast and efficient propagation of action potentials along axons and supports neurons with nourishment. The decay of OLs and myelin has been implicated in age-related neurodegenerative diseases and these changes are generally considered as an inevitable result of neuron loss and axon degeneration. Noticeably, OLs and myelin undergo dynamic changes in healthy adult brains, that is, newly formed OLs are continuously added throughout life from the differentiation of oligodendrocyte precursor cells (OPCs) and the pre-existing myelin sheaths may undergo degeneration or remodeling. Increasing evidence has shown that changes in OLs and myelin are present in the early stages of neurodegenerative diseases, and even prior to significant neuronal loss and functional deficits. More importantly, oligodendroglia-specific manipulation, by either deletion of the disease gene or enhancement of myelin renewal, can alleviate functional impairments in neurodegenerative animal models. These findings underscore the possibility that OLs and myelin are not passively but actively involved in neurodegenerative diseases and may play an important role in modulating neuronal function and survival. In this review, we summarize recent work characterizing by OLs and myelin changes in both healthy and neurodegenerative brains and discuss the potential of targeting oligodendroglial cells in treating neurodegenerative diseases.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 2","pages":"160-174"},"PeriodicalIF":3.0,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39738011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lila Wollman, Andrew Hill, Brady Hasse, Christina Young, Giovanni Hernandez-De La Pena, Richard B Levine, Ralph F. Fregosi
Serotonin plays an important role in the development of brainstem circuits that control breathing. Here, we test the hypothesis that developmental nicotine exposure (DNE) alters the breathing-related motor response to serotonin (5HT). Pregnant rats were exposed to nicotine or saline, and brainstem–spinal cord preparations from 1- to 5-day-old pups were studied in a split-bath configuration, allowing drugs to be applied selectively to the medulla or spinal cord. The activity of the fourth cervical ventral nerve roots (C4VR), which contain axons of phrenic motoneurons, was recorded. We applied 5HT alone or together with antagonists of 5HT1A, 5HT2A, or 5HT7 receptor subtypes. In control preparations, 5HT applied to the medulla consistently reduced C4VR frequency and this reduction could not be blocked by any of the three antagonists. In DNE preparations, medullary 5HT caused a large and sustained frequency increase (10 min), followed by a sustained decrease. Notably, the transient increase in frequency could be blocked by the independent addition of any of the antagonists. Experiments with subtype-specific agonists suggest that the 5HT7 subtype may contribute to the increased frequency response in the DNE preparations. Changes in C4VR burst amplitude in response to brainstem 5HT were uninfluenced by DNE. Addition of 5HT to the caudal chamber modestly increased phasic and greatly increased tonic C4VR activity, but there were no effects of DNE. The data show that DNE alters serotonergic signaling within brainstem circuits that control respiratory frequency but does not functionally alter serotonin signaling in the phrenic motoneuron pool.
{"title":"Influence of developmental nicotine exposure on serotonergic control of breathing-related motor output","authors":"Lila Wollman, Andrew Hill, Brady Hasse, Christina Young, Giovanni Hernandez-De La Pena, Richard B Levine, Ralph F. Fregosi","doi":"10.1002/dneu.22866","DOIUrl":"10.1002/dneu.22866","url":null,"abstract":"<p>Serotonin plays an important role in the development of brainstem circuits that control breathing. Here, we test the hypothesis that developmental nicotine exposure (DNE) alters the breathing-related motor response to serotonin (5HT). Pregnant rats were exposed to nicotine or saline, and brainstem–spinal cord preparations from 1- to 5-day-old pups were studied in a split-bath configuration, allowing drugs to be applied selectively to the medulla or spinal cord. The activity of the fourth cervical ventral nerve roots (C4VR), which contain axons of phrenic motoneurons, was recorded. We applied 5HT alone or together with antagonists of 5HT1A, 5HT2A, or 5HT7 receptor subtypes. In control preparations, 5HT applied to the medulla consistently reduced C4VR frequency and this reduction could not be blocked by any of the three antagonists. In DNE preparations, medullary 5HT caused a large and sustained frequency increase (10 min), followed by a sustained decrease. Notably, the transient increase in frequency could be blocked by the independent addition of any of the antagonists. Experiments with subtype-specific agonists suggest that the 5HT7 subtype may contribute to the increased frequency response in the DNE preparations. Changes in C4VR burst amplitude in response to brainstem 5HT were uninfluenced by DNE. Addition of 5HT to the caudal chamber modestly increased phasic and greatly increased tonic C4VR activity, but there were no effects of DNE. The data show that DNE alters serotonergic signaling within brainstem circuits that control respiratory frequency but does not functionally alter serotonin signaling in the phrenic motoneuron pool.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 2","pages":"175-191"},"PeriodicalIF":3.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10799280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Astrocytes are the most abundant cell type in the central nervous system, carrying out a wide spectrum of biological functions. During early development, neural progenitor cells in the ventricular zone first produce neurons, followed by macroglia in the form of astrocytes or oligodendrocytes. Although the lineage progression of oligodendrocytes has been well understood, the developmental staging of astrocytes has not been defined and the molecular mechanisms underlying their fate specification and differentiation remain largely unknown. The recent advent of sophisticated molecular biology technology, especially single-cell sequencing, has enabled a deeper understanding of the patterning and molecular specification of astrocyte lineage. Based on the recent single-cell sequencing data, we provide an up-to-date and mechanistic review of the early development and heterogeneity of astrocyte lineage in the developing cortex, and compile a list of stage-specific markers for astrocyte development. In addition, emerging evidence suggests that under physiological conditions, mature astrocytes are partially specialized progenitor cells that have functionally adapted to local neuronal microenvironment. Under pathological or injury conditions, astrocytes are capable of reentering cell cycles and differentiating into other neural cell types under the influence of both intrinsic factors and environmental cues.
{"title":"Origin, molecular specification, and stemness of astrocytes","authors":"Kang Zheng, Hao Huang, Junlin Yang, Mengsheng Qiu","doi":"10.1002/dneu.22863","DOIUrl":"10.1002/dneu.22863","url":null,"abstract":"<p>Astrocytes are the most abundant cell type in the central nervous system, carrying out a wide spectrum of biological functions. During early development, neural progenitor cells in the ventricular zone first produce neurons, followed by macroglia in the form of astrocytes or oligodendrocytes. Although the lineage progression of oligodendrocytes has been well understood, the developmental staging of astrocytes has not been defined and the molecular mechanisms underlying their fate specification and differentiation remain largely unknown. The recent advent of sophisticated molecular biology technology, especially single-cell sequencing, has enabled a deeper understanding of the patterning and molecular specification of astrocyte lineage. Based on the recent single-cell sequencing data, we provide an up-to-date and mechanistic review of the early development and heterogeneity of astrocyte lineage in the developing cortex, and compile a list of stage-specific markers for astrocyte development. In addition, emerging evidence suggests that under physiological conditions, mature astrocytes are partially specialized progenitor cells that have functionally adapted to local neuronal microenvironment. Under pathological or injury conditions, astrocytes are capable of reentering cell cycles and differentiating into other neural cell types under the influence of both intrinsic factors and environmental cues.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 2","pages":"149-159"},"PeriodicalIF":3.0,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39805058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Bing, Jing Sun, Rui Zhao, Lina Sun, Chao Xi, Jin Liu, Shaoju Zeng
{"title":"The Effects of Wnt, BMP and Notch Signaling Pathways on Cell Proliferation and Neural Differentiation in a Song Control Nucleus (HVC) of Lonchura Striata","authors":"Jie Bing, Jing Sun, Rui Zhao, Lina Sun, Chao Xi, Jin Liu, Shaoju Zeng","doi":"10.2139/ssrn.4239427","DOIUrl":"https://doi.org/10.2139/ssrn.4239427","url":null,"abstract":"","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68743038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Axon pruning facilitates the removal of ectopic and misguided axons and plays an important role in neural circuit formation during brain development. Sema3F and its receptor neuropilin-2 (Nrp2) have been shown to be involved in the stereotyped pruning of the infrapyramidal bundle (IPB) of mossy fibers of the dentate gyrus (DG) in the developing hippocampus.
Collapsin response mediator proteins (CRMPs) were originally identified as an intracellular mediator of semaphorin signaling, and the defective pruning of IPB was recently reported in CRMP2-/- and CRMP3-/- mice. CRMP1 and CRMP4 have high homology to CRMP2 and CRMP3, and their expression in the developing mouse brain overlaps; however, their role in IPB pruning has not yet been examined.
In this study, we report that CRMP4, but not CRMP1, is involved in IPB pruning during neural circuit formation in the hippocampus. Our genetic interaction analyses indicated that CRMP2 and CRMP4 have distinct functions and that CRMP2 mediates IPB pruning via Nrp2. We also observed the altered synaptic terminals of mossy fibers in CRMP2 and CRMP4 mutant mice. These results suggest that CRMP family members have a distinct function in the axon pruning and targeting of mossy fibers of the hippocampal DG in the developing mouse brain.
{"title":"Regulation of axon pruning of mossy fiber projection in hippocampus by CRMP2 and CRMP4","authors":"Yurika Nakanishi, Satoshi Akinaga, Koki Osawa, Natusmi Suzuki, Ayaka Sugeno, Papachan Kolattukudy, Yoshio Goshima, Toshio Ohshima","doi":"10.1002/dneu.22865","DOIUrl":"10.1002/dneu.22865","url":null,"abstract":"<p>Axon pruning facilitates the removal of ectopic and misguided axons and plays an important role in neural circuit formation during brain development. Sema3F and its receptor neuropilin-2 (Nrp2) have been shown to be involved in the stereotyped pruning of the infrapyramidal bundle (IPB) of mossy fibers of the dentate gyrus (DG) in the developing hippocampus.</p><p>Collapsin response mediator proteins (CRMPs) were originally identified as an intracellular mediator of semaphorin signaling, and the defective pruning of IPB was recently reported in CRMP2-/- and CRMP3-/- mice. CRMP1 and CRMP4 have high homology to CRMP2 and CRMP3, and their expression in the developing mouse brain overlaps; however, their role in IPB pruning has not yet been examined.</p><p>In this study, we report that CRMP4, but not CRMP1, is involved in IPB pruning during neural circuit formation in the hippocampus. Our genetic interaction analyses indicated that CRMP2 and CRMP4 have distinct functions and that CRMP2 mediates IPB pruning via Nrp2. We also observed the altered synaptic terminals of mossy fibers in CRMP2 and CRMP4 mutant mice. These results suggest that CRMP family members have a distinct function in the axon pruning and targeting of mossy fibers of the hippocampal DG in the developing mouse brain.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 1","pages":"138-146"},"PeriodicalIF":3.0,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22865","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39744111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microglia are important immune cells in the central nervous system. There is growing interest in the study of microglia due to their implication in neurodevelopment, acute injury, and neuropsychiatric disorders. They undergo birth, death, and regeneration during the lifetime. Although data on the ontogeny of microglia have been studied for decades, the birth and repopulation of microglia remain legendary and mysterious. In this review, we discuss recent studies that provide new insights into the origin and regeneration of microglia. Modulating the development of microglia may offer new therapeutic opportunities for preventing deleterious effects of inflammation and controlling excessive inflammation in brain diseases.
{"title":"The origin and repopulation of microglia","authors":"Lijuan Zhang, Yue Cao, Xin Zhang, Xinyang Gu, Ying Mao, Bo Peng","doi":"10.1002/dneu.22862","DOIUrl":"10.1002/dneu.22862","url":null,"abstract":"<p>Microglia are important immune cells in the central nervous system. There is growing interest in the study of microglia due to their implication in neurodevelopment, acute injury, and neuropsychiatric disorders. They undergo birth, death, and regeneration during the lifetime. Although data on the ontogeny of microglia have been studied for decades, the birth and repopulation of microglia remain legendary and mysterious. In this review, we discuss recent studies that provide new insights into the origin and regeneration of microglia. Modulating the development of microglia may offer new therapeutic opportunities for preventing deleterious effects of inflammation and controlling excessive inflammation in brain diseases.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 1","pages":"112-124"},"PeriodicalIF":3.0,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22862","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39788566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.
{"title":"Microglial TREM2 in amyotrophic lateral sclerosis","authors":"Manling Xie, Shunyi Zhao, Dale B. Bosco, Aivi Nguyen, Long-Jun Wu","doi":"10.1002/dneu.22864","DOIUrl":"10.1002/dneu.22864","url":null,"abstract":"<p>Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is an aggressive motor neuron degenerative disease characterized by selective loss of both upper and lower motor neurons. The mechanisms underlying disease initiation and progression are poorly understood. The involvement of nonmotor neuraxis emphasizes the contribution of glial cells in disease progress. Microglia comprise a unique subset of glial cells and are the principal immune cells in the central nervous system (CNS). Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, within the CNS, is exclusively expressed on microglia and plays crucial roles in microglial proliferation, migration, activation, metabolism, and phagocytosis. Genetic evidence has linked TREM2 to neurodegenerative diseases including ALS, but its function in ALS pathogenesis is largely unknown. In this review, we summarize how microglial activation, with a specific focus on TREM2 function, affects ALS progression clinically and experimentally. Understanding microglial TREM2 function will help pinpoint the molecular target for ALS treatment.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 1","pages":"125-137"},"PeriodicalIF":3.0,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898078/pdf/nihms-1768807.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39789047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuting Li, Min Cai, Yumei Feng, Bryant Yung, Yi Wang, Nannan Gao, Xi Xu, Huanhuan Zhang, Huiwei Huang, Dengbing Yao
Hundreds of millions of people worldwide suffer from peripheral nerve damage resulting from car accidents, falls, industrial accidents, residential accidents, and wars. The purpose of our study was to further investigate the effects of Wallerian degeneration (WD) after rat sciatic nerve injury and to screen for critical long noncoding RNAs (lncRNAs) in WD. We found H19 to be essential for nerve degeneration and regeneration and to be highly expressed in the sciatic nerves of rats with WD. lncRNA H19 potentially impaired the recovery of sciatic nerve function in rats. H19 was mainly localized in the cytoplasm of Schwann cells (SCs) and promoted their migration. H19 promoted the apoptosis of dorsal root ganglion (DRG) neurons and slowed the growth of DRG axons. The lncRNA H19 may play a role in WD through the Wnt/β-catenin signaling pathway and is coexpressed with a variety of crucial mRNAs during WD. These data provide further insight into the molecular mechanisms of WD.
{"title":"Effect of lncRNA H19 on nerve degeneration and regeneration after sciatic nerve injury in rats","authors":"Yuting Li, Min Cai, Yumei Feng, Bryant Yung, Yi Wang, Nannan Gao, Xi Xu, Huanhuan Zhang, Huiwei Huang, Dengbing Yao","doi":"10.1002/dneu.22861","DOIUrl":"10.1002/dneu.22861","url":null,"abstract":"<p>Hundreds of millions of people worldwide suffer from peripheral nerve damage resulting from car accidents, falls, industrial accidents, residential accidents, and wars. The purpose of our study was to further investigate the effects of Wallerian degeneration (WD) after rat sciatic nerve injury and to screen for critical long noncoding RNAs (lncRNAs) in WD. We found H19 to be essential for nerve degeneration and regeneration and to be highly expressed in the sciatic nerves of rats with WD. lncRNA H19 potentially impaired the recovery of sciatic nerve function in rats. H19 was mainly localized in the cytoplasm of Schwann cells (SCs) and promoted their migration. H19 promoted the apoptosis of dorsal root ganglion (DRG) neurons and slowed the growth of DRG axons. The lncRNA H19 may play a role in WD through the Wnt/β-catenin signaling pathway and is coexpressed with a variety of crucial mRNAs during WD. These data provide further insight into the molecular mechanisms of WD.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 1","pages":"98-111"},"PeriodicalIF":3.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22861","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39922209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Interferon regulatory factor-7 (IRF7) is an essential regulator of both innate and adaptive immunity. It is also expressed in the otic vesicle of zebrafish embryos. However, any role for irf7 in hair cell development was uncharacterized. Does it work as a potential deaf gene to regulate hair cell development? We used whole-mount in situ hybridization (WISH) assay and morpholino-mediated gene knockdown method to investigate the role of irf7 in the development of otic vesicle hair cells during zebrafish embryogenesis. We performed RNA sequencing to gain a detailed insight into the molecules/genes which are altered upon downregulation of irf7. Compared to the wild-type siblings, knockdown of irf7 resulted in severe developmental retardation in zebrafish embryos as well as loss of neuromasts and damage to hair cells at an early stage (within 3 days post fertilization). Coinjection of zebrafish irf7 mRNA could partially rescued the defects of the morphants. atp1b2b mRNA injection can also partially rescue the phenotype induced by irf7 gene deficiency. Loss of hair cells in irf7-morphants does not result from cell apoptosis. Gene expression profiles show that, compared to wild-type, knockdown of irf7 can lead to 2053 and 2678 genes being upregulated and downregulated, respectively. Among them, 18 genes were annotated to hair cell (HC) development or posterior lateral line (PLL) development. All results suggest that irf7 plays an essential role in hair cell development in zebrafish, indicating that irf7 may be a member of deafness gene family.
{"title":"Interferon regulatory factor-7 is required for hair cell development during zebrafish embryogenesis","authors":"Song-Qun Hu, Hui-Min Xu, Fu-Ping Qian, Chang-Sheng Chen, Xin Wang, Dong Liu, Lei Cheng","doi":"10.1002/dneu.22860","DOIUrl":"10.1002/dneu.22860","url":null,"abstract":"<p>Interferon regulatory factor-7 (IRF7) is an essential regulator of both innate and adaptive immunity. It is also expressed in the otic vesicle of zebrafish embryos. However, any role for <i>irf7</i> in hair cell development was uncharacterized. Does it work as a potential deaf gene to regulate hair cell development? We used whole-mount in situ hybridization (WISH) assay and morpholino-mediated gene knockdown method to investigate the role of <i>irf7</i> in the development of otic vesicle hair cells during zebrafish embryogenesis. We performed RNA sequencing to gain a detailed insight into the molecules/genes which are altered upon downregulation of <i>irf7</i>. Compared to the wild-type siblings, knockdown of <i>irf7</i> resulted in severe developmental retardation in zebrafish embryos as well as loss of neuromasts and damage to hair cells at an early stage (within 3 days post fertilization). Coinjection of zebrafish <i>irf7</i> mRNA could partially rescued the defects of the morphants. <i>atp1b2b</i> mRNA injection can also partially rescue the phenotype induced by <i>irf7</i> gene deficiency. Loss of hair cells in <i>irf7</i>-morphants does not result from cell apoptosis. Gene expression profiles show that, compared to wild-type, knockdown of <i>irf7</i> can lead to 2053 and 2678 genes being upregulated and downregulated, respectively. Among them, 18 genes were annotated to hair cell (HC) development or posterior lateral line (PLL) development. All results suggest that <i>irf7</i> plays an essential role in hair cell development in zebrafish, indicating that <i>irf7</i> may be a member of deafness gene family.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"82 1","pages":"88-97"},"PeriodicalIF":3.0,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/49/fd/DNEU-82-88.PMC9305156.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39878281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}