Md Ferdous Wahid, R. Tafreshi, Zurwa Khan, A. Retnanto
Fluid pressure gradient in a wellbore plays a significant role to efficiently transport between source and separator facilities. The mixture of two immiscible fluids manifests in various flow patterns such as stratified, dispersed, intermittent, and annular flow, which can significantly influence the fluid’s pressure gradient. However, previous studies have only used limited flow patterns when developing their data-driven model. The aim of this study is to develop a uniform data-driven model using machine-learning (ML) algorithms that can accurately predict the pressure gradient for the oil-water flow with two stratified and seven dispersed flow patterns in a horizontal wellbore. Two different machine-learning algorithms, Artificial Neural Network (ANN) and Random Forest (RF), were employed to predict the pressure gradients. A total of 662 experimental points from nine different flow patterns were extracted from five sources that include twelve variables for different physical properties of oil-water, wellbore’s surface roughness, and input diameter. The variables are entrance length to diameter ratio, oil and water viscosity, density, velocity, and surface tension, between oil and water surface tension, surface roughness, input diameter, and flow pattern. The algorithms’ performance was evaluated using median absolute percentage error (MdAPE) and root mean squared error (RMSE). A repeated train-test split strategy was used where the final MdAPE and RMSE were computed from the average of all repetitions. The MdAPE and RMSE for the prediction of pressure gradients are 13.89% and 0.138 kPa/m using RF and 12.17% and 0.088 kPa/m using ANN, respectively. The ML algorithms’ ability to model the pressure gradient is demonstrated using measured vs. predicted analysis where the experimental data points are mostly located in close proximity of the diagonal line, indicating a suitable generalization of the models. Comparing the performance between RF and ANN shows that the latter algorithm’s prediction accuracy is significantly better (p<0.01).
{"title":"A Machine Learning Approach to Predict the Pressure Gradient of Different Oil-Water Flow Patterns in a Horizontal Wellbore","authors":"Md Ferdous Wahid, R. Tafreshi, Zurwa Khan, A. Retnanto","doi":"10.2118/204552-ms","DOIUrl":"https://doi.org/10.2118/204552-ms","url":null,"abstract":"\u0000 Fluid pressure gradient in a wellbore plays a significant role to efficiently transport between source and separator facilities. The mixture of two immiscible fluids manifests in various flow patterns such as stratified, dispersed, intermittent, and annular flow, which can significantly influence the fluid’s pressure gradient. However, previous studies have only used limited flow patterns when developing their data-driven model. The aim of this study is to develop a uniform data-driven model using machine-learning (ML) algorithms that can accurately predict the pressure gradient for the oil-water flow with two stratified and seven dispersed flow patterns in a horizontal wellbore. Two different machine-learning algorithms, Artificial Neural Network (ANN) and Random Forest (RF), were employed to predict the pressure gradients. A total of 662 experimental points from nine different flow patterns were extracted from five sources that include twelve variables for different physical properties of oil-water, wellbore’s surface roughness, and input diameter. The variables are entrance length to diameter ratio, oil and water viscosity, density, velocity, and surface tension, between oil and water surface tension, surface roughness, input diameter, and flow pattern. The algorithms’ performance was evaluated using median absolute percentage error (MdAPE) and root mean squared error (RMSE). A repeated train-test split strategy was used where the final MdAPE and RMSE were computed from the average of all repetitions. The MdAPE and RMSE for the prediction of pressure gradients are 13.89% and 0.138 kPa/m using RF and 12.17% and 0.088 kPa/m using ANN, respectively. The ML algorithms’ ability to model the pressure gradient is demonstrated using measured vs. predicted analysis where the experimental data points are mostly located in close proximity of the diagonal line, indicating a suitable generalization of the models. Comparing the performance between RF and ANN shows that the latter algorithm’s prediction accuracy is significantly better (p<0.01).","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90303152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basil M. Alfakher, A. Al-Taq, Sajjad Aldarweesh, Luai Alhamad
Guar and its derivatives are the most commonly used gelling agents for fracturing fluids. At high temperature, higher polymer loadings are required to maintain sufficient viscosity for proper proppant carry and creating the fracture geometry. To minimize fracturing fluids damage and optimize fracture conductivity, it is necessary to design a fluid that is easy to clean up by ensuring proper breaking and sufficiently low surface tension for flow back. Therefore, breakers and surfactants must be carefully selected and optimally dosed to ensure the success of fracturing treatments. In this study, two fracturing fluids were evaluated for moderate to high temperature applications with a focus on post-treatment cleanup efficiency. The first is a guar-based fluid with a borate crosslinker evaluated at 280°F and the second is a CMHPG-based fluid with a zirconate crosslinker evaluated at 320°F. The shear viscosities of both fluids were tested with a live sodium bromate breaker, a polymer encapsulated ammonium persulfate breaker and a dual breaker system combining the two breakers. Different anionic and nonionic surfactant chemistries (aminosulfonic acid and alcohol based) were investigated by measuring surface tension of the surfactant solutions at different concentrations. The compatibility of the surfactants with other fracturing fluid additives and their adsorption in Berea sandstone was also investigated. Finally, the damage caused by leak-off for each fracturing fluid was simulated by using coreflooding experiments and Berea sandstone core plugs. Lab results showed the guar and CMHPG fluids maintained sufficient viscosity for the first two hours at baseline, respectively. The encapsulated breaker proved to be effective in delaying the breaking of the fracturing fluids. The dual breaker system was the most effective and the loading was optimized for each tested temperature to provide the desired viscosity profile. Two of the examined surfactants were effective in lowering surface tension (below 30 dyne/cm) and were stable for all tested temperatures. The guar broken fluid showed better regained permeability (up to 94%) when compared to the CMHPG (up to 53%) fluid for Berea sandstone. This paper outlines a methodical approach to selecting and optimizing fracturing fluid chemical additives for better post-treatment cleanup and subsequent well productivity.
{"title":"Fracturing Fluid Design: A Closer Look at Breaker and Surfactant Selection","authors":"Basil M. Alfakher, A. Al-Taq, Sajjad Aldarweesh, Luai Alhamad","doi":"10.2118/204609-ms","DOIUrl":"https://doi.org/10.2118/204609-ms","url":null,"abstract":"\u0000 Guar and its derivatives are the most commonly used gelling agents for fracturing fluids. At high temperature, higher polymer loadings are required to maintain sufficient viscosity for proper proppant carry and creating the fracture geometry. To minimize fracturing fluids damage and optimize fracture conductivity, it is necessary to design a fluid that is easy to clean up by ensuring proper breaking and sufficiently low surface tension for flow back. Therefore, breakers and surfactants must be carefully selected and optimally dosed to ensure the success of fracturing treatments.\u0000 In this study, two fracturing fluids were evaluated for moderate to high temperature applications with a focus on post-treatment cleanup efficiency. The first is a guar-based fluid with a borate crosslinker evaluated at 280°F and the second is a CMHPG-based fluid with a zirconate crosslinker evaluated at 320°F. The shear viscosities of both fluids were tested with a live sodium bromate breaker, a polymer encapsulated ammonium persulfate breaker and a dual breaker system combining the two breakers. Different anionic and nonionic surfactant chemistries (aminosulfonic acid and alcohol based) were investigated by measuring surface tension of the surfactant solutions at different concentrations. The compatibility of the surfactants with other fracturing fluid additives and their adsorption in Berea sandstone was also investigated. Finally, the damage caused by leak-off for each fracturing fluid was simulated by using coreflooding experiments and Berea sandstone core plugs.\u0000 Lab results showed the guar and CMHPG fluids maintained sufficient viscosity for the first two hours at baseline, respectively. The encapsulated breaker proved to be effective in delaying the breaking of the fracturing fluids. The dual breaker system was the most effective and the loading was optimized for each tested temperature to provide the desired viscosity profile. Two of the examined surfactants were effective in lowering surface tension (below 30 dyne/cm) and were stable for all tested temperatures. The guar broken fluid showed better regained permeability (up to 94%) when compared to the CMHPG (up to 53%) fluid for Berea sandstone.\u0000 This paper outlines a methodical approach to selecting and optimizing fracturing fluid chemical additives for better post-treatment cleanup and subsequent well productivity.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90056806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loss of circulation is a major problem that often causes interruption to drilling operations, and reduction in efficiency. This problem often occurs when the drilled wellbore encounters a high permeable formation such as faults or fractures, leading to total or partial leakage of the drilling fluids. In this work, we present a novel semi-analytical solution and type-curves that offer a quick and accurate diagnostic tool to assess the lost-circulation of Herschel-Bulkley fluids in fractured media. Based on the pressure and mud loss trends, the tool can estimate the effective fracture conductivity, the cumulative mud-loss volume, and the leakage period. The behavior of lost-circulation into fractured formation can be assessed using analytical methods that can be deployed to perform flow diagnostics, such as the rate of fluid leakage and the associated fracture hydraulic properties. In this study, we develop a new semi-analytical method to quantify the leakage of drilling fluid flow into fractures. The developed model is applicable for non-Newtonian fluids with exhibiting yield-power-law, including shear thickening and thinning, and Bingham plastic fluids. We propose new dimensionless groups and generate novel dual type-curves, which circumvent the non-uniqueness issues in trend matching of type-curves. We use numerical simulations based on finite-elements to verify the accuracy of the proposed solution, and compare it with existing analytical solutions from the literature. Based on the proposed semi-analytical solution, we propose new dimensionless groups and generate type-curves to describe the dimensionless mud-loss volume versus the dimensionless time. To address the non-uniqueness matching issue, we propose, for the first time, complimentary derivative-based type-curves. Both type-curve sets are used in a dual trend matching, which significantly reduced the non-uniqueness issue that is typically encountered in type-curves. We use data for lost circulation from a field case to show the applicability of the proposed method. We apply the semi-analytical solver, combined with Monte-Carlo simulations, to perform a sensitivity study to assess the uncertainty of various fluid and subsurface parameters, including the hydraulic property of the fracture and the probabilistic prediction of the rate of mud leakage into the formation. The proposed approach is based on a novel semi-analytical solution and type-curves to model the flow behavior of Herschel-Bulkley fluids into fractured reservoirs, which can be used as a quick diagnostic tool to evaluate lost-circulation in drilling operations.
{"title":"Novel Analytical Solution and Type-Curves for Lost-Circulation Diagnostics of Drilling Mud in Fractured Formation","authors":"R. Albattat, H. Hoteit","doi":"10.2118/204619-ms","DOIUrl":"https://doi.org/10.2118/204619-ms","url":null,"abstract":"\u0000 Loss of circulation is a major problem that often causes interruption to drilling operations, and reduction in efficiency. This problem often occurs when the drilled wellbore encounters a high permeable formation such as faults or fractures, leading to total or partial leakage of the drilling fluids. In this work, we present a novel semi-analytical solution and type-curves that offer a quick and accurate diagnostic tool to assess the lost-circulation of Herschel-Bulkley fluids in fractured media. Based on the pressure and mud loss trends, the tool can estimate the effective fracture conductivity, the cumulative mud-loss volume, and the leakage period. The behavior of lost-circulation into fractured formation can be assessed using analytical methods that can be deployed to perform flow diagnostics, such as the rate of fluid leakage and the associated fracture hydraulic properties. In this study, we develop a new semi-analytical method to quantify the leakage of drilling fluid flow into fractures. The developed model is applicable for non-Newtonian fluids with exhibiting yield-power-law, including shear thickening and thinning, and Bingham plastic fluids. We propose new dimensionless groups and generate novel dual type-curves, which circumvent the non-uniqueness issues in trend matching of type-curves. We use numerical simulations based on finite-elements to verify the accuracy of the proposed solution, and compare it with existing analytical solutions from the literature. Based on the proposed semi-analytical solution, we propose new dimensionless groups and generate type-curves to describe the dimensionless mud-loss volume versus the dimensionless time. To address the non-uniqueness matching issue, we propose, for the first time, complimentary derivative-based type-curves. Both type-curve sets are used in a dual trend matching, which significantly reduced the non-uniqueness issue that is typically encountered in type-curves. We use data for lost circulation from a field case to show the applicability of the proposed method. We apply the semi-analytical solver, combined with Monte-Carlo simulations, to perform a sensitivity study to assess the uncertainty of various fluid and subsurface parameters, including the hydraulic property of the fracture and the probabilistic prediction of the rate of mud leakage into the formation. The proposed approach is based on a novel semi-analytical solution and type-curves to model the flow behavior of Herschel-Bulkley fluids into fractured reservoirs, which can be used as a quick diagnostic tool to evaluate lost-circulation in drilling operations.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72871461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izleena Md. Iqbar, Fauzy Othman, Hasmi Taib, M. Hamdan, F. Adam, Michael Beyer
Amid 2020 challenging business environments due to COVID-19 pandemic and strong global push towards transition to cleaner energy, PETRONAS has declared its' aspiration to achieve net zero carbon emissions by 2050. PETRONAS sustainability journey has begun for more than two decades and with strong management support towards renewable and as part of PETRONAS's technology agenda, its' research arm, PETRONAS Research Sdn. Bhd. (PRSB) has been working on ways to use renewable energy sources for offshore oil and gas platforms in Malaysia. Oil and Gas industry has long relied on turbine generators for offshore power generation. These turbo-fired machineries are operating as microgrid with existing power management system (PMS) as microgrid controllers. They normally use either gas or diesel as fuel gas to ensure reliable power generation where high maintence cost is expected to operate these generators. Also, they have low energy efficiency and hence, usually oversized to ensure meeting the demand reliably. Typically, the power generation load is being taken by two units of turbine generators with another unit as spare. This has resulted in high operational expenditure (OPEX) and contributes to high levelized cost of energy (LCOE) for offshore power generation for such conventional system. LCOE is the yardstick for power generation technology, and it measures discounted lifecycle cost consisting of both capital expenditure (CAPEX) and OPEX, divided by discounted lifecycle of annual energy production [2], [4], [5]. Also, these turbine generators operating at platforms that have gas evacuation pipelines will use up precious fuel gas which can otherwise be sold. This will have impact on the total sales gas revenue. Not withstanding, the burning of the fuel gas will result in the emissions of carbon dioxide (CO2) and hence is exposed to carbon tax. To mitigate this issue, PRSB has developed an offshore hybrid power generation concept to leverage and optimize wind turbine system for offshore power generation in weak wind area such as Malaysia. In this concept, one gas turbine generator is replaced by an offshore wind turbine adapted to low wind speed region. This will lower the maintenance cost and carbon exposure. Also, the fuel gas will be diverted to sales gas. This in turn will improve the economics of the renewable solution thereby making offshore renewable power generation feasible for oil and gas platforms. Forward thinking efforts include pushing the limits of harnessing wind energy in weak wind area such as Malaysia. In here, considerations of a total solution include not only the type of wind turbine generator that can be adapted to weak wind area and having the lowest maintenance requirements as possible, but also looking into cutting edge foundation technologies. The LCOE is expected to be lower than conventional power generation. To ensure optimized hybrid concept, careful selection and adaptations of wind turbine system and its' substructur
在2019冠状病毒病大流行和全球向清洁能源转型的强劲推动下,2020年的商业环境充满挑战,马来西亚国家石油公司宣布了到2050年实现净零碳排放的目标。马来西亚国家石油公司的可持续发展之旅已经开始了二十多年,在可再生能源的强有力的管理层支持下,作为马来西亚国家石油公司技术议程的一部分,其研究机构PETRONAS research Sdn。有限公司(PRSB)一直致力于在马来西亚的海上石油和天然气平台上使用可再生能源。石油和天然气行业长期以来一直依赖涡轮发电机进行海上发电。这些涡轮燃烧机械作为微电网运行,现有的电源管理系统(PMS)作为微电网控制器。他们通常使用燃气或柴油作为燃气燃料,以确保可靠的发电,而这些发电机的维护成本预计会很高。此外,它们的能源效率低,因此,通常是超大的,以确保可靠地满足需求。通常,发电负荷由两台涡轮发电机承担,另一台作为备用。这导致了高运营支出(OPEX),并为这种传统系统的海上发电带来了高水平能源成本(LCOE)。LCOE是发电技术的衡量标准,它衡量的是由资本支出(CAPEX)和运营成本(OPEX)组成的折现生命周期成本,除以年能源生产[2]、[2]、[5]的折现生命周期成本。此外,这些涡轮发电机在有气体疏散管道的平台上运行,将耗尽原本可以出售的宝贵燃料气体。这将对总销售收入产生影响。尽管如此,燃料气体的燃烧将导致二氧化碳(CO2)的排放,因此要缴纳碳税。为了缓解这一问题,PRSB开发了一种海上混合发电概念,以利用和优化风力涡轮机系统,用于马来西亚等风力弱地区的海上发电。在这个概念中,一个燃气涡轮发电机被一个适应低风速区域的海上风力涡轮机所取代。这将降低维护成本和碳暴露。同时,燃料气将转为销售气。反过来,这将提高可再生能源解决方案的经济性,从而使海上可再生能源发电在石油和天然气平台上变得可行。前瞻性的努力包括在马来西亚等风力弱的地区推动风能利用的极限。在这里,整体解决方案的考虑因素不仅包括可以适应弱风地区的风力涡轮机发电机类型,并且尽可能具有最低的维护要求,还包括寻找尖端的基础技术。预计LCOE将低于传统发电。为了确保优化的混合动力概念,需要仔细选择和适应风力涡轮机系统及其子结构,以实现经济有效的解决方案[3],b[2]。进行了概念工程和前端工程设计,开发了海上混合动力发电系统。本文将展示混合动力概念,分享选择合适的风力机的注意事项,并阐述导致基础类型选择和优化的决策,无论是固定底部还是浮式基础。
{"title":"Hybrid Offshore Power Generation","authors":"Izleena Md. Iqbar, Fauzy Othman, Hasmi Taib, M. Hamdan, F. Adam, Michael Beyer","doi":"10.2118/204901-ms","DOIUrl":"https://doi.org/10.2118/204901-ms","url":null,"abstract":"\u0000 Amid 2020 challenging business environments due to COVID-19 pandemic and strong global push towards transition to cleaner energy, PETRONAS has declared its' aspiration to achieve net zero carbon emissions by 2050. PETRONAS sustainability journey has begun for more than two decades and with strong management support towards renewable and as part of PETRONAS's technology agenda, its' research arm, PETRONAS Research Sdn. Bhd. (PRSB) has been working on ways to use renewable energy sources for offshore oil and gas platforms in Malaysia.\u0000 Oil and Gas industry has long relied on turbine generators for offshore power generation. These turbo-fired machineries are operating as microgrid with existing power management system (PMS) as microgrid controllers. They normally use either gas or diesel as fuel gas to ensure reliable power generation where high maintence cost is expected to operate these generators. Also, they have low energy efficiency and hence, usually oversized to ensure meeting the demand reliably. Typically, the power generation load is being taken by two units of turbine generators with another unit as spare. This has resulted in high operational expenditure (OPEX) and contributes to high levelized cost of energy (LCOE) for offshore power generation for such conventional system. LCOE is the yardstick for power generation technology, and it measures discounted lifecycle cost consisting of both capital expenditure (CAPEX) and OPEX, divided by discounted lifecycle of annual energy production [2], [4], [5]. Also, these turbine generators operating at platforms that have gas evacuation pipelines will use up precious fuel gas which can otherwise be sold. This will have impact on the total sales gas revenue. Not withstanding, the burning of the fuel gas will result in the emissions of carbon dioxide (CO2) and hence is exposed to carbon tax.\u0000 To mitigate this issue, PRSB has developed an offshore hybrid power generation concept to leverage and optimize wind turbine system for offshore power generation in weak wind area such as Malaysia. In this concept, one gas turbine generator is replaced by an offshore wind turbine adapted to low wind speed region. This will lower the maintenance cost and carbon exposure. Also, the fuel gas will be diverted to sales gas. This in turn will improve the economics of the renewable solution thereby making offshore renewable power generation feasible for oil and gas platforms. Forward thinking efforts include pushing the limits of harnessing wind energy in weak wind area such as Malaysia. In here, considerations of a total solution include not only the type of wind turbine generator that can be adapted to weak wind area and having the lowest maintenance requirements as possible, but also looking into cutting edge foundation technologies. The LCOE is expected to be lower than conventional power generation. To ensure optimized hybrid concept, careful selection and adaptations of wind turbine system and its' substructur","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76537462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells. Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole. A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures. This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.
{"title":"Case Study- Real Time Downhole Telemetry CCL and Tension Compression, a Differentiator for Successful Manipulation of ICD's in Horizontal Wells","authors":"U. Ahmed, Zhiheng Zhang, Ruben Ortega Alfonzo","doi":"10.2118/204873-ms","DOIUrl":"https://doi.org/10.2118/204873-ms","url":null,"abstract":"\u0000 Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells.\u0000 Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole.\u0000 A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures.\u0000 This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79676144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmed Aljanahi, Sayed Abdelrady, Hassan Almannai, Feras Altawash, E.A.E. Ali, A. Yudin, Z. Al-jalal, Metin Guleryuzlu
Carbonate formations often require stimulation treatments to be developed economically. Sometimes, proppant fracturing yields better results than acid stimulation. Carbonates are seldom stimulated with large-mesh-size proppants due to admittance issues caused by fissures and high Young’s modulus and narrow fracture width. The Magwa formation of Bahrain’s Awali brownfield is a rare case in which large treatments using 12/20-mesh proppant were successful after the more than 50 years of field development. To achieve success, a complex approach was required during preparation and execution of the hydraulic fracturing campaign. During the first phase, the main challenges that restricted achieving full production potential in previous stimulation attempts (both acid and proppant fracturing) were identified. Fines migration and shale instability were addressed during advanced core testing. Tests for embedment were conducted, and a full suite of logs was obtained to improve geomechanical modeling. In addition, a target was set to maximize fracture propped length to address the need for maximum reservoir contact in the tight Magwa reservoir and to maximize fracture width and conductivity. Sufficient fracture width in the shallow oil formation was required to withstand embedment. Sufficient conductivity was required to clean out the fracture under low-temperature conditions (124°F) and to minimize drawdown along the fracture considering the relatively low energy of the formation (pore pressure less than 1,000 psi). Understanding the fracture dimensions was critical to optimize the design. Independent measurement using high-resolution temperature logging and advanced sonic anisotropy measurements after fracturing helped to quantify fracture height. As a result of the applied comprehensive workflow, 18 wells were successfully stimulated, including three horizontal wellbores with multistage fracturing - achieving effective fracture half-lengths of 450-to 500-ft. Oil production from the wells exceeded expectations and more than doubled the results of all the previous attempts. Production decline rates were also less pronounced due to achieved fracture length and the ability to produce more reservoir compartments. The increase in oil recovery is due to the more uniform drainage systems enabled by the conductive fractures. The application of new and advanced techniques taken from several disciplines enabled successful propped fracture stimulation of a fractured carbonate formation. Extensive laboratory research and independent geometry measurements yielded significant fracture optimization and resulted in a step-change in well productivity. The techniques and lessons learned will be of benefit to engineers dealing with shallow carbonate reservoirs around the world.
{"title":"Complex Stimulation Approach to Low-Temperature Carbonate Formation Revitalizes Bahrain Brownfield","authors":"Ahmed Aljanahi, Sayed Abdelrady, Hassan Almannai, Feras Altawash, E.A.E. Ali, A. Yudin, Z. Al-jalal, Metin Guleryuzlu","doi":"10.2118/204562-ms","DOIUrl":"https://doi.org/10.2118/204562-ms","url":null,"abstract":"\u0000 Carbonate formations often require stimulation treatments to be developed economically. Sometimes, proppant fracturing yields better results than acid stimulation. Carbonates are seldom stimulated with large-mesh-size proppants due to admittance issues caused by fissures and high Young’s modulus and narrow fracture width. The Magwa formation of Bahrain’s Awali brownfield is a rare case in which large treatments using 12/20-mesh proppant were successful after the more than 50 years of field development.\u0000 To achieve success, a complex approach was required during preparation and execution of the hydraulic fracturing campaign. During the first phase, the main challenges that restricted achieving full production potential in previous stimulation attempts (both acid and proppant fracturing) were identified. Fines migration and shale instability were addressed during advanced core testing. Tests for embedment were conducted, and a full suite of logs was obtained to improve geomechanical modeling. In addition, a target was set to maximize fracture propped length to address the need for maximum reservoir contact in the tight Magwa reservoir and to maximize fracture width and conductivity.\u0000 Sufficient fracture width in the shallow oil formation was required to withstand embedment. Sufficient conductivity was required to clean out the fracture under low-temperature conditions (124°F) and to minimize drawdown along the fracture considering the relatively low energy of the formation (pore pressure less than 1,000 psi). Understanding the fracture dimensions was critical to optimize the design. Independent measurement using high-resolution temperature logging and advanced sonic anisotropy measurements after fracturing helped to quantify fracture height. As a result of the applied comprehensive workflow, 18 wells were successfully stimulated, including three horizontal wellbores with multistage fracturing - achieving effective fracture half-lengths of 450-to 500-ft. Oil production from the wells exceeded expectations and more than doubled the results of all the previous attempts. Production decline rates were also less pronounced due to achieved fracture length and the ability to produce more reservoir compartments. The increase in oil recovery is due to the more uniform drainage systems enabled by the conductive fractures.\u0000 The application of new and advanced techniques taken from several disciplines enabled successful propped fracture stimulation of a fractured carbonate formation. Extensive laboratory research and independent geometry measurements yielded significant fracture optimization and resulted in a step-change in well productivity. The techniques and lessons learned will be of benefit to engineers dealing with shallow carbonate reservoirs around the world.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76590749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Hakam, Niall Toomey, S. Ghose, J. Ponthier, Jeremy Zimmerman
The Lower Cretaceous Ratawi Oolite Formation is among the most prolific reservoirs in the PZ, having produced a significant amount of oil since the 1950's. The Ratawi is interpreted as a low angle carbonate ramp, with high-energy grainstone facies developing on structural highs. Production is focused on these structural highs, with very few well penetrations off structure. Recent work has identified potential Ratawi stratigraphic traps in prograding clinoforms along the flanks of the North Fuwaris structural high. Core data from Ratawi wells illustrate the interplay of depositional environment and diagenesis on reservoir quality. Gross depositional environment (GDE) maps created from the integration of seismic facies and core observations indicate the stratigraphic trap lies in the ramp slope. Reservoir quality variability of the ramp slope across the PZ is explained by the diagenetic history of the Ratawi. Early equant calcite cement develops from substantial meteoric runoff and lowers porosity, while later dissolution enhances reservoir quality. The area of interest is isolated from potential meteoric inputs; we do not expect equant calcite cement or the associated reduction in reservoir quality. Seismic interpretation was performed on recently acquired PZ 3D data to map the Ratawi section. Clinoforms (inclined geometry) were mapped along the western flank of the North Fuwaris high. These facies appear to have developed as a result of progradation to the NW and are indicative of good reservoir development. Leads were generated using the depth structure and GDE maps, supported by amplitude extraction and seismic inversion volumes. Amplitudes extracted from the clinoform shows that the strongest anomaly is along the structurally highest part of the horizon and the anomaly weakens downdip. High amplitudes could be a proxy for reservoir (porosity), and sharp turn-off in amplitude might indicate that lateral and updip facies changes to non-reservoir which is needed for an effective seal. Recent seismic inversion performed on the Ratawi interval shows a good match between the Acoustic Impedance (AI) from logs and the computed AI from the seismic. The Ratawi Oolite appears as a low impedance interval between overlying Ratawi Limestone and underlying Makhul. Porosity estimated from AI volumes appear to support possible Ratawi reservoir development along the flanks of North Fuwaris and Wafra highs.
{"title":"Stratigraphic Trap Potential in the Lower Cretaceous Ratawi Interval, Partitioned Zone PZ, Saudi Arabia and Kuwait","authors":"I. Hakam, Niall Toomey, S. Ghose, J. Ponthier, Jeremy Zimmerman","doi":"10.2118/204733-ms","DOIUrl":"https://doi.org/10.2118/204733-ms","url":null,"abstract":"\u0000 The Lower Cretaceous Ratawi Oolite Formation is among the most prolific reservoirs in the PZ, having produced a significant amount of oil since the 1950's. The Ratawi is interpreted as a low angle carbonate ramp, with high-energy grainstone facies developing on structural highs. Production is focused on these structural highs, with very few well penetrations off structure. Recent work has identified potential Ratawi stratigraphic traps in prograding clinoforms along the flanks of the North Fuwaris structural high.\u0000 Core data from Ratawi wells illustrate the interplay of depositional environment and diagenesis on reservoir quality. Gross depositional environment (GDE) maps created from the integration of seismic facies and core observations indicate the stratigraphic trap lies in the ramp slope. Reservoir quality variability of the ramp slope across the PZ is explained by the diagenetic history of the Ratawi. Early equant calcite cement develops from substantial meteoric runoff and lowers porosity, while later dissolution enhances reservoir quality. The area of interest is isolated from potential meteoric inputs; we do not expect equant calcite cement or the associated reduction in reservoir quality.\u0000 Seismic interpretation was performed on recently acquired PZ 3D data to map the Ratawi section. Clinoforms (inclined geometry) were mapped along the western flank of the North Fuwaris high. These facies appear to have developed as a result of progradation to the NW and are indicative of good reservoir development. Leads were generated using the depth structure and GDE maps, supported by amplitude extraction and seismic inversion volumes. Amplitudes extracted from the clinoform shows that the strongest anomaly is along the structurally highest part of the horizon and the anomaly weakens downdip. High amplitudes could be a proxy for reservoir (porosity), and sharp turn-off in amplitude might indicate that lateral and updip facies changes to non-reservoir which is needed for an effective seal. Recent seismic inversion performed on the Ratawi interval shows a good match between the Acoustic Impedance (AI) from logs and the computed AI from the seismic. The Ratawi Oolite appears as a low impedance interval between overlying Ratawi Limestone and underlying Makhul. Porosity estimated from AI volumes appear to support possible Ratawi reservoir development along the flanks of North Fuwaris and Wafra highs.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79033846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofiane Bellabiod, Ozgur Karacali, A. Aris, A. Deghmoum, B. Theuveny
Pressure transient analysis (PTA) is a cogent methodology to evaluate dynamics of hydrocarbon reservoirs. Numerous analytical and numerical models have been developed to model various types of wellbore, reservoir, and boundary responses. However, the near-wellbore region remains to be perplexing in pressure transient analysis. In this paper we investigate the pressure transient behavior of phase blocking and mobility variations caused by fluid phase interactions or properties, such as viscous drag forces and surface tension at the near-wellbore region and their impact on pressure transient evaluation. We have used real field examples to scrutinize relative effects of mobility variations in pressure transients. The impact of capillary number (Nc) acting on the near-wellbore region and its influence on pressure transient behavior and skin alteration were examined in detail. Several real field examples honoring actual reservoir rock special core analysis (SCAL) and fluid pressure/volume/temperature (PVT) properties have been studied. Actual field data discussed in this paper for PTA were captured during drill stem testing (DST) operations from various hydrocarbon reservoirs in the Berkine Basin of Algeria. PVT laboratory-measurement-based fluid properties were used in conjunction with tuned equation of state (EOS) models to ensure consistency between wells and reservoirs. Pressure transient analysis of a gas condensate reservoir system can depict various mobility regions, especially while flowing below dew point pressure. In some cases, three-distinct-mobility regions can be identified as: a far-field zone with initial gas and condensate saturation; a mid-field zone with increased condensate saturation and lower gas relative permeability; and a near-wellbore zone with high Nc which increases gas relative permeability and mobility. These three-distinct-mobility regions form due to condensate dropping out and fluid interactions in the near wellbore. We demonstrate, with real-life field examples of the near-wellbore region, how the relative effects of viscous drag forces and surface tension forces acting across the liquid and gas interface can enable the reference fluid phase to regain its mobility. We further investigate the evaluation of skin factor in such circumstances and show how the existence of phase blocking and velocity stripping can cause over-estimation or under-estimation of skin factor. We present a novel set of real field examples and relations between various zones in hydrocarbon reservoirs to avoid snags of misleading pressure transient interpretations and how composite models can be accurately used to represent complex cases. Field examples from Algerian hydrocarbon reservoirs are depicted. The findings could be easily applied for similar reservoirs in other parts of the globe to identify and model such intricate systems.
{"title":"Evaluating Phase Blockages and Mobility Changes During Pressure Transient Analysis","authors":"Sofiane Bellabiod, Ozgur Karacali, A. Aris, A. Deghmoum, B. Theuveny","doi":"10.2118/204535-ms","DOIUrl":"https://doi.org/10.2118/204535-ms","url":null,"abstract":"\u0000 Pressure transient analysis (PTA) is a cogent methodology to evaluate dynamics of hydrocarbon reservoirs. Numerous analytical and numerical models have been developed to model various types of wellbore, reservoir, and boundary responses. However, the near-wellbore region remains to be perplexing in pressure transient analysis. In this paper we investigate the pressure transient behavior of phase blocking and mobility variations caused by fluid phase interactions or properties, such as viscous drag forces and surface tension at the near-wellbore region and their impact on pressure transient evaluation.\u0000 We have used real field examples to scrutinize relative effects of mobility variations in pressure transients. The impact of capillary number (Nc) acting on the near-wellbore region and its influence on pressure transient behavior and skin alteration were examined in detail. Several real field examples honoring actual reservoir rock special core analysis (SCAL) and fluid pressure/volume/temperature (PVT) properties have been studied. Actual field data discussed in this paper for PTA were captured during drill stem testing (DST) operations from various hydrocarbon reservoirs in the Berkine Basin of Algeria. PVT laboratory-measurement-based fluid properties were used in conjunction with tuned equation of state (EOS) models to ensure consistency between wells and reservoirs.\u0000 Pressure transient analysis of a gas condensate reservoir system can depict various mobility regions, especially while flowing below dew point pressure. In some cases, three-distinct-mobility regions can be identified as: a far-field zone with initial gas and condensate saturation; a mid-field zone with increased condensate saturation and lower gas relative permeability; and a near-wellbore zone with high Nc which increases gas relative permeability and mobility. These three-distinct-mobility regions form due to condensate dropping out and fluid interactions in the near wellbore. We demonstrate, with real-life field examples of the near-wellbore region, how the relative effects of viscous drag forces and surface tension forces acting across the liquid and gas interface can enable the reference fluid phase to regain its mobility. We further investigate the evaluation of skin factor in such circumstances and show how the existence of phase blocking and velocity stripping can cause over-estimation or under-estimation of skin factor.\u0000 We present a novel set of real field examples and relations between various zones in hydrocarbon reservoirs to avoid snags of misleading pressure transient interpretations and how composite models can be accurately used to represent complex cases. Field examples from Algerian hydrocarbon reservoirs are depicted. The findings could be easily applied for similar reservoirs in other parts of the globe to identify and model such intricate systems.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75229102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DV Chandrashekar, M. Dange, Animesh Kumar, Devesh Bhaisora
In a world where energy is a major concern, the revolution of shale gas globally has triggered a potential shift in thinking about production and consumption that no one would have expected. The enormous shale gas resources identified today are becoming game changers in many developing countries. The booming economy of India is seeing a significant increase in its energy demand, with industries establishing new footprints in the western region of the country. Operators are venturing into deeper and harsher conditions (HP/HT environments) to tap those resources. Even though shale gas is now found globally, it is still described as an unconventional source of hydrocarbons. This is because the extraction of shale gas is tricky and challenging. To unlock the unconventional gas reservoir most of the wells are horizontally drilled and hydraulically fractured. This process has a strong impact on cement bonding across the section. Firstly, the cement needs to provide an effective barrier in the annulus around the casing, which has been horizontally placed. Secondly, cement has to withstand various mechanical loads during hydraulic fracturing and ultimately over the life of the well. The present study covers the Navagam field located in the Ahmedabad block of North Cambay Basin. Cambay Basin is bounded on its eastern and western sides by basin-margin faults and extends south into the offshore Gulf of Cambay, limiting its onshore area to 7,900 mi2. The operator's western asset had already deployed its resources on evaluating the data to assess the potential shale gas in the Navagam block in the Cambay Basin. This paper highlights successful cement placement in an unconventional shale gas reservoir in onshore western India. It was crucial to understand why early exploration wells in the area resulted in poor initial zonal isolation in order to refine the asset development model for future wells. Based on these models, a mechanically modified resilient cement system was engineered. Subsequent exploration wells were then cemented with the resilient cement system to allow for dependable zonal isolation of reservoir bands permitting the accurate determination of discrete reservoir geomechanical properties within the overall reservoir target.
{"title":"Engineered Solution Helps Tackle Tricky Shale Gas Cementing Challenge in HP/HT to Deliver Good Cement Bond Across Shale Section Located in Western India","authors":"DV Chandrashekar, M. Dange, Animesh Kumar, Devesh Bhaisora","doi":"10.2118/204537-ms","DOIUrl":"https://doi.org/10.2118/204537-ms","url":null,"abstract":"In a world where energy is a major concern, the revolution of shale gas globally has triggered a potential shift in thinking about production and consumption that no one would have expected. The enormous shale gas resources identified today are becoming game changers in many developing countries. The booming economy of India is seeing a significant increase in its energy demand, with industries establishing new footprints in the western region of the country. Operators are venturing into deeper and harsher conditions (HP/HT environments) to tap those resources.\u0000 Even though shale gas is now found globally, it is still described as an unconventional source of hydrocarbons. This is because the extraction of shale gas is tricky and challenging. To unlock the unconventional gas reservoir most of the wells are horizontally drilled and hydraulically fractured. This process has a strong impact on cement bonding across the section. Firstly, the cement needs to provide an effective barrier in the annulus around the casing, which has been horizontally placed. Secondly, cement has to withstand various mechanical loads during hydraulic fracturing and ultimately over the life of the well.\u0000 The present study covers the Navagam field located in the Ahmedabad block of North Cambay Basin. Cambay Basin is bounded on its eastern and western sides by basin-margin faults and extends south into the offshore Gulf of Cambay, limiting its onshore area to 7,900 mi2. The operator's western asset had already deployed its resources on evaluating the data to assess the potential shale gas in the Navagam block in the Cambay Basin.\u0000 This paper highlights successful cement placement in an unconventional shale gas reservoir in onshore western India. It was crucial to understand why early exploration wells in the area resulted in poor initial zonal isolation in order to refine the asset development model for future wells. Based on these models, a mechanically modified resilient cement system was engineered. Subsequent exploration wells were then cemented with the resilient cement system to allow for dependable zonal isolation of reservoir bands permitting the accurate determination of discrete reservoir geomechanical properties within the overall reservoir target.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74918814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper objective is to present the successful achievement by Saudi Aramco gas operations to reduce the carbon emission at Hawyiah NGL Recovery Plant (HNGLRP) after successful operation & maintainability of the newly state of the art Carbon Capture & Sequestration (CC&S) technology. This is in line with the Kingdom of Saudi Arabia (KSA) 2030 vision to increase the resources sustainability for future growth and part of Saudi Aramco circular economy in action examples. Saudi Aramco CC&S started in June 2015 at HNGLRP with main objective to capture the carbon dioxide (CO2) from Acid Gas Removal Units (AGRUs) and then inject an annual mass of nearly 750 Kton of carbon dioxide into oil wells for sequestration and enhanced oil recovery maintainability. This is to replace the typical acid gas incineration process after AGRUs operation to reduce carbon footprint. CC&S consists of the followings: integrally geared multistage compressor, standalone dehydration system using Tri-Ethylene Glycol (TEG), CO2 vapor recovery unit (VRU), Granulated Activated Carbon (GAC) to treat water generated from compression and dehydration systems for reuse purpose, and special dense phase pump that transfers the dehydrated CO2 at supercritical phase through 85 km pipeline to replace the typical sea water injection methodology in enhancing oil recovery. CC&S has several new technologies and experiences represented by the compressor capacity, supercritical phase fluid pumping, using mechanical ejector application to maximize carbon recovery, and CO2/TEG dehydration system as non-typical dehydration system. CC&S design considered the occupational health hazards generated from the compressor operation by installing engineering enclosure with proper ventilation system to minimize the noise hazard. CC&S helped HNGLRP to reduce the overall Greenhouse Gas (GHG) emission resulted from typical CO2 incineration process (thermal oxidizing). (2) The total GHG resulted from combustion sources at HNGLRP reduced by nearly 30% since CC&S technology in operation. The fuel gas consumption to run the thermal oxidizers in AGRUs reduced by 75% and sent as sales gas instead. The Energy Intensity Index (EII) reduced by 8% since 2015, water reuse index (WRI) increased by 12%. In conclusion, the project shows significant reduction in the carbon emission, noticeable increase in the production, and considerable water reuse.
{"title":"Carbon Emission Reduction via HNGLRP CC&S Technology","authors":"Sultan Ahmari, Abdullatef Mufti","doi":"10.2118/204815-ms","DOIUrl":"https://doi.org/10.2118/204815-ms","url":null,"abstract":"\u0000 The paper objective is to present the successful achievement by Saudi Aramco gas operations to reduce the carbon emission at Hawyiah NGL Recovery Plant (HNGLRP) after successful operation & maintainability of the newly state of the art Carbon Capture & Sequestration (CC&S) technology. This is in line with the Kingdom of Saudi Arabia (KSA) 2030 vision to increase the resources sustainability for future growth and part of Saudi Aramco circular economy in action examples.\u0000 Saudi Aramco CC&S started in June 2015 at HNGLRP with main objective to capture the carbon dioxide (CO2) from Acid Gas Removal Units (AGRUs) and then inject an annual mass of nearly 750 Kton of carbon dioxide into oil wells for sequestration and enhanced oil recovery maintainability. This is to replace the typical acid gas incineration process after AGRUs operation to reduce carbon footprint. CC&S consists of the followings: integrally geared multistage compressor, standalone dehydration system using Tri-Ethylene Glycol (TEG), CO2 vapor recovery unit (VRU), Granulated Activated Carbon (GAC) to treat water generated from compression and dehydration systems for reuse purpose, and special dense phase pump that transfers the dehydrated CO2 at supercritical phase through 85 km pipeline to replace the typical sea water injection methodology in enhancing oil recovery. CC&S has several new technologies and experiences represented by the compressor capacity, supercritical phase fluid pumping, using mechanical ejector application to maximize carbon recovery, and CO2/TEG dehydration system as non-typical dehydration system. CC&S design considered the occupational health hazards generated from the compressor operation by installing engineering enclosure with proper ventilation system to minimize the noise hazard. CC&S helped HNGLRP to reduce the overall Greenhouse Gas (GHG) emission resulted from typical CO2 incineration process (thermal oxidizing). (2)\u0000 The total GHG resulted from combustion sources at HNGLRP reduced by nearly 30% since CC&S technology in operation. The fuel gas consumption to run the thermal oxidizers in AGRUs reduced by 75% and sent as sales gas instead. The Energy Intensity Index (EII) reduced by 8% since 2015, water reuse index (WRI) increased by 12%. In conclusion, the project shows significant reduction in the carbon emission, noticeable increase in the production, and considerable water reuse.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90191253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}