首页 > 最新文献

Day 3 Tue, November 30, 2021最新文献

英文 中文
Theory-Guided Data Science, A Petrophysical Case Study from the Diyab Formation 理论指导下的数据科学——Diyab组岩石物理案例研究
Pub Date : 2021-12-15 DOI: 10.2118/204532-ms
N. Leseur, A. Mendez, M. Baig, Pierre-Olivier Goiran
A practical example of a theory-guided data science case study is presented to evaluate the potential of the Diyab formation, an Upper Jurassic interval, source rock of some of the largest reservoirs in the Arabian Peninsula. A workflow base on a three-step approach combining the physics of logging tool response and a probabilistic machine-learning algorithm was undertaken to evaluate four wells of the prospect. At first, a core-calibrated multi-mineral model was established on a concept well for which an extensive suite of logs and core measurements had been acquired. To transfer the knowledge gained from the latter physics-driven interpretation onto the other data-scarce wells, the relationship between the output rock and fluid volumes and their input log responses was then learned by means of a Gaussian Process Regression (GPR). Finally, once trained on the key well, the latter probabilistic algorithm was deployed on the three remaining wells to predict reservoir properties, quantify resource potential and estimate volumetric-related uncertainties. The physics-informed machine-learning approach introduced in this work was found to provide results which matches with the majority of the available core data, while discrepancies could generally be explained by the occurrence of laminations which thickness are under the resolution of nuclear logs. Overall, the GPR approach seems to enable an efficient transfer of knowledge from data-rich key wells to other data-scarce wells. As opposed to a more conventional formation evaluation process which is carried out more independently from the key well, the present approach ensures that the final petrophysical interpretation reflects and benefits from the insights and the physics-driven coherency achieved at key well location.
本文介绍了一个以理论为指导的数据科学案例研究,以评估阿拉伯半岛一些最大储层的上侏罗统Diyab组烃源岩的潜力。采用了一种基于三步法的工作流程,将测井工具的物理响应与概率机器学习算法相结合,对该远景区的4口井进行了评估。首先,在一口概念井上建立了岩心校准的多矿物模型,并获得了大量的测井数据和岩心测量数据。为了将从后一种物理驱动解释中获得的知识转移到其他数据稀缺的井中,然后通过高斯过程回归(GPR)了解输出岩石和流体体积与其输入测井响应之间的关系。最后,在对关键井进行训练后,将后一种概率算法应用于其余三口井,以预测储层性质,量化资源潜力并估计与体积相关的不确定性。在这项工作中引入的物理信息机器学习方法被发现提供的结果与大多数可用的岩心数据相匹配,而差异通常可以通过厚度在核日志分辨率下的层压的出现来解释。总的来说,GPR方法似乎能够有效地将数据丰富的关键井的知识转移到其他数据稀缺的井。与传统的独立于关键井进行的地层评价不同,目前的方法确保了最终的岩石物理解释能够反映并受益于在关键井位获得的洞察力和物理驱动的一致性。
{"title":"Theory-Guided Data Science, A Petrophysical Case Study from the Diyab Formation","authors":"N. Leseur, A. Mendez, M. Baig, Pierre-Olivier Goiran","doi":"10.2118/204532-ms","DOIUrl":"https://doi.org/10.2118/204532-ms","url":null,"abstract":"\u0000 A practical example of a theory-guided data science case study is presented to evaluate the potential of the Diyab formation, an Upper Jurassic interval, source rock of some of the largest reservoirs in the Arabian Peninsula.\u0000 A workflow base on a three-step approach combining the physics of logging tool response and a probabilistic machine-learning algorithm was undertaken to evaluate four wells of the prospect. At first, a core-calibrated multi-mineral model was established on a concept well for which an extensive suite of logs and core measurements had been acquired. To transfer the knowledge gained from the latter physics-driven interpretation onto the other data-scarce wells, the relationship between the output rock and fluid volumes and their input log responses was then learned by means of a Gaussian Process Regression (GPR). Finally, once trained on the key well, the latter probabilistic algorithm was deployed on the three remaining wells to predict reservoir properties, quantify resource potential and estimate volumetric-related uncertainties. The physics-informed machine-learning approach introduced in this work was found to provide results which matches with the majority of the available core data, while discrepancies could generally be explained by the occurrence of laminations which thickness are under the resolution of nuclear logs.\u0000 Overall, the GPR approach seems to enable an efficient transfer of knowledge from data-rich key wells to other data-scarce wells. As opposed to a more conventional formation evaluation process which is carried out more independently from the key well, the present approach ensures that the final petrophysical interpretation reflects and benefits from the insights and the physics-driven coherency achieved at key well location.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86891910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predict Geomechanical Parameters with Machine Learning Combining Drilling Data and Gamma Ray 结合钻井数据和伽马射线,利用机器学习预测地质力学参数
Pub Date : 2021-12-15 DOI: 10.2118/204688-ms
M. Martinelli, I. Colombo, E. Russo
The aim of this work is the development of a fast and reliable method for geomechanical parameters evaluation while drilling using surface logging data. Geomechanical parameters are usually evaluated from cores or sonic logs, which are typically expensive and sometimes difficult to obtain. A novel approach is here proposed, where machine learning algorithms are used to calculate the Young's Modulus from drilling parameters and the gamma ray log. The proposed method combines typical mud logging drilling data (ROP, RPM, Torque, Flow measurements, WOB and SPP), XRF data and well log data (Sonic logs, Bulk Density, Gamma Ray) with several machine learning techniques. The models were trained and tested on data coming from three wells drilled in the same basin in Kuwait, in the same geological units but in different reservoirs. Sonic logs and bulk density are used to evaluate the geomechanical parameters (e.g. Young's Modulus) and to train the model. The training phase and the hyperparameter tuning were performed using data coming from a single well. The model was then tested against previously unseen data coming from the other two wells. The trained model is able to predict the Young's modulus in the test wells with a root mean squared error around 12 GPa. The example here provided demonstrates that a model trained with drilling parameters and gamma ray coming from one well is able to predict the Young Modulus of different wells in the same basin. These outcomes highlight the potentiality of this procedure and point out several implications for the reservoir characterization. Indeed, once the model has been trained, it is possible to predict the Young's Modulus in different wells of the same basin using only surface logging data.
这项工作的目的是开发一种快速可靠的方法,用于利用地面测井数据进行钻井时的地质力学参数评估。地质力学参数通常是通过岩心或声波测井来评估的,这通常是昂贵的,有时很难获得。本文提出了一种新颖的方法,即使用机器学习算法从钻井参数和伽马射线测井数据中计算杨氏模量。该方法将典型的录井钻井数据(ROP、RPM、扭矩、流量测量、钻压和钻压)、XRF数据和测井数据(声波测井、体积密度、伽马射线)与几种机器学习技术相结合。这些模型是在科威特同一盆地、同一地质单元但不同储层的三口井的数据上进行训练和测试的。声波测井和体积密度用于评估地质力学参数(如杨氏模量)并训练模型。训练阶段和超参数调整使用来自单井的数据进行。然后将该模型与其他两口井之前未见过的数据进行了测试。经过训练的模型能够预测测试井的杨氏模量,均方根误差约为12 GPa。本文给出的实例表明,用钻井参数和来自同一井的伽马射线训练的模型能够预测同一盆地不同井的杨氏模量。这些结果突出了该方法的潜力,并指出了储层表征的几个含义。事实上,一旦模型得到训练,就有可能仅使用地面测井数据来预测同一盆地不同井的杨氏模量。
{"title":"Predict Geomechanical Parameters with Machine Learning Combining Drilling Data and Gamma Ray","authors":"M. Martinelli, I. Colombo, E. Russo","doi":"10.2118/204688-ms","DOIUrl":"https://doi.org/10.2118/204688-ms","url":null,"abstract":"\u0000 The aim of this work is the development of a fast and reliable method for geomechanical parameters evaluation while drilling using surface logging data. Geomechanical parameters are usually evaluated from cores or sonic logs, which are typically expensive and sometimes difficult to obtain. A novel approach is here proposed, where machine learning algorithms are used to calculate the Young's Modulus from drilling parameters and the gamma ray log. The proposed method combines typical mud logging drilling data (ROP, RPM, Torque, Flow measurements, WOB and SPP), XRF data and well log data (Sonic logs, Bulk Density, Gamma Ray) with several machine learning techniques. The models were trained and tested on data coming from three wells drilled in the same basin in Kuwait, in the same geological units but in different reservoirs. Sonic logs and bulk density are used to evaluate the geomechanical parameters (e.g. Young's Modulus) and to train the model. The training phase and the hyperparameter tuning were performed using data coming from a single well. The model was then tested against previously unseen data coming from the other two wells.\u0000 The trained model is able to predict the Young's modulus in the test wells with a root mean squared error around 12 GPa. The example here provided demonstrates that a model trained with drilling parameters and gamma ray coming from one well is able to predict the Young Modulus of different wells in the same basin. These outcomes highlight the potentiality of this procedure and point out several implications for the reservoir characterization. Indeed, once the model has been trained, it is possible to predict the Young's Modulus in different wells of the same basin using only surface logging data.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82603101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Critically Stressed Fractures Using Fluid-Flow Models for Naturally Fractured Reservoirs 利用流体流动模型表征天然裂缝性油藏的临界应力裂缝
Pub Date : 2021-12-15 DOI: 10.2118/204903-ms
O. Hamid, Reza Sanee, Gbenga Folorunso Oluyemi
Fracture characterization, including permeability and deformation due to fluid flow, plays an essential role in hydrocarbon production during the development of naturally fractured reservoirs. The conventional way of characterization of the fracture is experimental, and modeling approaches. In this study, a conceptual model will be developed based on the structural style to study the fracture distributions, the influence of the fluid flow and geomechanics in the fracture conductivity, investigate the stress regime in the study area. Understanding the fracture properties will be conducted by studying the fracture properties from the core sample, image log interpretation. 3D geomechanical models will be constructed to evaluate the fluid flow properties; the models consider the crossflow coefficient and the compression coefficient. According to the model results, the fracture permeability decreases with increasing effective stress. The degree of decline is related to the crossflow coefficient and the compression coefficient. Most of these reservoirs are mainly composed of two porosity systems for fluid flow: the matrix component and fractures. Therefore, fluid flow path distribution within a naturally fractured reservoir depends on several features related to the rock matrix and fracture systems' properties. The main element that could help us identify the fluid flow paths is the critical stress analysis, which considers the in-situ stress regime model (in terms of magnitude and direction) and the spatial distributions of natural fractures fluid flow path. The critical stress requires calculating the normal and shear stress in each fracture plane to evaluate the conditions for critical and non-critical fractures. Based on this classification, some fractures can dominate the fluid-flow paths. To perform the critical stress analysis, fracture characterization and stress analysis were described using a 3D stress tensor model capturing the in-situ stress direction and magnitude applied to a discrete fracture model, identifying the fluid flow paths along the fractured reservoir. The results show that in-situ stress rotation observed in the breakouts or drilling induce tensile fractures (DITFs) interpreted from borehole images. The stress regime changes are probably attributed to some influence of deeply seated faults under the studied sequence. the flow of water-oil ratio through intact rock and fractures with/without imbibition was modeled based on the material balance based on preset conceptual reservoir parameters to investigate the water-oil ratio flow gradients
在天然裂缝性储层的开发过程中,裂缝表征(包括渗透率和流体流动引起的变形)对油气生产具有至关重要的作用。传统的裂缝表征方法是实验和建模方法。本研究将建立基于构造样式的概念模型,研究裂缝分布、流体流动和地质力学对裂缝导流性的影响,研究研究区应力状态。通过研究岩心样品的裂缝性质、图像测井解释来了解裂缝性质。建立三维地质力学模型,评价流体流动特性;模型考虑了横流系数和压缩系数。模型结果表明,裂缝渗透率随有效应力的增大而减小。下降的程度与横流系数和压缩系数有关。这些储层的流体流动主要由基质组分和裂缝两种孔隙系统组成。因此,天然裂缝性储层中的流体流道分布取决于与岩石基质和裂缝系统性质相关的几个特征。关键应力分析可以帮助我们识别流体流动路径,它考虑了地应力状态模型(在大小和方向上)和天然裂缝流体流动路径的空间分布。临界应力需要计算每个裂缝面的法向应力和剪应力,以评估临界和非临界裂缝的条件。基于这种分类,一些裂缝可以主导流体流动路径。为了进行临界应力分析,使用三维应力张量模型描述裂缝特征和应力分析,该模型捕获了应用于离散裂缝模型的地应力方向和大小,确定了裂缝性油藏的流体流动路径。结果表明:钻孔图像解释表明,突围或钻孔中观察到的地应力旋转诱发了张性裂缝(DITFs)。应力状态的变化可能与研究层序下深部断裂的影响有关。基于预先设定的油藏概念参数,基于物质平衡,建立了有/无渗吸条件下完整岩石和裂缝的水油比流动模型,研究了水油比流动梯度
{"title":"Characterization of Critically Stressed Fractures Using Fluid-Flow Models for Naturally Fractured Reservoirs","authors":"O. Hamid, Reza Sanee, Gbenga Folorunso Oluyemi","doi":"10.2118/204903-ms","DOIUrl":"https://doi.org/10.2118/204903-ms","url":null,"abstract":"\u0000 Fracture characterization, including permeability and deformation due to fluid flow, plays an essential role in hydrocarbon production during the development of naturally fractured reservoirs. The conventional way of characterization of the fracture is experimental, and modeling approaches. In this study, a conceptual model will be developed based on the structural style to study the fracture distributions, the influence of the fluid flow and geomechanics in the fracture conductivity, investigate the stress regime in the study area.\u0000 Understanding the fracture properties will be conducted by studying the fracture properties from the core sample, image log interpretation. 3D geomechanical models will be constructed to evaluate the fluid flow properties; the models consider the crossflow coefficient and the compression coefficient. According to the model results, the fracture permeability decreases with increasing effective stress. The degree of decline is related to the crossflow coefficient and the compression coefficient. Most of these reservoirs are mainly composed of two porosity systems for fluid flow: the matrix component and fractures. Therefore, fluid flow path distribution within a naturally fractured reservoir depends on several features related to the rock matrix and fracture systems' properties.\u0000 The main element that could help us identify the fluid flow paths is the critical stress analysis, which considers the in-situ stress regime model (in terms of magnitude and direction) and the spatial distributions of natural fractures fluid flow path. The critical stress requires calculating the normal and shear stress in each fracture plane to evaluate the conditions for critical and non-critical fractures. Based on this classification, some fractures can dominate the fluid-flow paths.\u0000 To perform the critical stress analysis, fracture characterization and stress analysis were described using a 3D stress tensor model capturing the in-situ stress direction and magnitude applied to a discrete fracture model, identifying the fluid flow paths along the fractured reservoir.\u0000 The results show that in-situ stress rotation observed in the breakouts or drilling induce tensile fractures (DITFs) interpreted from borehole images.\u0000 The stress regime changes are probably attributed to some influence of deeply seated faults under the studied sequence. the flow of water-oil ratio through intact rock and fractures with/without imbibition was modeled based on the material balance based on preset conceptual reservoir parameters to investigate the water-oil ratio flow gradients","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88440510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reservoir Engineering and Geomechanical Aspects of Well Plugging and Abandonment 油井堵漏和弃井的油藏工程和地质力学方面
Pub Date : 2021-12-15 DOI: 10.2118/204710-ms
Q. Qi, Khoja Ghaliah, I. Ershaghi
With the maturation of many oilfields, further well abandonments will occur in the years to come. There are issues about improper well abandonment that can have far-reaching effects for responsible companies or entities. At this time in the US, where most of the operation is operated by non-government entities, sometimes the sovereign state may end up covering the cost of well abandonment when the operator is not financially capable in managing such costs. That will be a burden to the public taxpayers. In this paper, we review an important aspect of the well abandonment practices and at present, based on a reservoir modeling approach, more clearance on the potential formation of free gas that can be a cause of concern. We also discuss the integrity issues of the sealing process. We point out how the development of cracks caused by many factors, including geomechanical effects or slow deterioration of the cement seal, in the long run, may result in generating escape paths for the evolved hydrocarbon gases.
随着许多油田的成熟,未来几年还会出现更多弃井现象。不当弃井问题可能会对负责任的公司或实体产生深远的影响。目前,在美国,大部分弃井作业都是由非政府机构进行的,有时当运营商没有经济能力来管理这些成本时,主权国家可能最终会承担弃井成本。这将成为公共纳税人的负担。在本文中,我们回顾了弃井实践的一个重要方面,目前,基于储层建模方法,更多地清除了可能引起关注的游离气的潜在形成。我们还讨论了密封过程的完整性问题。我们指出,从长远来看,由地质力学作用或水泥密封缓慢恶化等多种因素引起的裂缝的发展,可能会为演化出的烃气体提供逃逸通道。
{"title":"Reservoir Engineering and Geomechanical Aspects of Well Plugging and Abandonment","authors":"Q. Qi, Khoja Ghaliah, I. Ershaghi","doi":"10.2118/204710-ms","DOIUrl":"https://doi.org/10.2118/204710-ms","url":null,"abstract":"\u0000 With the maturation of many oilfields, further well abandonments will occur in the years to come. There are issues about improper well abandonment that can have far-reaching effects for responsible companies or entities. At this time in the US, where most of the operation is operated by non-government entities, sometimes the sovereign state may end up covering the cost of well abandonment when the operator is not financially capable in managing such costs. That will be a burden to the public taxpayers. In this paper, we review an important aspect of the well abandonment practices and at present, based on a reservoir modeling approach, more clearance on the potential formation of free gas that can be a cause of concern. We also discuss the integrity issues of the sealing process. We point out how the development of cracks caused by many factors, including geomechanical effects or slow deterioration of the cement seal, in the long run, may result in generating escape paths for the evolved hydrocarbon gases.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87561654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Main Factors on Deepwater Sediments 主要因素对深水沉积物的影响
Pub Date : 2021-12-15 DOI: 10.2118/204865-ms
A. Khitrenko, A.M. Minkhatova, V. Orlov, D. Kotunov, Salavat Khalilov
Western Siberia is a unique petroleum basin with exclusive geological objects. Those objects allow us to test various methods of sequence stratigraphy, systematization and evaluation approaches for reservoir characterization of deep-water sediments. Different methods have potential to decrease geological uncertainty and predict distribution and architecture of deep-water sandstone reservoir. There are many different parameters that could be achieved through analysis of clinoform complex. Trajectories of shelf break, volume of sediment supply and topography of basin influence on architecture of deep-water reservoir. Based on general principles of sequence stratigraphy, three main trajectories changes shelf break might be identified: transgression, normal regression and forced regression. And each of them has its own distinctive characteristics of deepwater reservoir. However, to properly assess the architecture of deepwater reservoir and potential of it, numerical characteristics are necessary. In our paper, previously described parameters were analyzed for identification perspective areas of Achimov formation in Western Siberia and estimation of geological uncertainty for unexplored areas. In 1996 Helland-Hansen W., Martinsen O.J. [5] described different types of shoreline trajectory. In 2002 Steel R.J., Olsen T. [11] adopted types of shoreline trajectory for identification of truncation termination. O. Catuneanu (2009) [1] summarize all information with implementation basis of sequence stratigraphy. Over the past decade, many geoscientists have used previously published researches to determine relationship between geometric structures of clinoforms and architecture of deep-water sediments and its reservoir quality. Significant amount of publications has allowed to form theoretical framework for the undersanding sedimentation process and geometrical configuration of clinoforms. However, there is still no relationship between sequence stratigraphy framework of clinoroms and reservoir quality and its uncertainty, which is necessary for new area evaluation.
西伯利亚西部是一个独特的石油盆地,具有独特的地质对象。这些对象使我们能够测试各种层序地层学方法、系统化方法和深水沉积物储层表征的评价方法。不同的方法都有可能降低地质不确定性,预测深水砂岩储层的分布和构型。斜仿络合物的分析可以得到许多不同的参数。陆架断裂轨迹、供沙量和盆地地形对深水水库构型的影响。根据层序地层学的一般原理,陆架断裂主要有三种变化轨迹:海侵、正常退退和强迫退退。每一种深水储层都有自己鲜明的特点。然而,为了正确地评价深水储层的构型和潜力,数值特征是必要的。本文分析了西伯利亚西部Achimov组远景区识别和未勘探区地质不确定性估算的相关参数。1996年,Helland-Hansen W., Martinsen O.J.[5]描述了不同类型的海岸线轨迹。2002年,Steel R.J, Olsen T.[11]采用岸线轨迹类型识别截断终止。O. Catuneanu(2009)[1]用层序地层学的实施依据总结了所有信息。在过去的十年中,许多地球科学家利用先前发表的研究成果来确定斜地形的几何结构与深水沉积物的结构及其储层质量之间的关系。大量的研究成果为理解斜形的沉积过程和几何形态提供了理论框架。然而,层序地层格架与储层物性及其不确定性之间的关系尚不明确,这对新区评价是必要的。
{"title":"The Influence of Main Factors on Deepwater Sediments","authors":"A. Khitrenko, A.M. Minkhatova, V. Orlov, D. Kotunov, Salavat Khalilov","doi":"10.2118/204865-ms","DOIUrl":"https://doi.org/10.2118/204865-ms","url":null,"abstract":"\u0000 Western Siberia is a unique petroleum basin with exclusive geological objects. Those objects allow us to test various methods of sequence stratigraphy, systematization and evaluation approaches for reservoir characterization of deep-water sediments. Different methods have potential to decrease geological uncertainty and predict distribution and architecture of deep-water sandstone reservoir. There are many different parameters that could be achieved through analysis of clinoform complex. Trajectories of shelf break, volume of sediment supply and topography of basin influence on architecture of deep-water reservoir.\u0000 Based on general principles of sequence stratigraphy, three main trajectories changes shelf break might be identified: transgression, normal regression and forced regression. And each of them has its own distinctive characteristics of deepwater reservoir. However, to properly assess the architecture of deepwater reservoir and potential of it, numerical characteristics are necessary. In our paper, previously described parameters were analyzed for identification perspective areas of Achimov formation in Western Siberia and estimation of geological uncertainty for unexplored areas.\u0000 In 1996 Helland-Hansen W., Martinsen O.J. [5] described different types of shoreline trajectory. In 2002 Steel R.J., Olsen T. [11] adopted types of shoreline trajectory for identification of truncation termination. O. Catuneanu (2009) [1] summarize all information with implementation basis of sequence stratigraphy. Over the past decade, many geoscientists have used previously published researches to determine relationship between geometric structures of clinoforms and architecture of deep-water sediments and its reservoir quality. Significant amount of publications has allowed to form theoretical framework for the undersanding sedimentation process and geometrical configuration of clinoforms. However, there is still no relationship between sequence stratigraphy framework of clinoroms and reservoir quality and its uncertainty, which is necessary for new area evaluation.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"19 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83429463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser Technology for Downhole Applications; Past, Present and Future 激光井下应用技术过去,现在和未来
Pub Date : 2021-12-15 DOI: 10.2118/204661-ms
S. Batarseh, S. Mutairi, D. P. San Roman Alerigi, Abdullah Al Harith
The objective of this work is to provide an overview of high power laser program since it is inception and to provide the strategy to make it reality. An overview of the past two decades, current and future plan to deploy the technology in the field. Laser attracted the oil and gas industry as an innovative non-damaging technology and alternatives to current practices. The lab success conducted over the past 20 years performing experiments on thousands of representative rock samples proved the key parameter for successful laser operation in the field. The technology is not only a non-damaging but also improves flow properties and communication between the wellbore and the hydrocarbon bearing formation. For the past two decades, researchers attempted to deploy high power laser technology for several downhole applications due to its unique properties such as accuracy, precision, and power. The power of the earlier laser generation was insufficient to penetrate subsurface formations. Recent advancement in the high power laser technology generates new and evolved systems that are more compact, efficient, and cost effective for downhole applications. Thousands of rocks have been exposed to high power lasers radiations for several downhole applications such as perforation, drilling and heating. The success of the technology demonstrated that in all rock types, the flow properties were enhanced regardless of their compressive strength and hardness. Laser also has unique futures such as the precision in controlling and orienting the energy in any direction regardless of the reservoir stress orientation and magnitude. The beam is generated at the surface and delivered downhole via fiber optics cable, it can be targeted directly to the pay zone to enable production from challenging zones that cannot and could not be achieved with current technology. The technology provides small footprint and environmentally friendly technology, it provides waterless technology as an alternative to water base fracturing technology.
本工作的目的是提供高功率激光计划的概述,因为它是成立的,并提供战略,使其成为现实。概述了过去二十年,当前和未来在该领域部署该技术的计划。激光作为一种创新的非破坏性技术和现有技术的替代品,吸引了石油和天然气行业。在过去的20年里,实验室对数千个有代表性的岩石样品进行了成功的实验,证明了激光在现场成功操作的关键参数。该技术不仅不具有破坏性,而且还改善了井筒与含油气地层之间的流动特性和连通性。在过去的二十年中,由于高功率激光技术具有精度、精度和功率等独特特性,研究人员试图将其应用于多种井下应用。早期激光的功率不足以穿透地下地层。高功率激光技术的最新进展产生了新的和不断发展的系统,这些系统更紧凑,更高效,更符合井下应用的成本效益。成千上万的岩石暴露在高功率激光辐射下,用于射孔、钻井和加热等井下应用。该技术的成功表明,在所有岩石类型中,无论其抗压强度和硬度如何,流动特性都得到了改善。激光也有其独特的未来,如在任何方向上控制和定向能量的精度,而不考虑储层应力的方向和大小。光束在地面产生,并通过光纤电缆输送到井下,可以直接瞄准产层,从而在现有技术无法实现的具有挑战性的产层进行生产。该技术占地面积小,对环境友好,是水基压裂技术的替代技术。
{"title":"Laser Technology for Downhole Applications; Past, Present and Future","authors":"S. Batarseh, S. Mutairi, D. P. San Roman Alerigi, Abdullah Al Harith","doi":"10.2118/204661-ms","DOIUrl":"https://doi.org/10.2118/204661-ms","url":null,"abstract":"\u0000 The objective of this work is to provide an overview of high power laser program since it is inception and to provide the strategy to make it reality. An overview of the past two decades, current and future plan to deploy the technology in the field.\u0000 Laser attracted the oil and gas industry as an innovative non-damaging technology and alternatives to current practices. The lab success conducted over the past 20 years performing experiments on thousands of representative rock samples proved the key parameter for successful laser operation in the field. The technology is not only a non-damaging but also improves flow properties and communication between the wellbore and the hydrocarbon bearing formation.\u0000 For the past two decades, researchers attempted to deploy high power laser technology for several downhole applications due to its unique properties such as accuracy, precision, and power. The power of the earlier laser generation was insufficient to penetrate subsurface formations. Recent advancement in the high power laser technology generates new and evolved systems that are more compact, efficient, and cost effective for downhole applications.\u0000 Thousands of rocks have been exposed to high power lasers radiations for several downhole applications such as perforation, drilling and heating. The success of the technology demonstrated that in all rock types, the flow properties were enhanced regardless of their compressive strength and hardness. Laser also has unique futures such as the precision in controlling and orienting the energy in any direction regardless of the reservoir stress orientation and magnitude. The beam is generated at the surface and delivered downhole via fiber optics cable, it can be targeted directly to the pay zone to enable production from challenging zones that cannot and could not be achieved with current technology. The technology provides small footprint and environmentally friendly technology, it provides waterless technology as an alternative to water base fracturing technology.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85209058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Successful Field Application of Polymer Gel for Water Shutoff in a Fractured Tight Sandstone Reservoir 聚合物凝胶在裂缝性致密砂岩储层堵水中的成功应用
Pub Date : 2021-12-15 DOI: 10.2118/204741-ms
Qianhui Wu, J. Ge, L. Ding, Kaipeng Wei, Yuelong Liu, Xu-ling Deng
The wide existence of fractures makes conformance control by polymer gels more challenging in water-flooded oil reservoirs. Selection of an applicable gel system and design of an intelligent approach for gel treatment are key components for a successful field application. Moreover, selecting the candidate wells and determining the injection volume of gel are also critical to the success of gel treatments. A gel system with adjustable polymer concentrations was applied for conformance control in fractured tight sandstone reservoir, and notably, less than 5% of syneresis was detected after aging for one year at reservoir condition. The viscosity and the gelation time of this gel system can be adjusted according to the targeted reservoir conditions. The pilot test was conducted in Huabei oilfield (China), and the oil recovery after water flooding was only about 20% original oil in place (OOIP). With further exploitation of the oil field, the majority of the reservoir has suffered from poor sweep efficiency and extremely high water cuts. To characterize the distribution of fractures, the seismic coherence cube was utilized. In addition, the pressure transient test, interwell tracer test and the injection-production data were used collaboratively to determine the volume of fractures in the reservoir. The option of gel formulation and the determination of operational parameters are mainly based on the wellhead pressure. According to the seismic coherence cube, the zone of candidate well group shows a weak coherence state, indicating that numerous fractures exist. Furthermore, there is good continuity between the candidate injection well and the production well. According to the pressure transient test, the volume of re-open fracture is about 1730.9 m3, while the volume of micro-fracture is about 4839.4 m3. Comparably, based on the interwell tracer test, the estimated volume of fractures is approximately 3219.7 m3. Consequently, the designed volume of gel for treatment is 1500.0 m3 in total. The properties of gel slugs were carefully designed, which was tailored to the specific wellbore conditions and formation characteristics. Three months after the gel treatment, the average oil production was increased from 0.36 t/d to 0.9 t/d, and the water cut was decreased from 95.77% to 88.7%. The improved oil production was still benefited from this gel treatment after one year. This study provides a comprehensive approach, from optimization of gel formulation, followed by selection of candidate wells, to calculation of the injected volume, to design the viable operational parameters, for gel treatment field application in fractured reservoirs. It shows that, besides a gel system with superior properties, a suitable injected volume of gel may enhance the chance of success for gel treatments.
裂缝的广泛存在使得聚合物凝胶在水淹油藏中控制顺应性更具挑战性。选择适用的凝胶体系和设计智能凝胶处理方法是成功现场应用的关键组成部分。此外,选择候选井和确定凝胶的注入量也是凝胶处理成功的关键。采用聚合物浓度可调的凝胶体系控制裂缝性致密砂岩储层的顺性,在储层条件下老化1年后,发现的协同作用小于5%。该凝胶体系的粘度和胶凝时间可根据目标储层条件进行调整。在华北油田进行了中试,经水驱后采收率仅为原油(OOIP)的20%左右。随着油田的进一步开发,大部分油藏的波及效率较低,含水率极高。利用地震相干体来表征裂缝的分布。此外,还将压力瞬变测试、井间示踪剂测试和注采数据协同使用,以确定储层裂缝的体积。凝胶配方的选择和作业参数的确定主要基于井口压力。地震相干体显示,候选井群带呈现弱相干状态,表明存在大量裂缝。此外,候选注水井与生产井之间具有良好的连续性。根据压力瞬态试验,再开裂缝体积约为1730.9 m3,微裂缝体积约为4839.4 m3。相比之下,根据井间示踪剂测试,估计裂缝体积约为3219.7 m3。因此,设计的凝胶处理体积为1500.0 m3。根据特定的井眼条件和地层特征,对凝胶段塞的性能进行了精心设计。凝胶处理3个月后,平均产油量从0.36 t/d提高到0.9 t/d,含水率从95.77%下降到88.7%。经过一年后,该凝胶处理仍能提高产油量。该研究为裂缝性油藏凝胶处理现场应用提供了一种综合方法,从优化凝胶配方、选择候选井、计算注入量到设计可行的操作参数。这表明,除了具有优越性能的凝胶体系外,适当的凝胶注入量可以增加凝胶处理成功的机会。
{"title":"A Successful Field Application of Polymer Gel for Water Shutoff in a Fractured Tight Sandstone Reservoir","authors":"Qianhui Wu, J. Ge, L. Ding, Kaipeng Wei, Yuelong Liu, Xu-ling Deng","doi":"10.2118/204741-ms","DOIUrl":"https://doi.org/10.2118/204741-ms","url":null,"abstract":"\u0000 The wide existence of fractures makes conformance control by polymer gels more challenging in water-flooded oil reservoirs. Selection of an applicable gel system and design of an intelligent approach for gel treatment are key components for a successful field application. Moreover, selecting the candidate wells and determining the injection volume of gel are also critical to the success of gel treatments.\u0000 A gel system with adjustable polymer concentrations was applied for conformance control in fractured tight sandstone reservoir, and notably, less than 5% of syneresis was detected after aging for one year at reservoir condition. The viscosity and the gelation time of this gel system can be adjusted according to the targeted reservoir conditions. The pilot test was conducted in Huabei oilfield (China), and the oil recovery after water flooding was only about 20% original oil in place (OOIP). With further exploitation of the oil field, the majority of the reservoir has suffered from poor sweep efficiency and extremely high water cuts. To characterize the distribution of fractures, the seismic coherence cube was utilized. In addition, the pressure transient test, interwell tracer test and the injection-production data were used collaboratively to determine the volume of fractures in the reservoir. The option of gel formulation and the determination of operational parameters are mainly based on the wellhead pressure.\u0000 According to the seismic coherence cube, the zone of candidate well group shows a weak coherence state, indicating that numerous fractures exist. Furthermore, there is good continuity between the candidate injection well and the production well. According to the pressure transient test, the volume of re-open fracture is about 1730.9 m3, while the volume of micro-fracture is about 4839.4 m3. Comparably, based on the interwell tracer test, the estimated volume of fractures is approximately 3219.7 m3. Consequently, the designed volume of gel for treatment is 1500.0 m3 in total. The properties of gel slugs were carefully designed, which was tailored to the specific wellbore conditions and formation characteristics. Three months after the gel treatment, the average oil production was increased from 0.36 t/d to 0.9 t/d, and the water cut was decreased from 95.77% to 88.7%. The improved oil production was still benefited from this gel treatment after one year.\u0000 This study provides a comprehensive approach, from optimization of gel formulation, followed by selection of candidate wells, to calculation of the injected volume, to design the viable operational parameters, for gel treatment field application in fractured reservoirs. It shows that, besides a gel system with superior properties, a suitable injected volume of gel may enhance the chance of success for gel treatments.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77703657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Exploiting Slim Pulsed Neutron Spectroscopy for Unlocking Reservoir Potential in Brownfields: Two Examples from Gulf of Suez Offshore Field in Egypt 利用细脉冲中子能谱技术解锁棕地油藏潜力:以埃及苏伊士湾海上油田为例
Pub Date : 2021-12-15 DOI: 10.2118/204751-ms
Mohamed Ameen, Eslam Atwa, Y. Youssif, Emad Abdel Hakim, M. Farouk, S. Ghadiry, K. Saleh, Aly Morad
For more than 40 years, pulsed neutron spectroscopy has been primarily used in reservoir management to determine hydrocarbon saturation profiles, tracking reservoir depletion, and planning workover activities to diagnose production problems such as water influx. Legacy pulsed neutron tools used to provide this information for more than four decades, but they were challenged when a mixed lithology reservoir is encountered, complex completions, unknown borehole conditions, and poor cement integrity in cased boreholes. This paper presents two successful field examples and applications using the advanced slim pulsed neutron spectroscopy to precisely determine multiphase contacts in a complex geological structure, provide current hydrocarbon saturation independent of the quality of cement behind the casing, and identifying bypassed hydrocarbon. This was of paramount importance in understanding current reservoir fluid distribution to reveal the true potential of this offshore brownfield located in the Gulf of Suez, Egypt. An integrated approach and candidate well selection were done that resulted in selecting two candidate wells that had poor cement quality behind casing, heterogeneous carbonate reservoir with mixed lithology, and uncertain fluid contacts in a complex reservoir structure. These combined borehole and reservoir conditions resemble challenges for capturing this crucial information with high confidence using the legacy pulsed neutron tool, and therefore required an advanced technology that can overcome these challenges using a single logging mode at twice the logging speed of any current pulsed neutron technology available in the industry. Based on the results, a workover campaign was implemented in this mature field to increase overall oil production with very efficient cost control, especially with this unprecedented time the O&G industry is going through. An integrated approach was set that resulted in the selection of two wells for the saturation determination logging tool deployment. Detailed high-resolution mineralogy, self-compensated total porosity and sigma, fluid type identification, and multiphase fluid saturation was obtained with high precision behind cased borehole independent of cement integrity and borehole fluid reinvasion. The results provided crucial information as an input to the integrated reservoir engineering approach which revealed around a 100-m net oil interval which was previously overlooked due to relatively low resistivity. Besides, fluids contacts were evaluated that confirmed the development of a secondary gas cap and the water encroachment direction. This technology can be further applied to more brownfields provided the right candidate selection is done to understand the potentiality of the field which would increase the recovery factor of the brownfields that represent almost more than 65% of the oil and gas fields around the world.
40多年来,脉冲中子谱主要用于油藏管理,以确定油气饱和度剖面,跟踪油藏枯竭,规划修井活动,以诊断水侵等生产问题。传统的脉冲中子工具已经使用了40多年来提供这些信息,但是当遇到混合岩性油藏、复杂完井、未知井眼条件以及套管井中水泥完整性差时,它们就会受到挑战。本文介绍了两个成功的现场实例和应用,利用先进的细脉冲中子能谱技术,精确确定复杂地质构造中的多相接触点,提供与套管后水泥质量无关的当前烃饱和度,并识别旁路烃。这对于了解当前储层流体分布,揭示埃及苏伊斯湾海上棕地的真正潜力至关重要。通过综合方法和候选井选择,选择了套管后固井质量差、岩性混合的非均质碳酸盐岩储层以及复杂储层结构中流体接触不确定的两口候选井。这些井眼和储层的综合条件与使用传统脉冲中子工具获取这些关键信息的难度相似,因此需要一种先进的技术来克服这些挑战,使用单一测井模式,测井速度是目前业内可用的任何脉冲中子技术的两倍。在此基础上,在该成熟油田进行了修井作业,在有效控制成本的同时提高了整体产油量,特别是在油气行业正经历着前所未有的时期。采用了一种综合方法,选择了两口井进行饱和度测定测井工具部署。详细的高分辨率矿物学、自补偿总孔隙度和sigma、流体类型识别和多相流体饱和度在套管井后高精度地获得,不受水泥完整性和井内流体再侵入的影响。该结果为综合油藏工程方法提供了重要信息,该方法揭示了100米左右的净油层,此前由于电阻率相对较低而被忽视。通过流体接触评价,确定了次生气顶发育和水侵方向。该技术可以进一步应用于更多的棕地,只要对候选油田进行正确的选择,以了解油田的潜力,这将提高棕地的采收率,棕地占全球油气田的65%以上。
{"title":"Exploiting Slim Pulsed Neutron Spectroscopy for Unlocking Reservoir Potential in Brownfields: Two Examples from Gulf of Suez Offshore Field in Egypt","authors":"Mohamed Ameen, Eslam Atwa, Y. Youssif, Emad Abdel Hakim, M. Farouk, S. Ghadiry, K. Saleh, Aly Morad","doi":"10.2118/204751-ms","DOIUrl":"https://doi.org/10.2118/204751-ms","url":null,"abstract":"\u0000 For more than 40 years, pulsed neutron spectroscopy has been primarily used in reservoir management to determine hydrocarbon saturation profiles, tracking reservoir depletion, and planning workover activities to diagnose production problems such as water influx. Legacy pulsed neutron tools used to provide this information for more than four decades, but they were challenged when a mixed lithology reservoir is encountered, complex completions, unknown borehole conditions, and poor cement integrity in cased boreholes.\u0000 This paper presents two successful field examples and applications using the advanced slim pulsed neutron spectroscopy to precisely determine multiphase contacts in a complex geological structure, provide current hydrocarbon saturation independent of the quality of cement behind the casing, and identifying bypassed hydrocarbon. This was of paramount importance in understanding current reservoir fluid distribution to reveal the true potential of this offshore brownfield located in the Gulf of Suez, Egypt.\u0000 An integrated approach and candidate well selection were done that resulted in selecting two candidate wells that had poor cement quality behind casing, heterogeneous carbonate reservoir with mixed lithology, and uncertain fluid contacts in a complex reservoir structure. These combined borehole and reservoir conditions resemble challenges for capturing this crucial information with high confidence using the legacy pulsed neutron tool, and therefore required an advanced technology that can overcome these challenges using a single logging mode at twice the logging speed of any current pulsed neutron technology available in the industry.\u0000 Based on the results, a workover campaign was implemented in this mature field to increase overall oil production with very efficient cost control, especially with this unprecedented time the O&G industry is going through. An integrated approach was set that resulted in the selection of two wells for the saturation determination logging tool deployment.\u0000 Detailed high-resolution mineralogy, self-compensated total porosity and sigma, fluid type identification, and multiphase fluid saturation was obtained with high precision behind cased borehole independent of cement integrity and borehole fluid reinvasion. The results provided crucial information as an input to the integrated reservoir engineering approach which revealed around a 100-m net oil interval which was previously overlooked due to relatively low resistivity. Besides, fluids contacts were evaluated that confirmed the development of a secondary gas cap and the water encroachment direction. This technology can be further applied to more brownfields provided the right candidate selection is done to understand the potentiality of the field which would increase the recovery factor of the brownfields that represent almost more than 65% of the oil and gas fields around the world.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88772421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reservoir Management Optimization Model Employing Combination Deterministic and Probabilistic Approach for Carbon Sequestration Storage and Utilization: A Case Study from East Natuna 基于确定性与概率相结合的固碳储存与利用水库管理优化模型——以东纳土纳为例
Pub Date : 2021-12-15 DOI: 10.2118/204761-ms
J. R. Cherdasa, T. Ariadji, B. Sapiie, Ucok W. R. Siagian
East Natuna is well known for its huge natural gas reserves with a very high CO2 content. The appearance of CO2 content in an oil and gas field is always considered as waste material and will severely affect the economic value of the field. The higher the content, the more costly the process, both technically and environmentally. In this research, the newly proposed reservoir management approach called CSSU (Carbon Sequestration Storage and Utilization) method is trying to change the paradigm of CO2 from waste material into economic materials. The novelty of this research is the combined optimization of deterministic and stochastic methods with the Particle Swarm Optimization (PSO) algorithm to answer complex and non-linear problems in the CSSU (Carbon Sequestration Storage and Utilization) method. The CSSU method is an integration of geological, geophysical, reservoir engineering and engineering economics with the determination of technical and economic optimization of the use of CO2 produced as working fluid in a power generation system that has been conditioned through an injection-production system in geological formations. The CSSU research area is located in a sedimentary basin that has a giant gas field with 70% CO2 content. The Volumetric Storage Capacity for CO2 injection process in research area is 1,749.14 BCF or 94.01 MMTon which being calculated based on static modeling considering geological, geophysical and petrophysical aspects. A combination of Compositional, Geomechanics and Thermal reservoir simulation model had been conducted to determines the Storage Injection capacity and later to prove the CSSU method in which CO2 fluids will be utilized as working fluid, 1 case was built using 2 Injection Wells and 1 CO2 fluid Production Well. The simulation results show with 1 production well the total of CO2 fluid injected from 2 Injection wells can almost double the injection total capacity up to 1,150 BCF. The utilization of supercritical CO2 fluid as working fluid can produce 55 – 133.5 MMBTU/Day or 0.67 - 1.63 MW from 1 production well for 25 years timeframe. The CSSU method is optimized by deterministic and stochastic methods using the Particle Swarm Optimization (PSO) algorithm by looking the technical and economical aspects. The technical optimization aspect is being analyzed by electricity production versus well counts. The economical optimization is being analyzed by operational expenditure saving versus well counts and electricity produced versus NPV 10%. From both aspects the 4 injector wells case and NPV 200.00 MM US$ gives the most optimum result within technically and economically. The CSSU economic model proved with CSSU scheme the economical value is being increased by 57 MMUS$ after operating cost efficiency due to the electricity savings, 92 MMUS$ due to Carbon Trading which resulting the NPV 10% is 172.77 MMUS$.
东纳土纳以其巨大的天然气储量和非常高的二氧化碳含量而闻名。油气田中CO2含量的出现一直被认为是一种废弃物,将严重影响油气田的经济价值。含量越高,工艺成本就越高,无论是技术上还是环境上。在本研究中,新提出的水库管理方法CSSU (Carbon sequstration Storage and Utilization)方法试图将二氧化碳从废物转化为经济材料。本研究的新颖之处在于将确定性和随机方法与粒子群优化(PSO)算法相结合,以解决碳封存与利用方法中的复杂非线性问题。CSSU方法是地质、地球物理、油藏工程和工程经济学的综合,通过地质地层的注采系统,确定发电系统中作为工作流体使用二氧化碳的技术和经济优化。CSSU研究区位于沉积盆地,具有二氧化碳含量达70%的巨型气田。研究区二氧化碳注入过程的体积存储容量为1749.14 BCF (94.01 mmt),基于静态建模计算,考虑了地质、地球物理和岩石物理因素。为了确定储层注入能力,建立了储层成分、地质力学和油藏热模拟模型,并在此基础上验证了利用CO2流体作为工作流体的CSSU方法,采用2口注入井和1口CO2流体生产井建造了1个案例。模拟结果表明,在1口生产井中,2口注水井注入的CO2流体总量几乎可以使注入总容量增加一倍,达到1150 BCF。利用超临界CO2流体作为工作流体,在25年的时间内,一口生产井可以产生55 - 133.5 MMBTU/天或0.67 - 1.63 MW。从技术和经济的角度出发,采用确定性和随机粒子群算法对CSSU方法进行了优化。技术优化方面正在通过发电量与井数进行分析。通过节省的运营支出与井数的对比,以及生产的电力与NPV的对比,对经济优化进行了分析。从这两个方面来看,4口注水井和200万美元的净现值在技术和经济上都是最优的。CSSU经济模型证明,CSSU方案的经济价值增加了57 MMUS$,其中由于节省了电力,节省了运营成本效益,由于碳交易,经济价值增加了92 MMUS$, NPV为10%,为172.77 MMUS$。
{"title":"Reservoir Management Optimization Model Employing Combination Deterministic and Probabilistic Approach for Carbon Sequestration Storage and Utilization: A Case Study from East Natuna","authors":"J. R. Cherdasa, T. Ariadji, B. Sapiie, Ucok W. R. Siagian","doi":"10.2118/204761-ms","DOIUrl":"https://doi.org/10.2118/204761-ms","url":null,"abstract":"\u0000 East Natuna is well known for its huge natural gas reserves with a very high CO2 content. The appearance of CO2 content in an oil and gas field is always considered as waste material and will severely affect the economic value of the field. The higher the content, the more costly the process, both technically and environmentally. In this research, the newly proposed reservoir management approach called CSSU (Carbon Sequestration Storage and Utilization) method is trying to change the paradigm of CO2 from waste material into economic materials.\u0000 The novelty of this research is the combined optimization of deterministic and stochastic methods with the Particle Swarm Optimization (PSO) algorithm to answer complex and non-linear problems in the CSSU (Carbon Sequestration Storage and Utilization) method. The CSSU method is an integration of geological, geophysical, reservoir engineering and engineering economics with the determination of technical and economic optimization of the use of CO2 produced as working fluid in a power generation system that has been conditioned through an injection-production system in geological formations.\u0000 The CSSU research area is located in a sedimentary basin that has a giant gas field with 70% CO2 content. The Volumetric Storage Capacity for CO2 injection process in research area is 1,749.14 BCF or 94.01 MMTon which being calculated based on static modeling considering geological, geophysical and petrophysical aspects.\u0000 A combination of Compositional, Geomechanics and Thermal reservoir simulation model had been conducted to determines the Storage Injection capacity and later to prove the CSSU method in which CO2 fluids will be utilized as working fluid, 1 case was built using 2 Injection Wells and 1 CO2 fluid Production Well. The simulation results show with 1 production well the total of CO2 fluid injected from 2 Injection wells can almost double the injection total capacity up to 1,150 BCF. The utilization of supercritical CO2 fluid as working fluid can produce 55 – 133.5 MMBTU/Day or 0.67 - 1.63 MW from 1 production well for 25 years timeframe.\u0000 The CSSU method is optimized by deterministic and stochastic methods using the Particle Swarm Optimization (PSO) algorithm by looking the technical and economical aspects. The technical optimization aspect is being analyzed by electricity production versus well counts. The economical optimization is being analyzed by operational expenditure saving versus well counts and electricity produced versus NPV 10%. From both aspects the 4 injector wells case and NPV 200.00 MM US$ gives the most optimum result within technically and economically. The CSSU economic model proved with CSSU scheme the economical value is being increased by 57 MMUS$ after operating cost efficiency due to the electricity savings, 92 MMUS$ due to Carbon Trading which resulting the NPV 10% is 172.77 MMUS$.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88344944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Measurement of Tortuosity of Porous Media Using Imaging, Electrical Measurements, and Pulsed Field Gradient NMR 利用成像、电测量和脉冲场梯度核磁共振测量多孔介质的扭曲度
Pub Date : 2021-12-15 DOI: 10.2118/204629-ms
M. Elsayed, H. Kwak, A. El-Husseiny, Mohamed Mahmoud
Tortuosity, in general characterizes the geometric complexity of porous media. It is considered as one of the key factors in characterizing the heterogonous structure of porous media and has significant implications for macroscopic transport flow properties. There are four widely used definitions of tortuosity, that are relevant to different fields from hydrology to chemical and petroleum engineering, which are: geometric, hydraulic, electrical, and diffusional. Recent work showed that hydraulic, electrical and diffusional tortuosity values are roughly equal to each other in glass beads. Nevertheless, the relationship between the different definitions of Tortuosity in natural rocks is not well understood yet. Understanding the relationship between the different Tortuosity definitions in rocks can help to establish a workflow that allows us to estimate other types from the available technique. Therefore, the objective of this study is to investigate the relationship between the different tortuosity definitions in natural rocks. A major focus of this work is to utilize Nuclear Magnetic Resonance (NMR) technology to estimate Tortuosity. Such technique has been traditionally used to obtain diffusional tortuosity which can be defined as the ratio of the free fluid self-diffusion coefficient to the restricted fluid self-diffusion coefficient inside the porous media. In this study, the following techniques were used to quantify hydraulic, electrical, and diffusional tortuosity respectively on the same rock sample: (1) Microcomputed Tomography 3D imaging (2) Four-Electrodes resistivity measurements (3) Pulsed-Field Gradient Nuclear Magnetic Resonance (PFG NMR). PFG NMR is very powerful, non-invasive technique employed to measure the self-diffusion coefficient for free and confined fluids. The measurements were done based on two carbonate rock core plugs characterized by variable porosity, permeability and texture complexity. Results show that PFG NMR can be applied directionally to quantify the pore network anisotropy created by fractures. For both samples, hydraulic tortuosity was found to have the lowest magnitude compared to geometric, electrical and diffusional tortuosity. This could be explained by the more heterogeneous microstructure of carbonate rocks. NMR technique has however advantages over the other electrical and imaging techniques for tortuosity characterization: it is faster, non-destructive and can be applied in well bore environment (in situ). We therefore conclude that NMR can provide a tool for estimating not only diffusional tortuosity but also for indirectly obtaining hydraulic and electrical tortuosity.
弯曲度通常表征多孔介质的几何复杂性。它被认为是表征多孔介质非均质结构的关键因素之一,对宏观输运流动特性具有重要意义。扭曲度有四种广泛使用的定义,它们与从水文学到化学和石油工程的不同领域有关,它们是:几何、水力、电学和扩散。最近的研究表明,在玻璃微珠中,水力、电和扩散扭曲值大致相等。然而,对于天然岩石中不同的扭曲度定义之间的关系,人们还没有很好地理解。了解岩石中不同Tortuosity定义之间的关系可以帮助我们建立一个工作流程,使我们能够从可用的技术中估计其他类型。因此,本研究的目的是探讨天然岩石中不同扭曲度定义之间的关系。本研究的重点是利用核磁共振(NMR)技术估算扭曲度。传统上使用这种技术来获得扩散扭曲度,它可以定义为多孔介质内自由流体自扩散系数与受限流体自扩散系数之比。在本研究中,采用以下技术分别对同一岩石样品的水力、电和扩散扭曲进行量化:(1)微计算机断层扫描三维成像(2)四电极电阻率测量(3)脉冲场梯度核磁共振(PFG NMR)。PFG核磁共振是一种非常强大的非侵入性技术,用于测量自由和受限流体的自扩散系数。测量是基于两个具有不同孔隙度、渗透率和结构复杂性的碳酸盐岩岩心塞进行的。结果表明,PFG核磁共振可以定向量化裂缝形成的孔隙网络各向异性。在这两个样本中,与几何扭曲、电扭曲和扩散扭曲相比,水力扭曲的程度最低。这可以用碳酸盐岩的微观结构更不均匀来解释。然而,与其他电成像技术相比,核磁共振技术在扭曲度表征方面具有优势:它速度更快,非破坏性,可以应用于井筒环境(原位)。因此,我们得出结论,核磁共振不仅可以提供一种估计扩散扭曲度的工具,而且可以间接获得液压和电扭曲度。
{"title":"The Measurement of Tortuosity of Porous Media Using Imaging, Electrical Measurements, and Pulsed Field Gradient NMR","authors":"M. Elsayed, H. Kwak, A. El-Husseiny, Mohamed Mahmoud","doi":"10.2118/204629-ms","DOIUrl":"https://doi.org/10.2118/204629-ms","url":null,"abstract":"\u0000 Tortuosity, in general characterizes the geometric complexity of porous media. It is considered as one of the key factors in characterizing the heterogonous structure of porous media and has significant implications for macroscopic transport flow properties. There are four widely used definitions of tortuosity, that are relevant to different fields from hydrology to chemical and petroleum engineering, which are: geometric, hydraulic, electrical, and diffusional. Recent work showed that hydraulic, electrical and diffusional tortuosity values are roughly equal to each other in glass beads. Nevertheless, the relationship between the different definitions of Tortuosity in natural rocks is not well understood yet. Understanding the relationship between the different Tortuosity definitions in rocks can help to establish a workflow that allows us to estimate other types from the available technique. Therefore, the objective of this study is to investigate the relationship between the different tortuosity definitions in natural rocks. A major focus of this work is to utilize Nuclear Magnetic Resonance (NMR) technology to estimate Tortuosity. Such technique has been traditionally used to obtain diffusional tortuosity which can be defined as the ratio of the free fluid self-diffusion coefficient to the restricted fluid self-diffusion coefficient inside the porous media.\u0000 In this study, the following techniques were used to quantify hydraulic, electrical, and diffusional tortuosity respectively on the same rock sample: (1) Microcomputed Tomography 3D imaging (2) Four-Electrodes resistivity measurements (3) Pulsed-Field Gradient Nuclear Magnetic Resonance (PFG NMR). PFG NMR is very powerful, non-invasive technique employed to measure the self-diffusion coefficient for free and confined fluids. The measurements were done based on two carbonate rock core plugs characterized by variable porosity, permeability and texture complexity.\u0000 Results show that PFG NMR can be applied directionally to quantify the pore network anisotropy created by fractures. For both samples, hydraulic tortuosity was found to have the lowest magnitude compared to geometric, electrical and diffusional tortuosity. This could be explained by the more heterogeneous microstructure of carbonate rocks. NMR technique has however advantages over the other electrical and imaging techniques for tortuosity characterization: it is faster, non-destructive and can be applied in well bore environment (in situ). We therefore conclude that NMR can provide a tool for estimating not only diffusional tortuosity but also for indirectly obtaining hydraulic and electrical tortuosity.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89140373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Day 3 Tue, November 30, 2021
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1