Pub Date : 2024-06-27DOI: 10.1007/s10021-024-00919-8
Ray Dybzinski, Ella Segal, M. Luke McCormack, Christine R. Rollinson, Rosemary Mascarenhas, Perry Giambuzzi, Jamilys Rivera, Lucien Fitzpatrick, Caylin Wiggins, Meghan G. Midgley
Quantifying nitrogen uptake rates across different forest types is critical for a range of ecological questions, including the parameterization of global climate change models. However, few measurements of forest nitrogen uptake rates are available due to the intensive labor required to collect in situ data. Here, we seek to optimize data collection efforts by identifying measurements that must be made in situ and those that can be omitted or approximated from databases. We estimated nitrogen uptake rates in 18 mature monodominant forest stands comprising 13 species of diverse taxonomy at the Morton Arboretum in Lisle, IL, USA. We measured all nitrogen concentrations, foliage allocation, and fine root biomass in situ. We estimated wood biomass increments by in situ stem diameter and stem core measurements combined with allometric equations. We estimated fine root turnover rates from database values. We analyzed similar published data from monodominant forest FACE sites. At least in monodominant forests, accurate estimates of forest nitrogen uptake rates appear to require in situ measurements of fine root productivity and are appreciably better paired with in situ measurements of foliage productivity. Generally, wood productivity and tissue nitrogen concentrations may be taken from trait databases at higher taxonomic levels. Careful sorting of foliage or fine roots to species is time consuming but has little effect on estimates of nitrogen uptake rate. By directing research efforts to critical in situ measurements only, future studies can maximize research effort to identify the drivers of varied nitrogen uptake patterns across gradients.
{"title":"Calculating Nitrogen Uptake Rates in Forests: Which Components Can Be Omitted, Simplified, or Taken from Trait Databases and Which Must Be Measured In Situ?","authors":"Ray Dybzinski, Ella Segal, M. Luke McCormack, Christine R. Rollinson, Rosemary Mascarenhas, Perry Giambuzzi, Jamilys Rivera, Lucien Fitzpatrick, Caylin Wiggins, Meghan G. Midgley","doi":"10.1007/s10021-024-00919-8","DOIUrl":"https://doi.org/10.1007/s10021-024-00919-8","url":null,"abstract":"<p>Quantifying nitrogen uptake rates across different forest types is critical for a range of ecological questions, including the parameterization of global climate change models. However, few measurements of forest nitrogen uptake rates are available due to the intensive labor required to collect in situ data. Here, we seek to optimize data collection efforts by identifying measurements that must be made in situ and those that can be omitted or approximated from databases. We estimated nitrogen uptake rates in 18 mature monodominant forest stands comprising 13 species of diverse taxonomy at the Morton Arboretum in Lisle, IL, USA. We measured all nitrogen concentrations, foliage allocation, and fine root biomass in situ. We estimated wood biomass increments by in situ stem diameter and stem core measurements combined with allometric equations. We estimated fine root turnover rates from database values. We analyzed similar published data from monodominant forest FACE sites. At least in monodominant forests, accurate estimates of forest nitrogen uptake rates appear to require in situ measurements of fine root productivity and are appreciably better paired with in situ measurements of foliage productivity. Generally, wood productivity and tissue nitrogen concentrations may be taken from trait databases at higher taxonomic levels. Careful sorting of foliage or fine roots to species is time consuming but has little effect on estimates of nitrogen uptake rate. By directing research efforts to critical in situ measurements only, future studies can maximize research effort to identify the drivers of varied nitrogen uptake patterns across gradients.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1007/s10021-024-00920-1
Grégoire Saboret, Coralie Moccetti, Kunio Takatsu, David J. Janssen, Blake Matthews, Jakob Brodersen, Carsten J. Schubert
In a warming world, the input of glacier meltwater to inland water ecosystems is predicted to change, potentially affecting their productivity. Meta-ecosystem theory, which posits that the nutrient availability in the recipient ecosystem can determine the extent of cross-ecosystem boundary utilization, can be useful for studying landscape-scale influences of glacier meltwater on inland waters. Here, we investigate how the input of glacier meltwater in a river system in Southern Greenland influences the utilization of marine subsidies in freshwater fish. Our study system comprised four sites, with controls for glacial meltwater and marine subsidies, harboring a partially migrating population of arctic char, meaning that some individuals migrate to the ocean and others remain in freshwaters, and two fully resident populations as a freshwater reference. We assessed the incorporation of marine carbon in freshwater resident char using both bulk and amino acid stable isotope analysis of muscle tissue. In the population with partial migration, marine subsidies were a significant resource for resident char individuals, and estimates of trophic position suggest that egg cannibalism is an important mechanism underlying the assimilation of these marine subsidies. In proglacial streams, namely those with high glacial meltwater, the total dependence on marine subsidies increased and reached 83% because char become cannibals at smaller sizes. In the configuration of our focal meta-ecosystem, our results suggest that the importance of marine subsidies to freshwater fish strengthens within increasing meltwater flux from upstream glaciers.
{"title":"Glacial Meltwater Increases the Dependence on Marine Subsidies of Fish in Freshwater Ecosystems","authors":"Grégoire Saboret, Coralie Moccetti, Kunio Takatsu, David J. Janssen, Blake Matthews, Jakob Brodersen, Carsten J. Schubert","doi":"10.1007/s10021-024-00920-1","DOIUrl":"https://doi.org/10.1007/s10021-024-00920-1","url":null,"abstract":"<p>In a warming world, the input of glacier meltwater to inland water ecosystems is predicted to change, potentially affecting their productivity. Meta-ecosystem theory, which posits that the nutrient availability in the recipient ecosystem can determine the extent of cross-ecosystem boundary utilization, can be useful for studying landscape-scale influences of glacier meltwater on inland waters. Here, we investigate how the input of glacier meltwater in a river system in Southern Greenland influences the utilization of marine subsidies in freshwater fish. Our study system comprised four sites, with controls for glacial meltwater and marine subsidies, harboring a partially migrating population of arctic char, meaning that some individuals migrate to the ocean and others remain in freshwaters, and two fully resident populations as a freshwater reference. We assessed the incorporation of marine carbon in freshwater resident char using both bulk and amino acid stable isotope analysis of muscle tissue. In the population with partial migration, marine subsidies were a significant resource for resident char individuals, and estimates of trophic position suggest that egg cannibalism is an important mechanism underlying the assimilation of these marine subsidies. In proglacial streams, namely those with high glacial meltwater, the total dependence on marine subsidies increased and reached 83% because char become cannibals at smaller sizes. In the configuration of our focal meta-ecosystem, our results suggest that the importance of marine subsidies to freshwater fish strengthens within increasing meltwater flux from upstream glaciers.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"64 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1007/s10021-024-00913-0
H. D. Alexander, A. K. Paulson, M. M. Loranty, M. C. Mack, S. M. Natali, H. Pena, S. Davydov, V. Spektor, N. Zimov
With climate warming and drying, fire activity is increasing in Cajander larch (Larix cajanderi Mayr.) forests underlain by continuous permafrost in northeastern Siberia, and initial post-fire tree demographic processes could unfold to determine long-term forest carbon (C) dynamics through impacts on tree density. Here, we evaluated above- and belowground C pools across 25 even-aged larch stands of varying tree densities that established following a wildfire in ~ 1940 near Cherskiy, Russia. Total C pools increased with increased larch tree density, from ~ 9,000 g C m−2 in low-density stands to ~ 11,000 g C m−2 in high and very high-density stands, with increases most pronounced at tree densities < 1 stem m−2 and driven by increased above- and belowground (that is, coarse roots) and live and dead (that is, woody debris and snags) larch biomass. Total understory vegetation and non-larch coarse root C pools declined with increased tree density due to decreased shrub C pools, but these pools were relatively small compared to larch biomass. Fine root, soil organic matter (OM), and near surface (0–30 cm) mineral soil (MS) C pools varied little with tree density, although soil C pools held most (18–28% in OM and 44–51% in MS) C stored in these stands. Thus, if changing fire regimes promote denser stands, C storage will likely increase, but whether this increase offsets C lost during fires remains unknown. Our findings highlight how post-fire tree demographic processes impact C pool distribution and stability in larch forests of Siberian permafrost regions.
随着气候变暖和干燥,西伯利亚东北部连续冻土层下的卡让德落叶松(Larix cajanderi Mayr.)森林的火灾活动日益频繁,火灾后最初的树木分布过程可能会通过对树木密度的影响来决定长期的森林碳(C)动态。在这里,我们评估了俄罗斯切尔斯基附近约 1940 年野火后形成的 25 个不同树木密度的匀龄落叶松林的地上和地下碳库。总碳库随着落叶松树木密度的增加而增加,从低密度林分的 ~ 9,000 g C m-2 增加到高密度和超高密度林分的 ~ 11,000 g C m-2,在树木密度大于或等于 1 干 m-2 时,总碳库的增加最为明显,其驱动力是地上和地下(即粗根)以及活的和死的(即木质碎屑和木渣)落叶松生物量的增加。由于灌木碳库的减少,林下植被和非落叶松粗根的总碳库随着树木密度的增加而减少,但与落叶松生物量相比,这些碳库相对较小。细根、土壤有机质(OM)和近地表(0-30 厘米)矿质土壤(MS)的碳库随树木密度的变化很小,尽管土壤碳库在这些林分中储存了大部分(OM 为 18-28%,MS 为 44-51%)的碳。因此,如果火灾制度的改变促进了林分密度的提高,那么碳储量可能会增加,但这种增加是否能抵消火灾中损失的碳仍是未知数。我们的研究结果突显了火灾后树木的生长过程如何影响西伯利亚永久冻土地区落叶松林中碳库的分布和稳定性。
{"title":"Linking Post-fire Tree Density to Carbon Storage in High-Latitude Cajander Larch (Larix cajanderi) Forests of Far Northeastern Siberia","authors":"H. D. Alexander, A. K. Paulson, M. M. Loranty, M. C. Mack, S. M. Natali, H. Pena, S. Davydov, V. Spektor, N. Zimov","doi":"10.1007/s10021-024-00913-0","DOIUrl":"https://doi.org/10.1007/s10021-024-00913-0","url":null,"abstract":"<p>With climate warming and drying, fire activity is increasing in Cajander larch (<i>Larix cajanderi</i> Mayr.) forests underlain by continuous permafrost in northeastern Siberia, and initial post-fire tree demographic processes could unfold to determine long-term forest carbon (C) dynamics through impacts on tree density. Here, we evaluated above- and belowground C pools across 25 even-aged larch stands of varying tree densities that established following a wildfire in ~ 1940 near Cherskiy, Russia. Total C pools increased with increased larch tree density, from ~ 9,000 g C m<sup>−2</sup> in low-density stands to ~ 11,000 g C m<sup>−2</sup> in high and very high-density stands, with increases most pronounced at tree densities < 1 stem m<sup>−2</sup> and driven by increased above- and belowground (that is, coarse roots) and live and dead (that is, woody debris and snags) larch biomass. Total understory vegetation and non-larch coarse root C pools declined with increased tree density due to decreased shrub C pools, but these pools were relatively small compared to larch biomass. Fine root, soil organic matter (OM), and near surface (0–30 cm) mineral soil (MS) C pools varied little with tree density, although soil C pools held most (18–28% in OM and 44–51% in MS) C stored in these stands. Thus, if changing fire regimes promote denser stands, C storage will likely increase, but whether this increase offsets C lost during fires remains unknown. Our findings highlight how post-fire tree demographic processes impact C pool distribution and stability in larch forests of Siberian permafrost regions.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"72 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1007/s10021-024-00908-x
Leighton King, Giulia Wienhues, Pavani Misra, Wojciech Tylmann, Andrea Lami, Stefano M. Bernasconi, Madalina Jaggi, Colin Courtney-Mustaphi, Moritz Muschick, Nare Ngoepe, Salome Mwaiko, Mary A. Kishe, Andrew Cohen, Oliver Heiri, Ole Seehausen, Hendrik Vogel, Martin Grosjean, Blake Matthews
Discerning ecosystem change and food web dynamics underlying anthropogenic eutrophication and the introduction of non-native species is necessary for ensuring the long-term sustainability of fisheries and lake biodiversity. Previous studies of eutrophication in Lake Victoria, eastern Africa, have focused on the loss of endemic fish biodiversity over the past several decades, but changes in the plankton communities over this same time remain unclear. To fill this gap, we examined sediment cores from a eutrophic embayment, Mwanza Gulf, to determine the timing and magnitude of changes in the phytoplankton and zooplankton assemblages over the past century. Biogeochemical proxies indicate nutrient enrichment began around ~ 1920 CE and led to rapid increases in primary production, and our analysis of photosynthetic pigments revealed three zones: pre-eutrophication (prior to 1920 CE), onset of eutrophication with increases in all pigments (1920–1990 CE), and sustained eutrophication with cyanobacterial dominance (1990 CE–present). Cladoceran remains indicate an abrupt decline in biomass in ~ 1960 CE, in response to the cumulative effects of eutrophication and lake-level rise, preceding the collapse of haplochromine cichlids in the 1980s. Alona and Chydorus, typically benthic littoral taxa, have remained at relatively low abundances since the 1960s, whereas the abundance of Bosmina, typically a planktonic taxon, increased in the 1990s concurrently with the biomass recovery of haplochromine cichlid fishes. Overall, our results demonstrate substantial changes over the past century in the biomass structure and taxonomic composition of Mwanza Gulf phytoplankton and zooplankton communities, providing a historical food web perspective that can help understand the recent changes and inform future resource management decisions in the Lake Victoria ecosystem.
{"title":"Anthropogenic Eutrophication Drives Major Food Web Changes in Mwanza Gulf, Lake Victoria","authors":"Leighton King, Giulia Wienhues, Pavani Misra, Wojciech Tylmann, Andrea Lami, Stefano M. Bernasconi, Madalina Jaggi, Colin Courtney-Mustaphi, Moritz Muschick, Nare Ngoepe, Salome Mwaiko, Mary A. Kishe, Andrew Cohen, Oliver Heiri, Ole Seehausen, Hendrik Vogel, Martin Grosjean, Blake Matthews","doi":"10.1007/s10021-024-00908-x","DOIUrl":"https://doi.org/10.1007/s10021-024-00908-x","url":null,"abstract":"<p>Discerning ecosystem change and food web dynamics underlying anthropogenic eutrophication and the introduction of non-native species is necessary for ensuring the long-term sustainability of fisheries and lake biodiversity. Previous studies of eutrophication in Lake Victoria, eastern Africa, have focused on the loss of endemic fish biodiversity over the past several decades, but changes in the plankton communities over this same time remain unclear. To fill this gap, we examined sediment cores from a eutrophic embayment, Mwanza Gulf, to determine the timing and magnitude of changes in the phytoplankton and zooplankton assemblages over the past century. Biogeochemical proxies indicate nutrient enrichment began around ~ 1920 CE and led to rapid increases in primary production, and our analysis of photosynthetic pigments revealed three zones: pre-eutrophication (prior to 1920 CE), onset of eutrophication with increases in all pigments (1920–1990 CE), and sustained eutrophication with cyanobacterial dominance (1990 CE–present). Cladoceran remains indicate an abrupt decline in biomass in ~ 1960 CE, in response to the cumulative effects of eutrophication and lake-level rise, preceding the collapse of haplochromine cichlids in the 1980s. <i>Alona</i> and <i>Chydorus</i>, typically benthic littoral taxa, have remained at relatively low abundances since the 1960s, whereas the abundance of <i>Bosmina,</i> typically a planktonic taxon, increased in the 1990s concurrently with the biomass recovery of haplochromine cichlid fishes. Overall, our results demonstrate substantial changes over the past century in the biomass structure and taxonomic composition of Mwanza Gulf phytoplankton and zooplankton communities, providing a historical food web perspective that can help understand the recent changes and inform future resource management decisions in the Lake Victoria ecosystem.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"59 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1007/s10021-024-00909-w
Isis Gabriela Martínez López, Luuk Leemans, Marieke M. van Katwijk, S. Valery Ávila-Mosqueda, Brigitta I. van Tussenbroek
Interactions such as mutualism and facilitation are common in ecosystems established by foundation species; however, their outcomes vary and show conditionality. In a Mexican Caribbean Bay, a seagrass-coralline algae (rhodoliths) mutualism protects the seagrass Thalassia testudinum from green turtle overgrazing. We postulate that the state of the seagrass meadow in this bay depends on the strengths of the interactions among seagrasses, green turtles, and coralline algae. Spatio-temporal changes through satellite imagery showed rhodolith bed developed rapidly from 2009 (undetected) to 2016 (bed of 6934 m2). Typically, such rapid expansion of the rhodoliths does not occur in seagrass meadows. An in situ growth experiment of coralline algae showed that a combination of reduction in light and wave movement (usual in dense seagrass meadows) significantly reduced their growth rates. In the rhodolith beds, the growth rates of the coralline algae Neogoniolithon sp. and Amphiroa sp. were high at 9.5 mm and 15.5 mm per growth tip y−1, respectively. In a second experiment, we found lower mortality in coralline algae within a rhodolith bed compared to algae placed outside the bed, likely explained by the reduced resuspension that we found in a third experiment, and this positive feedback may explain the high population increase in the rhodoliths, once established when the turtles grazed down the seagrass canopy. Therefore, the grazing-protection mutualism between seagrasses and coralline algae is thus conditional and came into existence under a co-occurrence of intensive grazing pressure and rapid population growth of coralline algae facilitated by positive feedback from increased growth and reduced sediment resuspension by the dense rhodolith bed.
{"title":"Coralline Algal Population Explosion in an Overgrazed Seagrass Meadow: Conditional Outcomes of Intraspecific and Interspecific Interactions","authors":"Isis Gabriela Martínez López, Luuk Leemans, Marieke M. van Katwijk, S. Valery Ávila-Mosqueda, Brigitta I. van Tussenbroek","doi":"10.1007/s10021-024-00909-w","DOIUrl":"https://doi.org/10.1007/s10021-024-00909-w","url":null,"abstract":"<p>Interactions such as mutualism and facilitation are common in ecosystems established by foundation species; however, their outcomes vary and show conditionality. In a Mexican Caribbean Bay, a seagrass-coralline algae (rhodoliths) mutualism protects the seagrass <i>Thalassia testudinum</i> from green turtle overgrazing. We postulate that the state of the seagrass meadow in this bay depends on the strengths of the interactions among seagrasses, green turtles, and coralline algae. Spatio-temporal changes through satellite imagery showed rhodolith bed developed rapidly from 2009 (undetected) to 2016 (bed of 6934 m<sup>2</sup>). Typically, such rapid expansion of the rhodoliths does not occur in seagrass meadows. An in situ growth experiment of coralline algae showed that a combination of reduction in light and wave movement (usual in dense seagrass meadows) significantly reduced their growth rates. In the rhodolith beds, the growth rates of the coralline algae <i>Neogoniolithon</i> sp. and <i>Amphiroa</i> sp. were high at 9.5 mm and 15.5 mm per growth tip y<sup>−1</sup>, respectively. In a second experiment, we found lower mortality in coralline algae within a rhodolith bed compared to algae placed outside the bed, likely explained by the reduced resuspension that we found in a third experiment, and this positive feedback may explain the high population increase in the rhodoliths, once established when the turtles grazed down the seagrass canopy. Therefore, the grazing-protection mutualism between seagrasses and coralline algae is thus conditional and came into existence under a co-occurrence of intensive grazing pressure and rapid population growth of coralline algae facilitated by positive feedback from increased growth and reduced sediment resuspension by the dense rhodolith bed.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"154 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1007/s10021-024-00906-z
Daniel E. B. Swann, Peter J. Bellingham, Patrick H. Martin
Interactions between tropical cyclones and wildfires occur widely and can tip closed forests into open-canopy structures that initiate a ‘grass–fire’ cycle. We examined cyclone–fire interactions in a monodominant tropical montane pine forest in the Dominican Republic using remotely-sensed imagery to quantify damage from fires between 1986 and 2004, a category 1 cyclone in 1998, and an extensive wildfire in 2005. We also measured forest structure and composition 14.7 years after the 2005 fire. The area inside the 2005 burn scars (fire perimeters) totaled 25,206 ha, of which 81% burned and 14% was cyclone damaged. Cyclone damage made the fire markedly more extensive and severe—high-severity fires were > 3 times more frequent with high-severity cyclone damage than no cyclone damage—but these markedly synergistic effects were restricted to areas that had not burned for at least 19 years before the 2005 fire. Though earlier fires from 1986 to 2004 were small and low-severity, they were sufficient, when present, to prevent high-severity fire in 2005 irrespective of cyclone severity. In areas with strong cyclone–fire interactions, there was a complete loss of pine canopies, yet these stands had abundant pine canopy recruitment by 2019 and showed no evidence of compositional shifts toward open-canopy structures with pyrogenic herbaceous understories, illustrating the resilience of this ecosystem to a range of cyclone–fire synergies. However, the future resilience of tropical montane pine forests to cyclone–fire synergies is uncertain as climate change increases the intensity of cyclones and frequency of drought-triggered fires in these ecosystems.
{"title":"Cyclone–Fire Interactions Enhance Fire Extent and Severity in a Tropical Montane Pine Forest","authors":"Daniel E. B. Swann, Peter J. Bellingham, Patrick H. Martin","doi":"10.1007/s10021-024-00906-z","DOIUrl":"https://doi.org/10.1007/s10021-024-00906-z","url":null,"abstract":"<p>Interactions between tropical cyclones and wildfires occur widely and can tip closed forests into open-canopy structures that initiate a ‘grass–fire’ cycle. We examined cyclone–fire interactions in a monodominant tropical montane pine forest in the Dominican Republic using remotely-sensed imagery to quantify damage from fires between 1986 and 2004, a category 1 cyclone in 1998, and an extensive wildfire in 2005. We also measured forest structure and composition 14.7 years after the 2005 fire. The area inside the 2005 burn scars (fire perimeters) totaled 25,206 ha, of which 81% burned and 14% was cyclone damaged. Cyclone damage made the fire markedly more extensive and severe—high-severity fires were > 3 times more frequent with high-severity cyclone damage than no cyclone damage—but these markedly synergistic effects were restricted to areas that had not burned for at least 19 years before the 2005 fire. Though earlier fires from 1986 to 2004 were small and low-severity, they were sufficient, when present, to prevent high-severity fire in 2005 irrespective of cyclone severity. In areas with strong cyclone–fire interactions, there was a complete loss of pine canopies, yet these stands had abundant pine canopy recruitment by 2019 and showed no evidence of compositional shifts toward open-canopy structures with pyrogenic herbaceous understories, illustrating the resilience of this ecosystem to a range of cyclone–fire synergies. However, the future resilience of tropical montane pine forests to cyclone–fire synergies is uncertain as climate change increases the intensity of cyclones and frequency of drought-triggered fires in these ecosystems.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"30 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1007/s10021-024-00907-y
Philip S. Barton, Nick Schultz, Nathan J. Butterworth, Michael D. Ulyshen, Patricia Mateo-Tomás, Thomas M. Newsome
Global environmental change has redistributed earth’s biomass and the inputs and dynamics of basal detrital resources in ecosystems, contributing to the decline of biodiversity. Yet efforts to manage detrital necromass for biodiversity conservation are often overlooked or consider only singular resource types for focal species groups. We argue there is a significant opportunity to broaden our perspective of the spatiotemporal complexity among multiple necromass types for innovative biodiversity conservation. Here, we introduce an ecosystem-scale perspective to disentangling the spatial and temporal characteristics of multiple and distinct forms of necromass and their associated biota. We show that terrestrial and aquatic ecosystems contain a diversity of necromass types, each with contrasting temporal frequencies and magnitudes, and spatial density and configurations. By conceptualising an ecosystem in this way, we demonstrate that specific necromass dynamics can be identified and targeted for management that benefits the unique spatiotemporal requirements of dependent decomposer organisms and their critical role in ecosystem biomass conversion and nutrient recycling. We encourage conservation practitioners to think about necromass quantity, timing of inputs, spatial dynamics, and to engage with researchers to deepen our knowledge of how necromass might be manipulated to exploit the distinct attributes of different necromass types to help meet biodiversity conservation goals.
{"title":"Disentangling Ecosystem Necromass Dynamics for Biodiversity Conservation","authors":"Philip S. Barton, Nick Schultz, Nathan J. Butterworth, Michael D. Ulyshen, Patricia Mateo-Tomás, Thomas M. Newsome","doi":"10.1007/s10021-024-00907-y","DOIUrl":"https://doi.org/10.1007/s10021-024-00907-y","url":null,"abstract":"<p>Global environmental change has redistributed earth’s biomass and the inputs and dynamics of basal detrital resources in ecosystems, contributing to the decline of biodiversity. Yet efforts to manage detrital necromass for biodiversity conservation are often overlooked or consider only singular resource types for focal species groups. We argue there is a significant opportunity to broaden our perspective of the spatiotemporal complexity among multiple necromass types for innovative biodiversity conservation. Here, we introduce an ecosystem-scale perspective to disentangling the spatial and temporal characteristics of multiple and distinct forms of necromass and their associated biota. We show that terrestrial and aquatic ecosystems contain a diversity of necromass types, each with contrasting temporal frequencies and magnitudes, and spatial density and configurations. By conceptualising an ecosystem in this way, we demonstrate that specific necromass dynamics can be identified and targeted for management that benefits the unique spatiotemporal requirements of dependent decomposer organisms and their critical role in ecosystem biomass conversion and nutrient recycling. We encourage conservation practitioners to think about necromass quantity, timing of inputs, spatial dynamics, and to engage with researchers to deepen our knowledge of how necromass might be manipulated to exploit the distinct attributes of different necromass types to help meet biodiversity conservation goals.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"31 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-02DOI: 10.1007/s10021-024-00905-0
Cristina Montiel-González, Ángel E. Bravo-Monzón, José Israel Flores-Puerto, Fabiola Valadez-Cortés, Luz Elena Azcoytia-Escalona, Felipe García-Oliva, María Leticia Arena-Ortiz, Mariana Yolotl Alvarez-Añorve, Luis Daniel Avila-Cabadilla
Hurricanes are extreme climatic events frequently affecting tropical regions such as the tropical dry forests (TDFs) in Mexico, where its frequency/intensity is expected to increase toward the year 2100. To answer how resistant is a Mexican tropical dry forest to a high-intensity hurricane, and if its degree of resistance was mediated by its conservation degree, we evaluated the effect of a category 4 hurricane over the tree community, soil nutrients, and soil enzymatic activity in two contrasting TDF ecosystems: Old-Growth Forest (OGF) and Secondary Forest (SF). In general, vegetation richness and diversity showed very high resistance one year after the hurricane, but several structural attributes did not, especially in the OGF where the tree mortality related to vegetation structure and spatial distribution of individuals was higher. Then, in the short term, SF vegetation appeared to be more resistant, whereas the OGF, with more biomass to lose, appeared to be more vulnerable. Conversely, most soil attributes showed low resistance in both stages, but especially in SF which could face more severe nutrient limitations. The response of TDF to high-intensity hurricanes, in terms of above- and belowground processes, was in part dependent on its disturbance level. Moreover, an increase in the intensity/frequency of hurricanes could lead this TDF toward a high nutrient limitation (especially by phosphorus) for the plants and consequently toward a loss of soil functioning, especially in the SF. This eventually could produce a severe degradation in fundamental attributes and functions of the ecosystem.
{"title":"Disturbance Level Mediates the Differential Resistance of Tropical Dry Forest Soil and Vegetation Attributes to High-Intensity Hurricanes","authors":"Cristina Montiel-González, Ángel E. Bravo-Monzón, José Israel Flores-Puerto, Fabiola Valadez-Cortés, Luz Elena Azcoytia-Escalona, Felipe García-Oliva, María Leticia Arena-Ortiz, Mariana Yolotl Alvarez-Añorve, Luis Daniel Avila-Cabadilla","doi":"10.1007/s10021-024-00905-0","DOIUrl":"https://doi.org/10.1007/s10021-024-00905-0","url":null,"abstract":"<p>Hurricanes are extreme climatic events frequently affecting tropical regions such as the tropical dry forests (TDFs) in Mexico, where its frequency/intensity is expected to increase toward the year 2100. To answer how resistant is a Mexican tropical dry forest to a high-intensity hurricane, and if its degree of resistance was mediated by its conservation degree, we evaluated the effect of a category 4 hurricane over the tree community, soil nutrients, and soil enzymatic activity in two contrasting TDF ecosystems: Old-Growth Forest (OGF) and Secondary Forest (SF). In general, vegetation richness and diversity showed very high resistance one year after the hurricane, but several structural attributes did not, especially in the OGF where the tree mortality related to vegetation structure and spatial distribution of individuals was higher. Then, in the short term, SF vegetation appeared to be more resistant, whereas the OGF, with more biomass to lose, appeared to be more vulnerable. Conversely, most soil attributes showed low resistance in both stages, but especially in SF which could face more severe nutrient limitations. The response of TDF to high-intensity hurricanes, in terms of above- and belowground processes, was in part dependent on its disturbance level. Moreover, an increase in the intensity/frequency of hurricanes could lead this TDF toward a high nutrient limitation (especially by phosphorus) for the plants and consequently toward a loss of soil functioning, especially in the SF. This eventually could produce a severe degradation in fundamental attributes and functions of the ecosystem.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.1007/s10021-023-00882-w
Monika Ruwaimana, Daniel G. Gavin, Gusti Anshari
The function of tropical peatland as a carbon sink is a balance between peat accumulation and peat loss; however, various interacting factors are involved affecting this process. In this study, we collected and intensively radiocarbon dated peat cores from two peat domes, visualized their cross-sectional profiles of geochemical properties, and developed three macrocharcoal records from each peat dome. We find that the young (4500 y calBP) and shallow (6 m) coastal peat has a simple and linear age–depth relationship, showing stable accumulation of carbon during the late Holocene. In contrast, the older (ca. 40,000 y cal BP) and deeper (15 m) inland peat shows a more complex history, where we observed age reversals and hiatuses, likely caused by climate variability from the Last Glacial Maximum (LGM) to the Holocene. The charcoal record reveals a continuous presence of low-severity fire as indicated by charcoal morphotypes, though fire frequency increased after agriculture was established. An age reversal during the LGM was likely caused by a flood. Two periods of hiatuses occurred, each several millennia in length, at the end of the LGM and during the early Holocene. One cause of the hiatuses may have been a climatically halted peat formation from low precipitation and cooler climate during the LGM. Another cause may have been that severe fires consumed thousands of years of accumulated peat. If the hiatuses were entirely due to fire, the carbon released from these paleo-fire events (600 t C ha−1) suggests several times the impact of the most intense modern peat fires.
热带泥炭地作为碳汇的功能是泥炭积累和泥炭流失之间的平衡;然而,影响这一过程的因素多种多样。在这项研究中,我们采集了两个泥炭穹丘的泥炭岩芯并对其进行了深入的放射性碳年代测定,对其地球化学性质的横截面剖面进行了可视化分析,并对每个泥炭穹丘建立了三条宏观炭记录。我们发现,年轻(4500 y calBP)、浅(6 m)的沿海泥炭具有简单的线性年龄-深度关系,显示了全新世晚期碳的稳定积累。相比之下,较古老(约 40000 y cal BP)和较深(15 m)的内陆泥炭则显示出更为复杂的历史,我们观察到了年龄逆转和间断,这可能是由从末次冰川极盛期(LGM)到全新世的气候变异造成的。木炭记录显示,从木炭形态上看,低强度火灾持续存在,但在农业发展之后,火灾频率有所增加。大冰期的年龄逆转很可能是由洪水造成的。在全新世末期和全新世早期,出现了两次断代,每次长达几千年。造成间断的原因之一可能是,在上新世期间,由于降水量较少和气候较冷,泥炭的形成在气候上停止了。另一个原因可能是严重的火灾烧毁了数千年积累的泥炭。如果间断完全是由于火灾造成的,那么这些古火灾事件释放的碳(600 吨碳公顷-1)表明其影响是现代最强烈泥炭火灾的数倍。
{"title":"Interplay of Climate, Fires, Floods, and Anthropogenic Impacts on the Peat Formation and Carbon Dynamic of Coastal and Inland Tropical Peatlands in West Kalimantan, Indonesia","authors":"Monika Ruwaimana, Daniel G. Gavin, Gusti Anshari","doi":"10.1007/s10021-023-00882-w","DOIUrl":"https://doi.org/10.1007/s10021-023-00882-w","url":null,"abstract":"<p>The function of tropical peatland as a carbon sink is a balance between peat accumulation and peat loss; however, various interacting factors are involved affecting this process. In this study, we collected and intensively radiocarbon dated peat cores from two peat domes, visualized their cross-sectional profiles of geochemical properties, and developed three macrocharcoal records from each peat dome. We find that the young (4500 y calBP) and shallow (6 m) coastal peat has a simple and linear age–depth relationship, showing stable accumulation of carbon during the late Holocene. In contrast, the older (ca. 40,000 y cal BP) and deeper (15 m) inland peat shows a more complex history, where we observed age reversals and hiatuses, likely caused by climate variability from the Last Glacial Maximum (LGM) to the Holocene. The charcoal record reveals a continuous presence of low-severity fire as indicated by charcoal morphotypes, though fire frequency increased after agriculture was established. An age reversal during the LGM was likely caused by a flood. Two periods of hiatuses occurred, each several millennia in length, at the end of the LGM and during the early Holocene. One cause of the hiatuses may have been a climatically halted peat formation from low precipitation and cooler climate during the LGM. Another cause may have been that severe fires consumed thousands of years of accumulated peat. If the hiatuses were entirely due to fire, the carbon released from these paleo-fire events (600 t C ha<sup>−1</sup>) suggests several times the impact of the most intense modern peat fires.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"36 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04DOI: 10.1007/s10021-024-00903-2
Abstract
Decomposition is a key determinant of forest functioning, controlling nutrient and carbon cycling. Although litter-mixing effects on decomposition (that is, using mixtures of litter of different species) have been studied extensively, less is known about the indirect effects of modified microenvironments via overstory tree species mixing. To investigate the effects of tree species diversity on decomposition, we installed 384 standardized litterbags, filled with leaf litter of four broadleaved tree species with contrasting litter quality, in a large, 10-year-old tree diversity experiment. To quantify microenvironments, we used microclimate sensors, below-canopy rain gauges and measured soil characteristics. We then analysed indirect tree species diversity effects, that is, tree species richness effects on mass loss rates via tree species-induced alterations in the microclimate, throughfall and soil characteristics. We found that understory microenvironmental conditions indeed affect mass loss rates, with the main drivers differing among incubation stages. Predominantly soil phosphorus, but also vapour pressure deficit and throughfall amounts, was negatively associated with mass loss rates across litter types during the first 2 months of the decomposition process. After 6 months of the decomposition, soil moisture was found to be the key determinant positively affecting mass loss rates. In sum, our research contributes to a better understanding of the determinants of decomposition and shows an important pathway in which tree species diversity affects decomposition, via modified microenvironmental conditions acting via the soil, microclimate and throughfall.
{"title":"Tree Species Diversity Affects Litter Decomposition via Modification of the Microenvironment","authors":"","doi":"10.1007/s10021-024-00903-2","DOIUrl":"https://doi.org/10.1007/s10021-024-00903-2","url":null,"abstract":"<h3>Abstract</h3> <p>Decomposition is a key determinant of forest functioning, controlling nutrient and carbon cycling. Although litter-mixing effects on decomposition (that is, using mixtures of litter of different species) have been studied extensively, less is known about the indirect effects of modified microenvironments via overstory tree species mixing. To investigate the effects of tree species diversity on decomposition, we installed 384 standardized litterbags, filled with leaf litter of four broadleaved tree species with contrasting litter quality, in a large, 10-year-old tree diversity experiment. To quantify microenvironments, we used microclimate sensors, below-canopy rain gauges and measured soil characteristics. We then analysed indirect tree species diversity effects, that is, tree species richness effects on mass loss rates via tree species-induced alterations in the microclimate, throughfall and soil characteristics. We found that understory microenvironmental conditions indeed affect mass loss rates, with the main drivers differing among incubation stages. Predominantly soil phosphorus, but also vapour pressure deficit and throughfall amounts, was negatively associated with mass loss rates across litter types during the first 2 months of the decomposition process. After 6 months of the decomposition, soil moisture was found to be the key determinant positively affecting mass loss rates. In sum, our research contributes to a better understanding of the determinants of decomposition and shows an important pathway in which tree species diversity affects decomposition, via modified microenvironmental conditions acting via the soil, microclimate and throughfall.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"55 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}