首页 > 最新文献

Ecosystems最新文献

英文 中文
Calculating Nitrogen Uptake Rates in Forests: Which Components Can Be Omitted, Simplified, or Taken from Trait Databases and Which Must Be Measured In Situ? 计算森林的氮吸收率:哪些成分可以省略、简化或从性状数据库中提取,哪些必须现场测量?
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-06-27 DOI: 10.1007/s10021-024-00919-8
Ray Dybzinski, Ella Segal, M. Luke McCormack, Christine R. Rollinson, Rosemary Mascarenhas, Perry Giambuzzi, Jamilys Rivera, Lucien Fitzpatrick, Caylin Wiggins, Meghan G. Midgley

Quantifying nitrogen uptake rates across different forest types is critical for a range of ecological questions, including the parameterization of global climate change models. However, few measurements of forest nitrogen uptake rates are available due to the intensive labor required to collect in situ data. Here, we seek to optimize data collection efforts by identifying measurements that must be made in situ and those that can be omitted or approximated from databases. We estimated nitrogen uptake rates in 18 mature monodominant forest stands comprising 13 species of diverse taxonomy at the Morton Arboretum in Lisle, IL, USA. We measured all nitrogen concentrations, foliage allocation, and fine root biomass in situ. We estimated wood biomass increments by in situ stem diameter and stem core measurements combined with allometric equations. We estimated fine root turnover rates from database values. We analyzed similar published data from monodominant forest FACE sites. At least in monodominant forests, accurate estimates of forest nitrogen uptake rates appear to require in situ measurements of fine root productivity and are appreciably better paired with in situ measurements of foliage productivity. Generally, wood productivity and tissue nitrogen concentrations may be taken from trait databases at higher taxonomic levels. Careful sorting of foliage or fine roots to species is time consuming but has little effect on estimates of nitrogen uptake rate. By directing research efforts to critical in situ measurements only, future studies can maximize research effort to identify the drivers of varied nitrogen uptake patterns across gradients.

量化不同类型森林的氮吸收率对一系列生态问题至关重要,包括全球气候变化模型的参数化。然而,由于收集原位数据需要大量人力,因此很少有森林氮吸收率的测量数据。在此,我们试图通过确定必须在原地进行的测量和可以从数据库中省略或近似的测量来优化数据收集工作。我们估算了美国伊利诺斯州利斯尔莫顿植物园的 18 个成熟单优势林分的氮吸收率,这些林分由 13 种不同的物种组成。我们在现场测量了所有氮浓度、叶片分配和细根生物量。我们通过原位茎直径和茎芯测量值结合异速方程估算木材生物量增量。我们根据数据库中的数值估算了细根周转率。我们分析了单优势森林森林资源评估地点的类似公开数据。至少在单优势森林中,准确估算森林氮吸收率似乎需要对细根生产力进行现场测量,而且与叶片生产力的现场测量结果搭配使用效果会更好。一般来说,木材生产力和组织氮浓度可从更高分类级别的性状数据库中获取。按物种对叶片或细根进行仔细分类很费时间,但对氮吸收率的估算影响不大。通过将研究工作仅局限于关键的原位测量,未来的研究可以最大限度地提高研究效率,找出不同梯度氮吸收模式的驱动因素。
{"title":"Calculating Nitrogen Uptake Rates in Forests: Which Components Can Be Omitted, Simplified, or Taken from Trait Databases and Which Must Be Measured In Situ?","authors":"Ray Dybzinski, Ella Segal, M. Luke McCormack, Christine R. Rollinson, Rosemary Mascarenhas, Perry Giambuzzi, Jamilys Rivera, Lucien Fitzpatrick, Caylin Wiggins, Meghan G. Midgley","doi":"10.1007/s10021-024-00919-8","DOIUrl":"https://doi.org/10.1007/s10021-024-00919-8","url":null,"abstract":"<p>Quantifying nitrogen uptake rates across different forest types is critical for a range of ecological questions, including the parameterization of global climate change models. However, few measurements of forest nitrogen uptake rates are available due to the intensive labor required to collect in situ data. Here, we seek to optimize data collection efforts by identifying measurements that must be made in situ and those that can be omitted or approximated from databases. We estimated nitrogen uptake rates in 18 mature monodominant forest stands comprising 13 species of diverse taxonomy at the Morton Arboretum in Lisle, IL, USA. We measured all nitrogen concentrations, foliage allocation, and fine root biomass in situ. We estimated wood biomass increments by in situ stem diameter and stem core measurements combined with allometric equations. We estimated fine root turnover rates from database values. We analyzed similar published data from monodominant forest FACE sites. At least in monodominant forests, accurate estimates of forest nitrogen uptake rates appear to require in situ measurements of fine root productivity and are appreciably better paired with in situ measurements of foliage productivity. Generally, wood productivity and tissue nitrogen concentrations may be taken from trait databases at higher taxonomic levels. Careful sorting of foliage or fine roots to species is time consuming but has little effect on estimates of nitrogen uptake rate. By directing research efforts to critical in situ measurements only, future studies can maximize research effort to identify the drivers of varied nitrogen uptake patterns across gradients.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glacial Meltwater Increases the Dependence on Marine Subsidies of Fish in Freshwater Ecosystems 冰川融水增加了淡水生态系统中鱼类对海洋补给的依赖性
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-06-26 DOI: 10.1007/s10021-024-00920-1
Grégoire Saboret, Coralie Moccetti, Kunio Takatsu, David J. Janssen, Blake Matthews, Jakob Brodersen, Carsten J. Schubert

In a warming world, the input of glacier meltwater to inland water ecosystems is predicted to change, potentially affecting their productivity. Meta-ecosystem theory, which posits that the nutrient availability in the recipient ecosystem can determine the extent of cross-ecosystem boundary utilization, can be useful for studying landscape-scale influences of glacier meltwater on inland waters. Here, we investigate how the input of glacier meltwater in a river system in Southern Greenland influences the utilization of marine subsidies in freshwater fish. Our study system comprised four sites, with controls for glacial meltwater and marine subsidies, harboring a partially migrating population of arctic char, meaning that some individuals migrate to the ocean and others remain in freshwaters, and two fully resident populations as a freshwater reference. We assessed the incorporation of marine carbon in freshwater resident char using both bulk and amino acid stable isotope analysis of muscle tissue. In the population with partial migration, marine subsidies were a significant resource for resident char individuals, and estimates of trophic position suggest that egg cannibalism is an important mechanism underlying the assimilation of these marine subsidies. In proglacial streams, namely those with high glacial meltwater, the total dependence on marine subsidies increased and reached 83% because char become cannibals at smaller sizes. In the configuration of our focal meta-ecosystem, our results suggest that the importance of marine subsidies to freshwater fish strengthens within increasing meltwater flux from upstream glaciers.

在气候变暖的世界里,冰川融水对内陆水域生态系统的输入预计会发生变化,从而可能影响其生产力。元生态系统理论认为,受体生态系统的养分可用性可决定跨生态系统边界利用的程度,该理论可用于研究冰川融水对内陆水域的景观尺度影响。在这里,我们研究了冰川融水输入格陵兰岛南部的河流系统如何影响淡水鱼类对海洋补助的利用。我们的研究系统由四个地点组成,分别控制冰川融水和海洋补贴,其中包括一个部分洄游的北极红点鲑种群(即一些个体洄游到海洋,另一些个体留在淡水),以及两个作为淡水参照的完全常住种群。我们通过对肌肉组织进行总量和氨基酸稳定同位素分析,评估了淡水常住北极红点鲑中海洋碳的吸收情况。在部分洄游的种群中,海洋补给是长尾鳕个体的重要资源,对营养位置的估计表明,食卵是同化这些海洋补给的重要机制。在冰川期的溪流中,即冰川融水较多的溪流中,对海洋补助的总依赖性增加,达到83%,因为白垩鱼在体型较小时就会食人。在我们的重点元生态系统中,我们的研究结果表明,随着上游冰川融水流量的增加,海洋补贴对淡水鱼类的重要性也随之增强。
{"title":"Glacial Meltwater Increases the Dependence on Marine Subsidies of Fish in Freshwater Ecosystems","authors":"Grégoire Saboret, Coralie Moccetti, Kunio Takatsu, David J. Janssen, Blake Matthews, Jakob Brodersen, Carsten J. Schubert","doi":"10.1007/s10021-024-00920-1","DOIUrl":"https://doi.org/10.1007/s10021-024-00920-1","url":null,"abstract":"<p>In a warming world, the input of glacier meltwater to inland water ecosystems is predicted to change, potentially affecting their productivity. Meta-ecosystem theory, which posits that the nutrient availability in the recipient ecosystem can determine the extent of cross-ecosystem boundary utilization, can be useful for studying landscape-scale influences of glacier meltwater on inland waters. Here, we investigate how the input of glacier meltwater in a river system in Southern Greenland influences the utilization of marine subsidies in freshwater fish. Our study system comprised four sites, with controls for glacial meltwater and marine subsidies, harboring a partially migrating population of arctic char, meaning that some individuals migrate to the ocean and others remain in freshwaters, and two fully resident populations as a freshwater reference. We assessed the incorporation of marine carbon in freshwater resident char using both bulk and amino acid stable isotope analysis of muscle tissue. In the population with partial migration, marine subsidies were a significant resource for resident char individuals, and estimates of trophic position suggest that egg cannibalism is an important mechanism underlying the assimilation of these marine subsidies. In proglacial streams, namely those with high glacial meltwater, the total dependence on marine subsidies increased and reached 83% because char become cannibals at smaller sizes. In the configuration of our focal meta-ecosystem, our results suggest that the importance of marine subsidies to freshwater fish strengthens within increasing meltwater flux from upstream glaciers.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"64 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking Post-fire Tree Density to Carbon Storage in High-Latitude Cajander Larch (Larix cajanderi) Forests of Far Northeastern Siberia 将西伯利亚远东北部高纬度落叶松(Larix cajanderi)森林的火后树木密度与碳储量联系起来
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-05-28 DOI: 10.1007/s10021-024-00913-0
H. D. Alexander, A. K. Paulson, M. M. Loranty, M. C. Mack, S. M. Natali, H. Pena, S. Davydov, V. Spektor, N. Zimov

With climate warming and drying, fire activity is increasing in Cajander larch (Larix cajanderi Mayr.) forests underlain by continuous permafrost in northeastern Siberia, and initial post-fire tree demographic processes could unfold to determine long-term forest carbon (C) dynamics through impacts on tree density. Here, we evaluated above- and belowground C pools across 25 even-aged larch stands of varying tree densities that established following a wildfire in ~ 1940 near Cherskiy, Russia. Total C pools increased with increased larch tree density, from ~ 9,000 g C m−2 in low-density stands to ~ 11,000 g C m−2 in high and very high-density stands, with increases most pronounced at tree densities < 1 stem m−2 and driven by increased above- and belowground (that is, coarse roots) and live and dead (that is, woody debris and snags) larch biomass. Total understory vegetation and non-larch coarse root C pools declined with increased tree density due to decreased shrub C pools, but these pools were relatively small compared to larch biomass. Fine root, soil organic matter (OM), and near surface (0–30 cm) mineral soil (MS) C pools varied little with tree density, although soil C pools held most (18–28% in OM and 44–51% in MS) C stored in these stands. Thus, if changing fire regimes promote denser stands, C storage will likely increase, but whether this increase offsets C lost during fires remains unknown. Our findings highlight how post-fire tree demographic processes impact C pool distribution and stability in larch forests of Siberian permafrost regions.

随着气候变暖和干燥,西伯利亚东北部连续冻土层下的卡让德落叶松(Larix cajanderi Mayr.)森林的火灾活动日益频繁,火灾后最初的树木分布过程可能会通过对树木密度的影响来决定长期的森林碳(C)动态。在这里,我们评估了俄罗斯切尔斯基附近约 1940 年野火后形成的 25 个不同树木密度的匀龄落叶松林的地上和地下碳库。总碳库随着落叶松树木密度的增加而增加,从低密度林分的 ~ 9,000 g C m-2 增加到高密度和超高密度林分的 ~ 11,000 g C m-2,在树木密度大于或等于 1 干 m-2 时,总碳库的增加最为明显,其驱动力是地上和地下(即粗根)以及活的和死的(即木质碎屑和木渣)落叶松生物量的增加。由于灌木碳库的减少,林下植被和非落叶松粗根的总碳库随着树木密度的增加而减少,但与落叶松生物量相比,这些碳库相对较小。细根、土壤有机质(OM)和近地表(0-30 厘米)矿质土壤(MS)的碳库随树木密度的变化很小,尽管土壤碳库在这些林分中储存了大部分(OM 为 18-28%,MS 为 44-51%)的碳。因此,如果火灾制度的改变促进了林分密度的提高,那么碳储量可能会增加,但这种增加是否能抵消火灾中损失的碳仍是未知数。我们的研究结果突显了火灾后树木的生长过程如何影响西伯利亚永久冻土地区落叶松林中碳库的分布和稳定性。
{"title":"Linking Post-fire Tree Density to Carbon Storage in High-Latitude Cajander Larch (Larix cajanderi) Forests of Far Northeastern Siberia","authors":"H. D. Alexander, A. K. Paulson, M. M. Loranty, M. C. Mack, S. M. Natali, H. Pena, S. Davydov, V. Spektor, N. Zimov","doi":"10.1007/s10021-024-00913-0","DOIUrl":"https://doi.org/10.1007/s10021-024-00913-0","url":null,"abstract":"<p>With climate warming and drying, fire activity is increasing in Cajander larch (<i>Larix cajanderi</i> Mayr.) forests underlain by continuous permafrost in northeastern Siberia, and initial post-fire tree demographic processes could unfold to determine long-term forest carbon (C) dynamics through impacts on tree density. Here, we evaluated above- and belowground C pools across 25 even-aged larch stands of varying tree densities that established following a wildfire in ~ 1940 near Cherskiy, Russia. Total C pools increased with increased larch tree density, from ~ 9,000 g C m<sup>−2</sup> in low-density stands to ~ 11,000 g C m<sup>−2</sup> in high and very high-density stands, with increases most pronounced at tree densities &lt; 1 stem m<sup>−2</sup> and driven by increased above- and belowground (that is, coarse roots) and live and dead (that is, woody debris and snags) larch biomass. Total understory vegetation and non-larch coarse root C pools declined with increased tree density due to decreased shrub C pools, but these pools were relatively small compared to larch biomass. Fine root, soil organic matter (OM), and near surface (0–30 cm) mineral soil (MS) C pools varied little with tree density, although soil C pools held most (18–28% in OM and 44–51% in MS) C stored in these stands. Thus, if changing fire regimes promote denser stands, C storage will likely increase, but whether this increase offsets C lost during fires remains unknown. Our findings highlight how post-fire tree demographic processes impact C pool distribution and stability in larch forests of Siberian permafrost regions.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"72 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141171554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthropogenic Eutrophication Drives Major Food Web Changes in Mwanza Gulf, Lake Victoria 人为富营养化导致维多利亚湖姆万扎湾食物网发生重大变化
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-05-13 DOI: 10.1007/s10021-024-00908-x
Leighton King, Giulia Wienhues, Pavani Misra, Wojciech Tylmann, Andrea Lami, Stefano M. Bernasconi, Madalina Jaggi, Colin Courtney-Mustaphi, Moritz Muschick, Nare Ngoepe, Salome Mwaiko, Mary A. Kishe, Andrew Cohen, Oliver Heiri, Ole Seehausen, Hendrik Vogel, Martin Grosjean, Blake Matthews

Discerning ecosystem change and food web dynamics underlying anthropogenic eutrophication and the introduction of non-native species is necessary for ensuring the long-term sustainability of fisheries and lake biodiversity. Previous studies of eutrophication in Lake Victoria, eastern Africa, have focused on the loss of endemic fish biodiversity over the past several decades, but changes in the plankton communities over this same time remain unclear. To fill this gap, we examined sediment cores from a eutrophic embayment, Mwanza Gulf, to determine the timing and magnitude of changes in the phytoplankton and zooplankton assemblages over the past century. Biogeochemical proxies indicate nutrient enrichment began around ~ 1920 CE and led to rapid increases in primary production, and our analysis of photosynthetic pigments revealed three zones: pre-eutrophication (prior to 1920 CE), onset of eutrophication with increases in all pigments (1920–1990 CE), and sustained eutrophication with cyanobacterial dominance (1990 CE–present). Cladoceran remains indicate an abrupt decline in biomass in ~ 1960 CE, in response to the cumulative effects of eutrophication and lake-level rise, preceding the collapse of haplochromine cichlids in the 1980s. Alona and Chydorus, typically benthic littoral taxa, have remained at relatively low abundances since the 1960s, whereas the abundance of Bosmina, typically a planktonic taxon, increased in the 1990s concurrently with the biomass recovery of haplochromine cichlid fishes. Overall, our results demonstrate substantial changes over the past century in the biomass structure and taxonomic composition of Mwanza Gulf phytoplankton and zooplankton communities, providing a historical food web perspective that can help understand the recent changes and inform future resource management decisions in the Lake Victoria ecosystem.

要确保渔业和湖泊生物多样性的长期可持续性,就必须辨别人为富营养化和非本地物种引入背后的生态系统变化和食物网动态。以往对非洲东部维多利亚湖富营养化的研究主要集中在过去几十年中当地鱼类生物多样性的丧失上,但浮游生物群落在同一时期的变化仍不清楚。为了填补这一空白,我们研究了来自富营养化湖湾姆万扎湾的沉积物岩芯,以确定浮游植物和浮游动物群落在过去一个世纪中发生变化的时间和程度。生物地球化学代用指标表明,营养富集大约始于公元前 1920 年,并导致初级生产的快速增长,我们对光合色素的分析表明了三个区域:富营养化前(公元前 1920 年之前)、富营养化开始与所有色素的增加(公元前 1920 年至公元前 1990 年),以及富营养化持续与蓝藻占主导地位(公元前 1990 年至今)。桡足类遗骸表明,由于富营养化和湖泊水位上升的累积效应,生物量在西元 1960 年左右突然下降,而在此之前的 20 世纪 80 年代,单色笛鲷的数量也随之下降。自 20 世纪 60 年代以来,Alona 和 Chydorus(典型的底栖沿岸类群)的丰度一直保持在相对较低的水平,而 Bosmina(典型的浮游类群)的丰度在 20 世纪 90 年代随着单色慈鲷生物量的恢复而增加。总之,我们的研究结果表明,在过去的一个世纪里,姆万扎湾浮游植物和浮游动物群落的生物量结构和分类组成发生了巨大变化,提供了一个历史食物网视角,有助于理解维多利亚湖生态系统的近期变化并为未来的资源管理决策提供信息。
{"title":"Anthropogenic Eutrophication Drives Major Food Web Changes in Mwanza Gulf, Lake Victoria","authors":"Leighton King, Giulia Wienhues, Pavani Misra, Wojciech Tylmann, Andrea Lami, Stefano M. Bernasconi, Madalina Jaggi, Colin Courtney-Mustaphi, Moritz Muschick, Nare Ngoepe, Salome Mwaiko, Mary A. Kishe, Andrew Cohen, Oliver Heiri, Ole Seehausen, Hendrik Vogel, Martin Grosjean, Blake Matthews","doi":"10.1007/s10021-024-00908-x","DOIUrl":"https://doi.org/10.1007/s10021-024-00908-x","url":null,"abstract":"<p>Discerning ecosystem change and food web dynamics underlying anthropogenic eutrophication and the introduction of non-native species is necessary for ensuring the long-term sustainability of fisheries and lake biodiversity. Previous studies of eutrophication in Lake Victoria, eastern Africa, have focused on the loss of endemic fish biodiversity over the past several decades, but changes in the plankton communities over this same time remain unclear. To fill this gap, we examined sediment cores from a eutrophic embayment, Mwanza Gulf, to determine the timing and magnitude of changes in the phytoplankton and zooplankton assemblages over the past century. Biogeochemical proxies indicate nutrient enrichment began around ~ 1920 CE and led to rapid increases in primary production, and our analysis of photosynthetic pigments revealed three zones: pre-eutrophication (prior to 1920 CE), onset of eutrophication with increases in all pigments (1920–1990 CE), and sustained eutrophication with cyanobacterial dominance (1990 CE–present). Cladoceran remains indicate an abrupt decline in biomass in ~ 1960 CE, in response to the cumulative effects of eutrophication and lake-level rise, preceding the collapse of haplochromine cichlids in the 1980s. <i>Alona</i> and <i>Chydorus</i>, typically benthic littoral taxa, have remained at relatively low abundances since the 1960s, whereas the abundance of <i>Bosmina,</i> typically a planktonic taxon, increased in the 1990s concurrently with the biomass recovery of haplochromine cichlid fishes. Overall, our results demonstrate substantial changes over the past century in the biomass structure and taxonomic composition of Mwanza Gulf phytoplankton and zooplankton communities, providing a historical food web perspective that can help understand the recent changes and inform future resource management decisions in the Lake Victoria ecosystem.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"59 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coralline Algal Population Explosion in an Overgrazed Seagrass Meadow: Conditional Outcomes of Intraspecific and Interspecific Interactions 过度放牧的海草草甸中的珊瑚藻种群爆发:种内和种间相互作用的条件结果
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-05-10 DOI: 10.1007/s10021-024-00909-w
Isis Gabriela Martínez López, Luuk Leemans, Marieke M. van Katwijk, S. Valery Ávila-Mosqueda, Brigitta I. van Tussenbroek

Interactions such as mutualism and facilitation are common in ecosystems established by foundation species; however, their outcomes vary and show conditionality. In a Mexican Caribbean Bay, a seagrass-coralline algae (rhodoliths) mutualism protects the seagrass Thalassia testudinum from green turtle overgrazing. We postulate that the state of the seagrass meadow in this bay depends on the strengths of the interactions among seagrasses, green turtles, and coralline algae. Spatio-temporal changes through satellite imagery showed rhodolith bed developed rapidly from 2009 (undetected) to 2016 (bed of 6934 m2). Typically, such rapid expansion of the rhodoliths does not occur in seagrass meadows. An in situ growth experiment of coralline algae showed that a combination of reduction in light and wave movement (usual in dense seagrass meadows) significantly reduced their growth rates. In the rhodolith beds, the growth rates of the coralline algae Neogoniolithon sp. and Amphiroa sp. were high at 9.5 mm and 15.5 mm per growth tip y−1, respectively. In a second experiment, we found lower mortality in coralline algae within a rhodolith bed compared to algae placed outside the bed, likely explained by the reduced resuspension that we found in a third experiment, and this positive feedback may explain the high population increase in the rhodoliths, once established when the turtles grazed down the seagrass canopy. Therefore, the grazing-protection mutualism between seagrasses and coralline algae is thus conditional and came into existence under a co-occurrence of intensive grazing pressure and rapid population growth of coralline algae facilitated by positive feedback from increased growth and reduced sediment resuspension by the dense rhodolith bed.

在由基础物种建立的生态系统中,互惠和促进等相互作用十分常见;然而,其结果却各不相同,并呈现出条件性。在墨西哥加勒比海湾,海草与珊瑚藻(菱形藻)之间的互生关系保护了海草 Thalassia testudinum 免受绿海龟的过度掠夺。我们推测,该海湾的海草草甸状况取决于海草、绿海龟和珊瑚藻之间相互作用的强度。卫星图像的时空变化显示,从 2009 年(未发现)到 2016 年(6934 平方米),菱锰矿床迅速发展。通常情况下,海草草甸不会出现如此快速的菱形石扩张。珊瑚藻的原位生长实验表明,光照和海浪运动的减少(在密集的海草草甸中很常见)会显著降低珊瑚藻的生长速度。在红藻床中,珊瑚藻类 Neogoniolithon sp.和 Amphiroa sp.的生长率很高,每个生长尖的年生长率分别为 9.5 毫米和 15.5 毫米。在第二个实验中,我们发现与放置在石床外的珊瑚藻相比,放置在石床内的珊瑚藻死亡率较低,这可能是因为我们在第三个实验中发现再悬浮现象减少了。因此,海草和珊瑚藻之间的放牧-保护互惠关系是有条件的,是在密集的放牧压力和珊瑚藻种群快速增长的共同作用下产生的。
{"title":"Coralline Algal Population Explosion in an Overgrazed Seagrass Meadow: Conditional Outcomes of Intraspecific and Interspecific Interactions","authors":"Isis Gabriela Martínez López, Luuk Leemans, Marieke M. van Katwijk, S. Valery Ávila-Mosqueda, Brigitta I. van Tussenbroek","doi":"10.1007/s10021-024-00909-w","DOIUrl":"https://doi.org/10.1007/s10021-024-00909-w","url":null,"abstract":"<p>Interactions such as mutualism and facilitation are common in ecosystems established by foundation species; however, their outcomes vary and show conditionality. In a Mexican Caribbean Bay, a seagrass-coralline algae (rhodoliths) mutualism protects the seagrass <i>Thalassia testudinum</i> from green turtle overgrazing. We postulate that the state of the seagrass meadow in this bay depends on the strengths of the interactions among seagrasses, green turtles, and coralline algae. Spatio-temporal changes through satellite imagery showed rhodolith bed developed rapidly from 2009 (undetected) to 2016 (bed of 6934 m<sup>2</sup>). Typically, such rapid expansion of the rhodoliths does not occur in seagrass meadows. An in situ growth experiment of coralline algae showed that a combination of reduction in light and wave movement (usual in dense seagrass meadows) significantly reduced their growth rates. In the rhodolith beds, the growth rates of the coralline algae <i>Neogoniolithon</i> sp. and <i>Amphiroa</i> sp. were high at 9.5 mm and 15.5 mm per growth tip y<sup>−1</sup>, respectively. In a second experiment, we found lower mortality in coralline algae within a rhodolith bed compared to algae placed outside the bed, likely explained by the reduced resuspension that we found in a third experiment, and this positive feedback may explain the high population increase in the rhodoliths, once established when the turtles grazed down the seagrass canopy. Therefore, the grazing-protection mutualism between seagrasses and coralline algae is thus conditional and came into existence under a co-occurrence of intensive grazing pressure and rapid population growth of coralline algae facilitated by positive feedback from increased growth and reduced sediment resuspension by the dense rhodolith bed.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"154 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclone–Fire Interactions Enhance Fire Extent and Severity in a Tropical Montane Pine Forest 热带山地松树林中旋风与火灾的相互作用增强了火灾的范围和严重程度
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-05-06 DOI: 10.1007/s10021-024-00906-z
Daniel E. B. Swann, Peter J. Bellingham, Patrick H. Martin

Interactions between tropical cyclones and wildfires occur widely and can tip closed forests into open-canopy structures that initiate a ‘grass–fire’ cycle. We examined cyclone–fire interactions in a monodominant tropical montane pine forest in the Dominican Republic using remotely-sensed imagery to quantify damage from fires between 1986 and 2004, a category 1 cyclone in 1998, and an extensive wildfire in 2005. We also measured forest structure and composition 14.7 years after the 2005 fire. The area inside the 2005 burn scars (fire perimeters) totaled 25,206 ha, of which 81% burned and 14% was cyclone damaged. Cyclone damage made the fire markedly more extensive and severe—high-severity fires were > 3 times more frequent with high-severity cyclone damage than no cyclone damage—but these markedly synergistic effects were restricted to areas that had not burned for at least 19 years before the 2005 fire. Though earlier fires from 1986 to 2004 were small and low-severity, they were sufficient, when present, to prevent high-severity fire in 2005 irrespective of cyclone severity. In areas with strong cyclone–fire interactions, there was a complete loss of pine canopies, yet these stands had abundant pine canopy recruitment by 2019 and showed no evidence of compositional shifts toward open-canopy structures with pyrogenic herbaceous understories, illustrating the resilience of this ecosystem to a range of cyclone–fire synergies. However, the future resilience of tropical montane pine forests to cyclone–fire synergies is uncertain as climate change increases the intensity of cyclones and frequency of drought-triggered fires in these ecosystems.

热带气旋和野火之间的相互作用非常普遍,可能会使封闭的森林变成开阔的树冠结构,从而引发 "草-火 "循环。我们利用遥感图像研究了多米尼加共和国单优势热带山地松树林中气旋与火灾之间的相互作用,以量化 1986 年至 2004 年期间火灾、1998 年一级气旋和 2005 年大面积野火造成的破坏。我们还测量了 2005 年火灾 14.7 年后的森林结构和组成。2005 年火灾疤痕(火灾周界)内的总面积为 25,206 公顷,其中 81% 被烧毁,14% 被旋风破坏。气旋破坏使火灾的范围和严重程度明显增加--气旋破坏严重时,火灾的发生率是未受气旋破坏时的 3 倍--但这些明显的协同效应仅限于 2005 年火灾前至少 19 年未发生过火灾的地区。虽然 1986 年至 2004 年间的早期火灾规模小、严重程度低,但无论气旋的严重程度如何,这些火灾都足以防止 2005 年发生严重火灾。在气旋与火灾相互作用强烈的地区,松树树冠完全消失,但到 2019 年,这些林分仍有大量松树树冠新生,而且没有证据表明这些林分的组成结构向具有热源草本林下植物的开放树冠结构转变,这说明该生态系统对一系列气旋与火灾协同作用的恢复能力很强。然而,由于气候变化增加了这些生态系统中气旋的强度和干旱引发火灾的频率,热带山地松树林未来对气旋-火灾协同作用的恢复能力还不确定。
{"title":"Cyclone–Fire Interactions Enhance Fire Extent and Severity in a Tropical Montane Pine Forest","authors":"Daniel E. B. Swann, Peter J. Bellingham, Patrick H. Martin","doi":"10.1007/s10021-024-00906-z","DOIUrl":"https://doi.org/10.1007/s10021-024-00906-z","url":null,"abstract":"<p>Interactions between tropical cyclones and wildfires occur widely and can tip closed forests into open-canopy structures that initiate a ‘grass–fire’ cycle. We examined cyclone–fire interactions in a monodominant tropical montane pine forest in the Dominican Republic using remotely-sensed imagery to quantify damage from fires between 1986 and 2004, a category 1 cyclone in 1998, and an extensive wildfire in 2005. We also measured forest structure and composition 14.7 years after the 2005 fire. The area inside the 2005 burn scars (fire perimeters) totaled 25,206 ha, of which 81% burned and 14% was cyclone damaged. Cyclone damage made the fire markedly more extensive and severe—high-severity fires were &gt; 3 times more frequent with high-severity cyclone damage than no cyclone damage—but these markedly synergistic effects were restricted to areas that had not burned for at least 19 years before the 2005 fire. Though earlier fires from 1986 to 2004 were small and low-severity, they were sufficient, when present, to prevent high-severity fire in 2005 irrespective of cyclone severity. In areas with strong cyclone–fire interactions, there was a complete loss of pine canopies, yet these stands had abundant pine canopy recruitment by 2019 and showed no evidence of compositional shifts toward open-canopy structures with pyrogenic herbaceous understories, illustrating the resilience of this ecosystem to a range of cyclone–fire synergies. However, the future resilience of tropical montane pine forests to cyclone–fire synergies is uncertain as climate change increases the intensity of cyclones and frequency of drought-triggered fires in these ecosystems.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"30 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disentangling Ecosystem Necromass Dynamics for Biodiversity Conservation 为保护生物多样性而厘清生态系统死亡动态
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-04-30 DOI: 10.1007/s10021-024-00907-y
Philip S. Barton, Nick Schultz, Nathan J. Butterworth, Michael D. Ulyshen, Patricia Mateo-Tomás, Thomas M. Newsome

Global environmental change has redistributed earth’s biomass and the inputs and dynamics of basal detrital resources in ecosystems, contributing to the decline of biodiversity. Yet efforts to manage detrital necromass for biodiversity conservation are often overlooked or consider only singular resource types for focal species groups. We argue there is a significant opportunity to broaden our perspective of the spatiotemporal complexity among multiple necromass types for innovative biodiversity conservation. Here, we introduce an ecosystem-scale perspective to disentangling the spatial and temporal characteristics of multiple and distinct forms of necromass and their associated biota. We show that terrestrial and aquatic ecosystems contain a diversity of necromass types, each with contrasting temporal frequencies and magnitudes, and spatial density and configurations. By conceptualising an ecosystem in this way, we demonstrate that specific necromass dynamics can be identified and targeted for management that benefits the unique spatiotemporal requirements of dependent decomposer organisms and their critical role in ecosystem biomass conversion and nutrient recycling. We encourage conservation practitioners to think about necromass quantity, timing of inputs, spatial dynamics, and to engage with researchers to deepen our knowledge of how necromass might be manipulated to exploit the distinct attributes of different necromass types to help meet biodiversity conservation goals.

全球环境变化重新分配了地球的生物量以及生态系统中基底碎屑资源的输入和动态,导致生物多样性减少。然而,为保护生物多样性而管理碎屑资源的工作往往被忽视,或者只考虑重点物种群的单一资源类型。我们认为,为创新性地保护生物多样性,我们有很大的机会扩大我们对多种碎屑资源类型的时空复杂性的认识。在这里,我们引入了生态系统尺度的视角来分解多种不同形式的尸块及其相关生物群的时空特征。我们的研究表明,陆地和水生生态系统包含多种类型的尸块,每种尸块的时间频率和规模、空间密度和结构都截然不同。通过以这种方式对生态系统进行概念化,我们证明了可以识别特定的腐肉动态,并有针对性地进行管理,以满足依赖性分解生物独特的时空要求,以及它们在生态系统生物量转换和养分循环中的关键作用。我们鼓励保护工作者思考坏死物质的数量、输入时间、空间动态,并与研究人员合作,加深我们对如何操纵坏死物质的认识,利用不同坏死物质类型的独特属性,帮助实现生物多样性保护目标。
{"title":"Disentangling Ecosystem Necromass Dynamics for Biodiversity Conservation","authors":"Philip S. Barton, Nick Schultz, Nathan J. Butterworth, Michael D. Ulyshen, Patricia Mateo-Tomás, Thomas M. Newsome","doi":"10.1007/s10021-024-00907-y","DOIUrl":"https://doi.org/10.1007/s10021-024-00907-y","url":null,"abstract":"<p>Global environmental change has redistributed earth’s biomass and the inputs and dynamics of basal detrital resources in ecosystems, contributing to the decline of biodiversity. Yet efforts to manage detrital necromass for biodiversity conservation are often overlooked or consider only singular resource types for focal species groups. We argue there is a significant opportunity to broaden our perspective of the spatiotemporal complexity among multiple necromass types for innovative biodiversity conservation. Here, we introduce an ecosystem-scale perspective to disentangling the spatial and temporal characteristics of multiple and distinct forms of necromass and their associated biota. We show that terrestrial and aquatic ecosystems contain a diversity of necromass types, each with contrasting temporal frequencies and magnitudes, and spatial density and configurations. By conceptualising an ecosystem in this way, we demonstrate that specific necromass dynamics can be identified and targeted for management that benefits the unique spatiotemporal requirements of dependent decomposer organisms and their critical role in ecosystem biomass conversion and nutrient recycling. We encourage conservation practitioners to think about necromass quantity, timing of inputs, spatial dynamics, and to engage with researchers to deepen our knowledge of how necromass might be manipulated to exploit the distinct attributes of different necromass types to help meet biodiversity conservation goals.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"31 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disturbance Level Mediates the Differential Resistance of Tropical Dry Forest Soil and Vegetation Attributes to High-Intensity Hurricanes 干扰程度介导热带干旱森林土壤和植被属性对高强度飓风的不同抵抗力
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-04-02 DOI: 10.1007/s10021-024-00905-0
Cristina Montiel-González, Ángel E. Bravo-Monzón, José Israel Flores-Puerto, Fabiola Valadez-Cortés, Luz Elena Azcoytia-Escalona, Felipe García-Oliva, María Leticia Arena-Ortiz, Mariana Yolotl Alvarez-Añorve, Luis Daniel Avila-Cabadilla

Hurricanes are extreme climatic events frequently affecting tropical regions such as the tropical dry forests (TDFs) in Mexico, where its frequency/intensity is expected to increase toward the year 2100. To answer how resistant is a Mexican tropical dry forest to a high-intensity hurricane, and if its degree of resistance was mediated by its conservation degree, we evaluated the effect of a category 4 hurricane over the tree community, soil nutrients, and soil enzymatic activity in two contrasting TDF ecosystems: Old-Growth Forest (OGF) and Secondary Forest (SF). In general, vegetation richness and diversity showed very high resistance one year after the hurricane, but several structural attributes did not, especially in the OGF where the tree mortality related to vegetation structure and spatial distribution of individuals was higher. Then, in the short term, SF vegetation appeared to be more resistant, whereas the OGF, with more biomass to lose, appeared to be more vulnerable. Conversely, most soil attributes showed low resistance in both stages, but especially in SF which could face more severe nutrient limitations. The response of TDF to high-intensity hurricanes, in terms of above- and belowground processes, was in part dependent on its disturbance level. Moreover, an increase in the intensity/frequency of hurricanes could lead this TDF toward a high nutrient limitation (especially by phosphorus) for the plants and consequently toward a loss of soil functioning, especially in the SF. This eventually could produce a severe degradation in fundamental attributes and functions of the ecosystem.

飓风是经常影响热带地区的极端气候事件,例如墨西哥的热带干旱森林(TDFs),预计到 2100 年,飓风的频率/强度将会增加。为了回答墨西哥热带干旱森林对高强度飓风的抵抗力如何,以及其抵抗力是否受其保护程度的影响,我们评估了 4 级飓风对两种截然不同的热带干旱森林生态系统中的树木群落、土壤养分和土壤酶活性的影响:老林(OGF)和次生林(SF)。总体而言,植被的丰富性和多样性在飓风过后一年表现出了很强的抵抗力,但一些结构属性却没有表现出来,尤其是在 OGF 中,与植被结构和个体空间分布相关的树木死亡率更高。因此,在短期内,自给自足区的植被似乎更有抵抗力,而损失生物量更多的大洋洲增长区则显得更加脆弱。相反,在这两个阶段,大多数土壤属性都显示出较低的抗性,尤其是在可持续森林植被中,它可能面临更严重的养分限制。从地上和地下过程来看,TDF 对高强度飓风的反应部分取决于其干扰程度。此外,飓风强度/频率的增加可能会导致 TDF 的植物养分(尤其是磷)高度受限,进而导致土壤功能丧失,尤其是在自流井中。这最终会导致生态系统的基本属性和功能严重退化。
{"title":"Disturbance Level Mediates the Differential Resistance of Tropical Dry Forest Soil and Vegetation Attributes to High-Intensity Hurricanes","authors":"Cristina Montiel-González, Ángel E. Bravo-Monzón, José Israel Flores-Puerto, Fabiola Valadez-Cortés, Luz Elena Azcoytia-Escalona, Felipe García-Oliva, María Leticia Arena-Ortiz, Mariana Yolotl Alvarez-Añorve, Luis Daniel Avila-Cabadilla","doi":"10.1007/s10021-024-00905-0","DOIUrl":"https://doi.org/10.1007/s10021-024-00905-0","url":null,"abstract":"<p>Hurricanes are extreme climatic events frequently affecting tropical regions such as the tropical dry forests (TDFs) in Mexico, where its frequency/intensity is expected to increase toward the year 2100. To answer how resistant is a Mexican tropical dry forest to a high-intensity hurricane, and if its degree of resistance was mediated by its conservation degree, we evaluated the effect of a category 4 hurricane over the tree community, soil nutrients, and soil enzymatic activity in two contrasting TDF ecosystems: Old-Growth Forest (OGF) and Secondary Forest (SF). In general, vegetation richness and diversity showed very high resistance one year after the hurricane, but several structural attributes did not, especially in the OGF where the tree mortality related to vegetation structure and spatial distribution of individuals was higher. Then, in the short term, SF vegetation appeared to be more resistant, whereas the OGF, with more biomass to lose, appeared to be more vulnerable. Conversely, most soil attributes showed low resistance in both stages, but especially in SF which could face more severe nutrient limitations. The response of TDF to high-intensity hurricanes, in terms of above- and belowground processes, was in part dependent on its disturbance level. Moreover, an increase in the intensity/frequency of hurricanes could lead this TDF toward a high nutrient limitation (especially by phosphorus) for the plants and consequently toward a loss of soil functioning, especially in the SF. This eventually could produce a severe degradation in fundamental attributes and functions of the ecosystem.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay of Climate, Fires, Floods, and Anthropogenic Impacts on the Peat Formation and Carbon Dynamic of Coastal and Inland Tropical Peatlands in West Kalimantan, Indonesia 气候、火灾、洪水和人为影响对印度尼西亚西加里曼丹沿海和内陆热带泥炭地泥炭形成和碳动态的相互作用
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-03-06 DOI: 10.1007/s10021-023-00882-w
Monika Ruwaimana, Daniel G. Gavin, Gusti Anshari

The function of tropical peatland as a carbon sink is a balance between peat accumulation and peat loss; however, various interacting factors are involved affecting this process. In this study, we collected and intensively radiocarbon dated peat cores from two peat domes, visualized their cross-sectional profiles of geochemical properties, and developed three macrocharcoal records from each peat dome. We find that the young (4500 y calBP) and shallow (6 m) coastal peat has a simple and linear age–depth relationship, showing stable accumulation of carbon during the late Holocene. In contrast, the older (ca. 40,000 y cal BP) and deeper (15 m) inland peat shows a more complex history, where we observed age reversals and hiatuses, likely caused by climate variability from the Last Glacial Maximum (LGM) to the Holocene. The charcoal record reveals a continuous presence of low-severity fire as indicated by charcoal morphotypes, though fire frequency increased after agriculture was established. An age reversal during the LGM was likely caused by a flood. Two periods of hiatuses occurred, each several millennia in length, at the end of the LGM and during the early Holocene. One cause of the hiatuses may have been a climatically halted peat formation from low precipitation and cooler climate during the LGM. Another cause may have been that severe fires consumed thousands of years of accumulated peat. If the hiatuses were entirely due to fire, the carbon released from these paleo-fire events (600 t C ha−1) suggests several times the impact of the most intense modern peat fires.

热带泥炭地作为碳汇的功能是泥炭积累和泥炭流失之间的平衡;然而,影响这一过程的因素多种多样。在这项研究中,我们采集了两个泥炭穹丘的泥炭岩芯并对其进行了深入的放射性碳年代测定,对其地球化学性质的横截面剖面进行了可视化分析,并对每个泥炭穹丘建立了三条宏观炭记录。我们发现,年轻(4500 y calBP)、浅(6 m)的沿海泥炭具有简单的线性年龄-深度关系,显示了全新世晚期碳的稳定积累。相比之下,较古老(约 40000 y cal BP)和较深(15 m)的内陆泥炭则显示出更为复杂的历史,我们观察到了年龄逆转和间断,这可能是由从末次冰川极盛期(LGM)到全新世的气候变异造成的。木炭记录显示,从木炭形态上看,低强度火灾持续存在,但在农业发展之后,火灾频率有所增加。大冰期的年龄逆转很可能是由洪水造成的。在全新世末期和全新世早期,出现了两次断代,每次长达几千年。造成间断的原因之一可能是,在上新世期间,由于降水量较少和气候较冷,泥炭的形成在气候上停止了。另一个原因可能是严重的火灾烧毁了数千年积累的泥炭。如果间断完全是由于火灾造成的,那么这些古火灾事件释放的碳(600 吨碳公顷-1)表明其影响是现代最强烈泥炭火灾的数倍。
{"title":"Interplay of Climate, Fires, Floods, and Anthropogenic Impacts on the Peat Formation and Carbon Dynamic of Coastal and Inland Tropical Peatlands in West Kalimantan, Indonesia","authors":"Monika Ruwaimana, Daniel G. Gavin, Gusti Anshari","doi":"10.1007/s10021-023-00882-w","DOIUrl":"https://doi.org/10.1007/s10021-023-00882-w","url":null,"abstract":"<p>The function of tropical peatland as a carbon sink is a balance between peat accumulation and peat loss; however, various interacting factors are involved affecting this process. In this study, we collected and intensively radiocarbon dated peat cores from two peat domes, visualized their cross-sectional profiles of geochemical properties, and developed three macrocharcoal records from each peat dome. We find that the young (4500 y calBP) and shallow (6 m) coastal peat has a simple and linear age–depth relationship, showing stable accumulation of carbon during the late Holocene. In contrast, the older (ca. 40,000 y cal BP) and deeper (15 m) inland peat shows a more complex history, where we observed age reversals and hiatuses, likely caused by climate variability from the Last Glacial Maximum (LGM) to the Holocene. The charcoal record reveals a continuous presence of low-severity fire as indicated by charcoal morphotypes, though fire frequency increased after agriculture was established. An age reversal during the LGM was likely caused by a flood. Two periods of hiatuses occurred, each several millennia in length, at the end of the LGM and during the early Holocene. One cause of the hiatuses may have been a climatically halted peat formation from low precipitation and cooler climate during the LGM. Another cause may have been that severe fires consumed thousands of years of accumulated peat. If the hiatuses were entirely due to fire, the carbon released from these paleo-fire events (600 t C ha<sup>−1</sup>) suggests several times the impact of the most intense modern peat fires.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"36 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tree Species Diversity Affects Litter Decomposition via Modification of the Microenvironment 树种多样性通过改变微环境影响垃圾分解
IF 3.7 2区 环境科学与生态学 Q2 ECOLOGY Pub Date : 2024-03-04 DOI: 10.1007/s10021-024-00903-2

Abstract

Decomposition is a key determinant of forest functioning, controlling nutrient and carbon cycling. Although litter-mixing effects on decomposition (that is, using mixtures of litter of different species) have been studied extensively, less is known about the indirect effects of modified microenvironments via overstory tree species mixing. To investigate the effects of tree species diversity on decomposition, we installed 384 standardized litterbags, filled with leaf litter of four broadleaved tree species with contrasting litter quality, in a large, 10-year-old tree diversity experiment. To quantify microenvironments, we used microclimate sensors, below-canopy rain gauges and measured soil characteristics. We then analysed indirect tree species diversity effects, that is, tree species richness effects on mass loss rates via tree species-induced alterations in the microclimate, throughfall and soil characteristics. We found that understory microenvironmental conditions indeed affect mass loss rates, with the main drivers differing among incubation stages. Predominantly soil phosphorus, but also vapour pressure deficit and throughfall amounts, was negatively associated with mass loss rates across litter types during the first 2 months of the decomposition process. After 6 months of the decomposition, soil moisture was found to be the key determinant positively affecting mass loss rates. In sum, our research contributes to a better understanding of the determinants of decomposition and shows an important pathway in which tree species diversity affects decomposition, via modified microenvironmental conditions acting via the soil, microclimate and throughfall.

摘要 分解是森林功能的一个关键决定因素,控制着养分和碳循环。尽管人们已经广泛研究了垃圾混合对分解的影响(即使用不同树种的垃圾混合物),但对通过上层树种混合改变微环境的间接影响却知之甚少。为了研究树种多样性对分解的影响,我们在一个有 10 年树龄的大型树种多样性实验中安装了 384 个标准化垃圾袋,里面装满了四种阔叶树种的落叶,这些树种的落叶质量截然不同。为了量化微环境,我们使用了微气候传感器、树冠下雨量计并测量了土壤特性。然后,我们分析了树种多样性的间接影响,即树种丰富度通过树种引起的微气候、直降雨量和土壤特性变化对质量损失率的影响。我们发现,林下微环境条件确实会影响质量损失率,而不同培育阶段的主要驱动因素有所不同。在腐烂过程的前两个月,主要是土壤中的磷,还有蒸汽压力不足和通量,都与不同类型枯落物的质量损失率呈负相关。经过 6 个月的分解后,发现土壤湿度是对质量损失率产生积极影响的关键决定因素。总之,我们的研究有助于更好地理解分解的决定因素,并显示了树种多样性通过改变土壤、小气候和降雨量的微环境条件影响分解的重要途径。
{"title":"Tree Species Diversity Affects Litter Decomposition via Modification of the Microenvironment","authors":"","doi":"10.1007/s10021-024-00903-2","DOIUrl":"https://doi.org/10.1007/s10021-024-00903-2","url":null,"abstract":"<h3>Abstract</h3> <p>Decomposition is a key determinant of forest functioning, controlling nutrient and carbon cycling. Although litter-mixing effects on decomposition (that is, using mixtures of litter of different species) have been studied extensively, less is known about the indirect effects of modified microenvironments via overstory tree species mixing. To investigate the effects of tree species diversity on decomposition, we installed 384 standardized litterbags, filled with leaf litter of four broadleaved tree species with contrasting litter quality, in a large, 10-year-old tree diversity experiment. To quantify microenvironments, we used microclimate sensors, below-canopy rain gauges and measured soil characteristics. We then analysed indirect tree species diversity effects, that is, tree species richness effects on mass loss rates via tree species-induced alterations in the microclimate, throughfall and soil characteristics. We found that understory microenvironmental conditions indeed affect mass loss rates, with the main drivers differing among incubation stages. Predominantly soil phosphorus, but also vapour pressure deficit and throughfall amounts, was negatively associated with mass loss rates across litter types during the first 2 months of the decomposition process. After 6 months of the decomposition, soil moisture was found to be the key determinant positively affecting mass loss rates. In sum, our research contributes to a better understanding of the determinants of decomposition and shows an important pathway in which tree species diversity affects decomposition, via modified microenvironmental conditions acting via the soil, microclimate and throughfall.</p>","PeriodicalId":11406,"journal":{"name":"Ecosystems","volume":"55 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ecosystems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1