Pub Date : 2023-08-28DOI: 10.1149/ma2023-0154186mtgabs
Qian Zhang, Clarita Y. Regalado Vera, Hanping Ding, Wei Tang, Wei Wu, Scott A Barnett, Peter W. Voorhees, Dong Ding
Proton-conducting solid oxide electrolysis cells (p-SOECs) have attracted much attention due to their low operating temperature and low degradation rate compared with conventional oxygen-ion conducting solid oxide electrolysis cells (o-SOEC). However, p-SOECs suffer from relatively low Faradaic efficiency due to the electronic leakage of the electrolyte. Using an electrolyte charge carrier transport model, we quantified the dependence of Faraday efficiency on the electrolysis operation conditions. Our model describes the transport of charge carriers in the electrolyte when the polarization resistance can not be neglected during cell operations. By accounting for the overpotentials at the interface of electrode and electrolyte in the model, we found that the Faraday efficiency decreases with the increasing current densities at electrolysis mode for both BZY20 and BCZYYb. Our results provide significant insights into the development of highly efficient p-SOECs .
{"title":"Dependence of Faraday Efficiency on Operation Conditions and Cell Properties for Proton Ceramic Electrolysis Cells","authors":"Qian Zhang, Clarita Y. Regalado Vera, Hanping Ding, Wei Tang, Wei Wu, Scott A Barnett, Peter W. Voorhees, Dong Ding","doi":"10.1149/ma2023-0154186mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-0154186mtgabs","url":null,"abstract":"Proton-conducting solid oxide electrolysis cells (p-SOECs) have attracted much attention due to their low operating temperature and low degradation rate compared with conventional oxygen-ion conducting solid oxide electrolysis cells (o-SOEC). However, p-SOECs suffer from relatively low Faradaic efficiency due to the electronic leakage of the electrolyte. Using an electrolyte charge carrier transport model, we quantified the dependence of Faraday efficiency on the electrolysis operation conditions. Our model describes the transport of charge carriers in the electrolyte when the polarization resistance can not be neglected during cell operations. By accounting for the overpotentials at the interface of electrode and electrolyte in the model, we found that the Faraday efficiency decreases with the increasing current densities at electrolysis mode for both BZY20 and BCZYYb. Our results provide significant insights into the development of highly efficient p-SOECs .","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135088989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-01462507mtgabs
Fujia Zhao, Yingjie Zhang
Water structure at electrode interface can affect electrochemical reactions in multiple ways, as it plays important role in processes including mass transport, surface adsorption, and charge transfer. Thus, in-situ characterization of electrode/water interface is in high demand for a deeper understanding and better utilization of electrochemical systems. Here, we introduce our study on the evolution of interfacial water structure with changing electric potential. Configurational and structural understanding were obtained by in-situ Raman spectroscopy and atomic force microscopy (AFM) measurements respectively, with special efforts to enhance interfacial sensitivity for both techniques. Our study demonstrated electric potential dependent changes in the hydrogen bonding network and hydration layer structure, which provides new insight into how interfacial hydration structure can be correlated with the electrochemical reaction performance.
{"title":"Potential Dependent Evolution of Electric Double Layer at Electrode/Water Interface","authors":"Fujia Zhao, Yingjie Zhang","doi":"10.1149/ma2023-01462507mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-01462507mtgabs","url":null,"abstract":"Water structure at electrode interface can affect electrochemical reactions in multiple ways, as it plays important role in processes including mass transport, surface adsorption, and charge transfer. Thus, in-situ characterization of electrode/water interface is in high demand for a deeper understanding and better utilization of electrochemical systems. Here, we introduce our study on the evolution of interfacial water structure with changing electric potential. Configurational and structural understanding were obtained by in-situ Raman spectroscopy and atomic force microscopy (AFM) measurements respectively, with special efforts to enhance interfacial sensitivity for both techniques. Our study demonstrated electric potential dependent changes in the hydrogen bonding network and hydration layer structure, which provides new insight into how interfacial hydration structure can be correlated with the electrochemical reaction performance.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135088990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-01362026mtgabs
Luis A Albiter, Kathleen O. Bailey, Jose Fernando Godinez Salomon, Christopher P. Rhodes
The development and utilization of proton exchange membrane water electrolyzers (PEMWEs) is hindered by the cost, activity, and stability of the oxygen evolution reaction (OER) electrocatalyst. Iridium oxide (IrO x ) is currently the go-to OER electrocatalyst, as it has been shown to have relative high activity and stability when compared to other OER active catalysts. However, iridium is one of the rarest elements in the Earth’s crust, and therefore cost is a major limitation of iridium-based electrocatalysts. Ruthenium oxide (RuO 2 ) is much lower cost and more active than iridium oxide; however, RuO 2 it is unstable in acidic media and undergoes degradation over time. We investigated substituting niobium, tantalum, and zirconium, which are OER-stable metals, into RuO 2 to improve the OER stability. Our study explored the effects of different metals and varied concentrations within RuO 2 (Ru 1-x M x O 2 , M = Nb, Ta, and Zr) on the structure, morphology, OER activity, and stability. The structure and morphology were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and scanning electron microscopy. Preliminary results from XRD showed observable phase separation at higher concentrations of Nb, Ta, and Zr and less phase separation at lower concentrations for Nb and Ta. There was no observable phase separation for Zr at lower concentrations. XRD peak shifts were observed and indicate the incorporation of the metal ions into the crystal structure of rutile RuO 2 . The OER activities and stabilities of Ru 1-x M x O 2 were measured using a rotating disk electrode configuration and compared with synthesized RuO 2 . Our preliminary results show that the OER activity and stability are strongly affected by the addition of the different metals and could be attributed to morphology and structural changes. Our findings help to further the development of lower cost, high activity, and increased stability OER electrocatalysts, which are crucial to the large-scale adoption of PEMWE’s.
质子交换膜水电解槽(PEMWEs)的开发和利用受到析氧反应(OER)电催化剂的成本、活性和稳定性等因素的制约。氧化铱(IrO x)是目前首选的OER电催化剂,因为与其他OER活性催化剂相比,它已被证明具有相对较高的活性和稳定性。然而,铱是地壳中最稀有的元素之一,因此成本是基于铱的电催化剂的主要限制。氧化钌(ruo2)比氧化铱成本低,活性高;然而,若o2在酸性介质中是不稳定的,并且会随着时间的推移而降解。我们研究了将OER稳定金属铌、钽和锆取代到若o2中以提高OER稳定性。我们的研究探讨了不同金属和不同浓度的ruo2 (Ru 1-x M x o2, M = Nb, Ta和Zr)对结构,形态,OER活性和稳定性的影响。采用x射线衍射(XRD)、x射线光电子能谱和扫描电镜对其结构和形貌进行了表征。XRD初步结果表明,在Nb、Ta和Zr浓度较高时可观察到相分离,而在Nb和Ta浓度较低时相分离较少。Zr在较低浓度下无相分离现象。XRD峰移表明金属离子进入了金红石ruo2的晶体结构。采用旋转圆盘电极结构测量了Ru 1-x M x o2的OER活性和稳定性,并与合成的ruo2进行了比较。我们的初步结果表明,OER活性和稳定性受到不同金属的加入的强烈影响,这可能归因于形貌和结构的变化。我们的发现有助于进一步开发成本更低、活性更高、稳定性更高的OER电催化剂,这对大规模采用PEMWE至关重要。
{"title":"Effect of Metal-Substitution within Ruthenium Oxide on Structure and Oxygen Evolution Activity and Stability","authors":"Luis A Albiter, Kathleen O. Bailey, Jose Fernando Godinez Salomon, Christopher P. Rhodes","doi":"10.1149/ma2023-01362026mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-01362026mtgabs","url":null,"abstract":"The development and utilization of proton exchange membrane water electrolyzers (PEMWEs) is hindered by the cost, activity, and stability of the oxygen evolution reaction (OER) electrocatalyst. Iridium oxide (IrO x ) is currently the go-to OER electrocatalyst, as it has been shown to have relative high activity and stability when compared to other OER active catalysts. However, iridium is one of the rarest elements in the Earth’s crust, and therefore cost is a major limitation of iridium-based electrocatalysts. Ruthenium oxide (RuO 2 ) is much lower cost and more active than iridium oxide; however, RuO 2 it is unstable in acidic media and undergoes degradation over time. We investigated substituting niobium, tantalum, and zirconium, which are OER-stable metals, into RuO 2 to improve the OER stability. Our study explored the effects of different metals and varied concentrations within RuO 2 (Ru 1-x M x O 2 , M = Nb, Ta, and Zr) on the structure, morphology, OER activity, and stability. The structure and morphology were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and scanning electron microscopy. Preliminary results from XRD showed observable phase separation at higher concentrations of Nb, Ta, and Zr and less phase separation at lower concentrations for Nb and Ta. There was no observable phase separation for Zr at lower concentrations. XRD peak shifts were observed and indicate the incorporation of the metal ions into the crystal structure of rutile RuO 2 . The OER activities and stabilities of Ru 1-x M x O 2 were measured using a rotating disk electrode configuration and compared with synthesized RuO 2 . Our preliminary results show that the OER activity and stability are strongly affected by the addition of the different metals and could be attributed to morphology and structural changes. Our findings help to further the development of lower cost, high activity, and increased stability OER electrocatalysts, which are crucial to the large-scale adoption of PEMWE’s.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135088998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-01362068mtgabs
Qiurong Shi, Michael J. Zachman, Deborah J. Myers, Hui Xu, Gang Wu
Alkaline anion-exchange membrane water electrolyzers (AEMWEs) for hydrogen production are now receiving intensive attention due to their feasibility to use sustainable, low-cost platinum group metal (PGM-free) catalysts. Although a variety of highly efficient PGM-free catalysts for the oxygen evolution reaction (OER) have been explored, few of them demonstrated satisfied performance in real AEMWEs due to the insufficient electrical conductivity and unfavorable interfaces with ionomers in 3D porous electrodes. Herein, we report a series of highly porous ternary NiFeM (M: Cu, Co, and Mn) metallic glassy catalysts featured with nanofoam network morphologies, which are composed of amorphous OER active metal oxide shells and highly electrically conductive metallic glass alloy cores. Due to these unique properties, these NiFeM nanofoam catalysts demonstrated promising OER activities and stabilities in the half-cell with aqueous alkaline electrolytes, especially at high potentials. We also examined their magnetic properties and found no direct correlation with measured OER activity. These ternary NiFeM catalysts are further integrated with unique ionomers and AEMs to fabricate AEMWEs, showing superior performance to binary NiFe and commercial IrO 2 catalysts when utilizing diluted KOH electrolytes. A different trend was identified when directly using desirable but challenging pure water, and the NiFeCu catalyst performed the best comparable to IrO 2 especially at high current densities. Although deep understanding on limiting factor of pure water AEMWEs is still required, these NiFeM catalysts with favorable catalytic and morphological properties representing a new class of highly efficient PGM-free anode catalysts for viable AEMWEs toward clean hydrogen generation.
{"title":"Metallic Glass Nanofoam Anode Catalysts for Anion-Exchange Membrane Water Electrolyzers","authors":"Qiurong Shi, Michael J. Zachman, Deborah J. Myers, Hui Xu, Gang Wu","doi":"10.1149/ma2023-01362068mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-01362068mtgabs","url":null,"abstract":"Alkaline anion-exchange membrane water electrolyzers (AEMWEs) for hydrogen production are now receiving intensive attention due to their feasibility to use sustainable, low-cost platinum group metal (PGM-free) catalysts. Although a variety of highly efficient PGM-free catalysts for the oxygen evolution reaction (OER) have been explored, few of them demonstrated satisfied performance in real AEMWEs due to the insufficient electrical conductivity and unfavorable interfaces with ionomers in 3D porous electrodes. Herein, we report a series of highly porous ternary NiFeM (M: Cu, Co, and Mn) metallic glassy catalysts featured with nanofoam network morphologies, which are composed of amorphous OER active metal oxide shells and highly electrically conductive metallic glass alloy cores. Due to these unique properties, these NiFeM nanofoam catalysts demonstrated promising OER activities and stabilities in the half-cell with aqueous alkaline electrolytes, especially at high potentials. We also examined their magnetic properties and found no direct correlation with measured OER activity. These ternary NiFeM catalysts are further integrated with unique ionomers and AEMs to fabricate AEMWEs, showing superior performance to binary NiFe and commercial IrO 2 catalysts when utilizing diluted KOH electrolytes. A different trend was identified when directly using desirable but challenging pure water, and the NiFeCu catalyst performed the best comparable to IrO 2 especially at high current densities. Although deep understanding on limiting factor of pure water AEMWEs is still required, these NiFeM catalysts with favorable catalytic and morphological properties representing a new class of highly efficient PGM-free anode catalysts for viable AEMWEs toward clean hydrogen generation.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135089003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-01372159mtgabs
Thomas F. Jaramillo
One means to produce carbon-based fuels and chemicals in a sustainable manner is by means of solar photoelectrochemical (PEC) CO 2 reduction (CO 2 R). Many R&D challenges need to be addressed in order to advance this technological area toward commercial applications. This paper will focus on developing catalytic interfaces onto silicon and III-V semiconductor based systems, and exploring the impacts of various microenvironments and reaction conditions on efficiency, selectivity, and durability. Interfaces based on copper-based catalysts will be a general theme, leading to a range of multi-carbon products by means of PEC CO 2 R.
以可持续的方式生产碳基燃料和化学品的一种方法是通过太阳能光电化学(PEC)减少二氧化碳(CO 2 R)。为了将这一技术领域推进到商业应用,需要解决许多研发挑战。本文将专注于开发基于硅和III-V半导体系统的催化界面,并探索各种微环境和反应条件对效率、选择性和耐久性的影响。基于铜基催化剂的界面将是一个普遍的主题,通过PEC CO 2 R导致一系列多碳产品。
{"title":"(Invited) Photoelectrochemical CO<sub>2</sub> Reduction (CO<sub>2</sub>R) with Si- and III-V Based Systems","authors":"Thomas F. Jaramillo","doi":"10.1149/ma2023-01372159mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-01372159mtgabs","url":null,"abstract":"One means to produce carbon-based fuels and chemicals in a sustainable manner is by means of solar photoelectrochemical (PEC) CO 2 reduction (CO 2 R). Many R&D challenges need to be addressed in order to advance this technological area toward commercial applications. This paper will focus on developing catalytic interfaces onto silicon and III-V semiconductor based systems, and exploring the impacts of various microenvironments and reaction conditions on efficiency, selectivity, and durability. Interfaces based on copper-based catalysts will be a general theme, leading to a range of multi-carbon products by means of PEC CO 2 R.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135089006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-015442mtgabs
Violeta Ureña Torres, Kandela Ruiz, Paula Ciaurriz, Xabier Judez, Mónica Aguado, Iñigo Garbayo
Energy transition towards a net-zero emission scenario requires, primarily, a significant increase on the renewable energy production capabilities. However, the inherent intermittency of most common renewable sources, added to the limitations of full electrification in some important hard-to-abate sectors (heavy-duty transport, aviation, steel industry...), implies also the need of developing reliable solutions for energy conversion and storage. Here, hydrogen is gaining more and more popularity in the recent years as an effective solution as energy carrier, mostly for the decarbonization of the key industries and transport. Among the different technologies under development for power-to-hydrogen conversion, solid oxide electrolysis (SOE) outstands due to its high conversion efficiency, fuel flexibility (e.g. CO 2 electrolysis) and possibility of working in reversible mode (the same device both as electrolyser and fuel cell). Currently behind competing low temperature electrolysis technologies (AEL, PEMEL) in terms of technology readiness, main challenges of SOE today relate to long-term degradation, heat management and design and reliable fabrication of large stacks and systems. Although many projects are lately flourishing in this line, the number of players able to demonstrate an upscaled fabrication of SOE stacks and systems is still limited. The work presented here represents the first step carried out at CENER for the future demonstration of a pilot fabrication line of SOE stacks, from the optimization of functional materials and inks to the fabrication of single cells and building of 2-10 kW stacks. In this study, a fabrication route for SOE planar cells (5x5 cm 2 ) is proposed, including the optimization of every single step of the process: raw material pre-treatment, ink/slurry development, functional printing and sintering. Particular emphasis is placed on ensuring a reliable upscaling for batch production of cells and thus materials are processed in large quantities (~1 L/batch). In terms of functional materials, standard electrode and electrolytes are chosen in a first approach, viz. Ni-YSZ as hydrogen electrode, YSZ as electrolyte and LSM-YSZ as air electrode. For film deposition, tape casting and screen printing techniques are combined. The electrochemical characterization of the fabricated cells will be presented and compared with commercial ones, including degradation analysis.
向净零排放情景的能源转型,首先需要显著提高可再生能源的生产能力。然而,大多数常见的可再生能源固有的间歇性,加上在一些难以减少的重要部门(重型运输、航空、钢铁工业……)完全电气化的限制,也意味着需要为能源转换和储存制定可靠的解决办法。在这方面,近年来氢作为能源载体的有效解决方案越来越受欢迎,主要用于重点行业和交通运输的脱碳。在正在开发的各种电能-氢转换技术中,固体氧化物电解(SOE)因其高转换效率、燃料灵活性(例如二氧化碳电解)和可逆模式(与电解槽和燃料电池相同的设备)工作的可能性而脱颖而出。目前,在技术成熟度方面落后于竞争对手的低温电解技术(AEL、PEMEL), SOE目前面临的主要挑战涉及长期降解、热管理、大型堆和系统的设计和可靠制造。尽管许多项目最近在这一领域蓬勃发展,但能够展示SOE堆栈和系统的升级制造的参与者数量仍然有限。这里介绍的工作代表了CENER为SOE堆栈的试验制造线的未来演示所进行的第一步,从功能材料和墨水的优化到单细胞的制造和2-10 kW堆栈的构建。在本研究中,提出了一种SOE平面电池(5x5 cm 2)的制造路线,包括对工艺的每个步骤的优化:原料预处理,油墨/浆料开发,功能打印和烧结。特别强调的是确保电池批量生产的可靠升级,因此材料被大量处理(~1 L/批)。在功能材料方面,采用第一种方法选择标准电极和电解质,即Ni-YSZ为氢电极,YSZ为电解质,LSM-YSZ为空气电极。对于薄膜沉积,胶带铸造和丝网印刷技术相结合。将介绍制备电池的电化学特性,并与商业电池进行比较,包括降解分析。
{"title":"Solid Oxide Electrolysis Cells Fabrication: From Single Cells to Batch Production","authors":"Violeta Ureña Torres, Kandela Ruiz, Paula Ciaurriz, Xabier Judez, Mónica Aguado, Iñigo Garbayo","doi":"10.1149/ma2023-015442mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-015442mtgabs","url":null,"abstract":"Energy transition towards a net-zero emission scenario requires, primarily, a significant increase on the renewable energy production capabilities. However, the inherent intermittency of most common renewable sources, added to the limitations of full electrification in some important hard-to-abate sectors (heavy-duty transport, aviation, steel industry...), implies also the need of developing reliable solutions for energy conversion and storage. Here, hydrogen is gaining more and more popularity in the recent years as an effective solution as energy carrier, mostly for the decarbonization of the key industries and transport. Among the different technologies under development for power-to-hydrogen conversion, solid oxide electrolysis (SOE) outstands due to its high conversion efficiency, fuel flexibility (e.g. CO 2 electrolysis) and possibility of working in reversible mode (the same device both as electrolyser and fuel cell). Currently behind competing low temperature electrolysis technologies (AEL, PEMEL) in terms of technology readiness, main challenges of SOE today relate to long-term degradation, heat management and design and reliable fabrication of large stacks and systems. Although many projects are lately flourishing in this line, the number of players able to demonstrate an upscaled fabrication of SOE stacks and systems is still limited. The work presented here represents the first step carried out at CENER for the future demonstration of a pilot fabrication line of SOE stacks, from the optimization of functional materials and inks to the fabrication of single cells and building of 2-10 kW stacks. In this study, a fabrication route for SOE planar cells (5x5 cm 2 ) is proposed, including the optimization of every single step of the process: raw material pre-treatment, ink/slurry development, functional printing and sintering. Particular emphasis is placed on ensuring a reliable upscaling for batch production of cells and thus materials are processed in large quantities (~1 L/batch). In terms of functional materials, standard electrode and electrolytes are chosen in a first approach, viz. Ni-YSZ as hydrogen electrode, YSZ as electrolyte and LSM-YSZ as air electrode. For film deposition, tape casting and screen printing techniques are combined. The electrochemical characterization of the fabricated cells will be presented and compared with commercial ones, including degradation analysis.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135089024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-01512818mtgabs
Hoang Thi Thuy Tran, Donghwan Kim, Maxime Rémond, Eunkyoung Kim
Aggregation-induced emission (AIE) organic materials have been extensively explored for a future sensible and interactive display to provide high luminescence in ordered states. However, it is challenging for reducing exciton quenching of aggregated materials to achieve high emission and increasing ordered structure to yield high crystallinity as well. To this end, the new structures based on tetraphenylene (TP) core were synthesized by attaching TP with clipping groups (C) consisting of a self-assembling group (SAG) to enhance emission intensity and spectra shift. As the emissive materials for self-assembly, TPCns with different clip numbers (n=1,2,4) were synthesized through the Wittig-Hörner reaction, where clips consist of extended π-conjugated moiety and the alkyl chain as a segment. The clips could introduce van der Waals interaction to facilitate self-assembly among clips and clip-connected aromatic units. These structures were confirmed and analyzed by different tools including 1 HNMR, 13 CNMR, FTIR-ATR, element analysis, MALDI-TOF/TOF. The optical properties of TPCns were discussed in solution state and solid state. In terms of photoluminescent emission, the TPC4 showed a more yellowish-green emission (λ em = 525nm in THF) and large aggregation-induced emission enhancement (EAIE) in aqueous (f w > 50%) THF solution. The greenish blue emission was realized for TPC1 at the maxima wavelength 481 nm and reached 100% quantum yield in the solid state. Furthermore, due to strong twisted intramolecular charge transfer, TPCn molecules had large Stokes shifts in ranges of 5800–6800 cm −1 for TPC1, TPC2, and 10700–12500 cm −1 for TPC4.
聚集诱导发射(AIE)有机材料已被广泛探索用于未来的敏感和交互显示,以提供在有序状态下的高发光。然而,如何减少聚合材料的激子猝灭以实现高发射,并增加有序结构以获得高结晶度是一个挑战。为此,以四苯基(TP)为核心,将TP与由自组装基团(SAG)组成的剪切基团(C)连接,合成了新的结构,以增强发射强度和光谱位移。作为自组装发射材料,通过Wittig-Hörner反应合成了不同夹子数(n=1,2,4)的TPCns,其中夹子由扩展π共轭片段组成,烷基链为一个片段。这些夹子可以引入范德华相互作用,促进夹子和夹子连接的芳香单元之间的自组装。通过HNMR、CNMR、FTIR-ATR、元素分析、MALDI-TOF/TOF等工具对这些结构进行了确证和分析。讨论了TPCns在溶液态和固态下的光学性质。在光致发光方面,TPC4在THF中表现出更强的黄绿色发射(λ em = 525nm),在水溶液中表现出较大的聚集诱导发射增强(EAIE) (f w >50%) THF溶液。TPC1在最大波长481 nm处实现了绿蓝色发射,在固态下达到了100%的量子产率。此外,由于分子内电荷的强烈扭曲转移,TPCn分子具有较大的Stokes位移,TPC1、TPC2和TPC4分别在5800 ~ 6800 cm−1和10700 ~ 12500 cm−1之间。
{"title":"Synthesis of Self-Assembled Molecules Based on Tetraphenylethene-Core Inducing Emission","authors":"Hoang Thi Thuy Tran, Donghwan Kim, Maxime Rémond, Eunkyoung Kim","doi":"10.1149/ma2023-01512818mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-01512818mtgabs","url":null,"abstract":"Aggregation-induced emission (AIE) organic materials have been extensively explored for a future sensible and interactive display to provide high luminescence in ordered states. However, it is challenging for reducing exciton quenching of aggregated materials to achieve high emission and increasing ordered structure to yield high crystallinity as well. To this end, the new structures based on tetraphenylene (TP) core were synthesized by attaching TP with clipping groups (C) consisting of a self-assembling group (SAG) to enhance emission intensity and spectra shift. As the emissive materials for self-assembly, TPCns with different clip numbers (n=1,2,4) were synthesized through the Wittig-Hörner reaction, where clips consist of extended π-conjugated moiety and the alkyl chain as a segment. The clips could introduce van der Waals interaction to facilitate self-assembly among clips and clip-connected aromatic units. These structures were confirmed and analyzed by different tools including 1 HNMR, 13 CNMR, FTIR-ATR, element analysis, MALDI-TOF/TOF. The optical properties of TPCns were discussed in solution state and solid state. In terms of photoluminescent emission, the TPC4 showed a more yellowish-green emission (λ em = 525nm in THF) and large aggregation-induced emission enhancement (EAIE) in aqueous (f w > 50%) THF solution. The greenish blue emission was realized for TPC1 at the maxima wavelength 481 nm and reached 100% quantum yield in the solid state. Furthermore, due to strong twisted intramolecular charge transfer, TPCn molecules had large Stokes shifts in ranges of 5800–6800 cm −1 for TPC1, TPC2, and 10700–12500 cm −1 for TPC4.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135089034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-01482549mtgabs
Niya Sa
Solid Electrolyte Interface (SEI) has not been widely reported for multivalent battery systems. Question such as whether there’s a SEI growth at the interface of the metal anode and the multivalent electrolytes is unclear. How the SEI is formed and its evolution with the electrochemical process is not known. Our lab has spent a great deal of efforts of understanding the role of SEI, its composition and evolution for multivalent electrolyte systems, and this work aims to give an overview of the recent research efforts with the use of the operando electroanalytical methods that reveal the SEI evolution for multivalent battery designs.
{"title":"Probe Growth and Degradation of SEI at Multivalent Battery Systems","authors":"Niya Sa","doi":"10.1149/ma2023-01482549mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-01482549mtgabs","url":null,"abstract":"Solid Electrolyte Interface (SEI) has not been widely reported for multivalent battery systems. Question such as whether there’s a SEI growth at the interface of the metal anode and the multivalent electrolytes is unclear. How the SEI is formed and its evolution with the electrochemical process is not known. Our lab has spent a great deal of efforts of understanding the role of SEI, its composition and evolution for multivalent electrolyte systems, and this work aims to give an overview of the recent research efforts with the use of the operando electroanalytical methods that reveal the SEI evolution for multivalent battery designs.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135089038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-01452455mtgabs
Chao Zhang
Mass transport in electrolytes is one of the most important design focuses of electrochemical devices such as batteries, fuel cells, and supercapacitors. Compared to the infinitely dilute solution, ion-ion correlations play a central role in determining the structure-property relationships in the concentrated solution. Therefore, disentangling ion-ion correlations and establishing their impact on transport coefficients is a fundamental and pressing issue in the field of electrolyte materials. In this talk, I will present the recent works of my group and collaborators on using molecular dynamics simulations to understand ion-ion correlations. In particular, we looked into this issue by exploring the synergy between liquid electrolytes and polymer electrolytes following the physical chemistry route started by Onsager. This has led to a number of interesting results on the relationship between the ion-pairing and the deviation from the Nernst-Einstein relation [1-3], and shed light on resolving the controversy of the negative transference number found in polymer electrolytes [4]. References: [1] Y. Shao, M. Hellström, A. Yllö, J. Mindemark, K. Hermansson, J. Behler, and C. Zhang, “Temperature effects on the ionic conductivity in concentrated alkaline electrolyte solutions”, Phys. Chem. Chem. Phys . 2020 , 22: 10426. [2] Y. Shao, K. Shigenobu, M. Watanabe, and C. Zhang, “Role of viscosity in deviations from the Nernst–Einstein relation”, J. Phys. Chem. B , 2020 , 124: 4774. [3] H. Gudla, Y. Shao, S. Phunnarungsi, D. Brandell, and C. Zhang, “Importance of the ion-pair lifetime in polymer electrolytes”, J. Phys. Chem. Lett., 2021 , 12: 8460. [4] Y. Shao, H. Gudla, D. Brandell, and C. Zhang, “Transference number in polymer electrolytes: mind the reference-frame gap”, J. Am. Chem. Soc., 2022 , 144: 7583.
电解质中的质量输运是电池、燃料电池和超级电容器等电化学器件最重要的设计焦点之一。与无限稀溶液相比,离子-离子关系在浓溶液中起着决定结构-性质关系的核心作用。因此,解开离子-离子之间的相互关系并确定它们对输运系数的影响是电解质材料领域的一个基本而紧迫的问题。在这次演讲中,我将介绍我的小组和合作者在使用分子动力学模拟来理解离子-离子相关性方面的最新工作。特别是,我们通过探索液体电解质和聚合物电解质之间的协同作用,按照Onsager开始的物理化学路线来研究这个问题。这导致了许多关于离子配对与偏离能斯特-爱因斯坦关系之间关系的有趣结果[1-3],并有助于解决聚合物电解质中发现的负转移数的争议[4]。[1] Y. Shao, M. Hellström, A. Yllö, J. Mindemark, K. Hermansson, J. Behler, C. Zhang,“温度对浓碱性电解质溶液中离子电导率的影响”,物理学报。化学。化学。理论物理。2020, 22: 10426。[2]邵毅,张志强,“黏度对能量-爱因斯坦关系偏差的影响”,物理学报。化学。[j] .中国生物医学工程学报,2016,31(4):771 - 774。[3]张志强,邵勇,张志强,“聚合物电解质中离子对寿命的研究”,物理学报。化学。列托人。[j] .中文信息学报,2021,12:8460。[4]邵旸,张志强,“聚合物电解质的迁移数与参考框架的关系”,J. Am。化学。Soc。[j] .岩石力学与工程学报,2016,44(4):753。
{"title":"(Invited) Understanding Ion-Ion Correlations: From Liquid Electrolytes to Polymer Electrolytes","authors":"Chao Zhang","doi":"10.1149/ma2023-01452455mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-01452455mtgabs","url":null,"abstract":"Mass transport in electrolytes is one of the most important design focuses of electrochemical devices such as batteries, fuel cells, and supercapacitors. Compared to the infinitely dilute solution, ion-ion correlations play a central role in determining the structure-property relationships in the concentrated solution. Therefore, disentangling ion-ion correlations and establishing their impact on transport coefficients is a fundamental and pressing issue in the field of electrolyte materials. In this talk, I will present the recent works of my group and collaborators on using molecular dynamics simulations to understand ion-ion correlations. In particular, we looked into this issue by exploring the synergy between liquid electrolytes and polymer electrolytes following the physical chemistry route started by Onsager. This has led to a number of interesting results on the relationship between the ion-pairing and the deviation from the Nernst-Einstein relation [1-3], and shed light on resolving the controversy of the negative transference number found in polymer electrolytes [4]. References: [1] Y. Shao, M. Hellström, A. Yllö, J. Mindemark, K. Hermansson, J. Behler, and C. Zhang, “Temperature effects on the ionic conductivity in concentrated alkaline electrolyte solutions”, Phys. Chem. Chem. Phys . 2020 , 22: 10426. [2] Y. Shao, K. Shigenobu, M. Watanabe, and C. Zhang, “Role of viscosity in deviations from the Nernst–Einstein relation”, J. Phys. Chem. B , 2020 , 124: 4774. [3] H. Gudla, Y. Shao, S. Phunnarungsi, D. Brandell, and C. Zhang, “Importance of the ion-pair lifetime in polymer electrolytes”, J. Phys. Chem. Lett., 2021 , 12: 8460. [4] Y. Shao, H. Gudla, D. Brandell, and C. Zhang, “Transference number in polymer electrolytes: mind the reference-frame gap”, J. Am. Chem. Soc., 2022 , 144: 7583.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135089049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.1149/ma2023-0154254mtgabs
Jenna Pike, Dennis Larsen, Tyler Hafen, Jeffrey Lingen, Becca Izatt, Michele Hollist, Abel Gomez, Ainsley Yarosh, Jessica Elwell, S Elangovan, Joseph Hartvigsen
The OxEon Energy team continues its 30+ year solid oxide fuel cell (SOFC) development history with the design, fabrication, and installation of two reversible solid oxide electrolysis (SOEC)/SOFC demonstration modules (rSOC), at Idaho National Laboratory (INL) and a private, stand-alone microgrid, scheduled for installation and commissioning in early 2023. OxEon’s SOEC/SOFC technology builds on the success of the SOEC stack installed on NASA’s Mars Perseverance Rover that has produced high-purity O2 by electrolyzing Mars atmosphere CO2 nine times to date. OxEon Energy’s technology space integrates cross-sector coupling to produce hydrogen or syngas from SOEC, electricity via SOFC, and transportation fuels from syngas through Fischer-Tropsch synthesis. A low energy plasma reformer provides an alternative approach of producing syngas from low value hydrocarbons. OxEon’s four complementary technologies enable a flexible approach to leveling fluctuating energy from renewables and converting it to accessible, storable, and higher value fuels and chemicals. The reversible SOEC/SOFC systems described in this work demonstrate the opportunity to generate and store H2 fuel as a method to stabilize and capture excess production from renewable or nuclear energy sources. The two demonstration units described in this work integrate OxEon’s reversible SOEC/SOFC stacks with an effective and reliable balance of plant (BOP) system. The high temperature electrolysis (HTE) systems produce hydrogen through electrolysis using solid oxide cell (SOC) technology derived from OxEon’s heritage stack technology and the advancements made during the development of stacks for NASA’s Mars2020 mission. The two demonstration units described in this work use the same modular system design based on 4-stack quad assemblies. The INL system consists of three 4-stack quad assemblies to meet the 30 kW SOEC/ 10 kW SOFC target. OxEon also designed the manifold and plenum assembly to interface with INL’s existing 50 kW test stand and scaled the hot section unit (HSU) to enclose the system. Pressure drop across the system is minimized by supplying even flow to each of the three stack quads, and allows for air delivery in SOFC mode with a blower rather than an air compressor. INL system installation and testing is scheduled for early 2023. A previous 10 kW SOEC system demonstration at INL exceeded project objectives with 14.5 kW system power output, with uniform performance measured from each of 4 stacks. OxEon is scheduled to deliver a 20 kW SOEC/ 10 kW SOFC system to the private microgrid at Stone Edge Farm in early 2023. The system is comprised of 2 quad modules and BOP that will connect with onsite hydrogen storage and renewable energy generation plant. The system will generate hydrogen in SOEC mode using renewable energy supplied by the farm’s solar array. Hydrogen produced in SOEC mode will be compressed and stored by a system designed by HyET Hydrogen B.V. During times of low renewabl
{"title":"Reversible SOFC/SOEC System Development and Demonstration","authors":"Jenna Pike, Dennis Larsen, Tyler Hafen, Jeffrey Lingen, Becca Izatt, Michele Hollist, Abel Gomez, Ainsley Yarosh, Jessica Elwell, S Elangovan, Joseph Hartvigsen","doi":"10.1149/ma2023-0154254mtgabs","DOIUrl":"https://doi.org/10.1149/ma2023-0154254mtgabs","url":null,"abstract":"The OxEon Energy team continues its 30+ year solid oxide fuel cell (SOFC) development history with the design, fabrication, and installation of two reversible solid oxide electrolysis (SOEC)/SOFC demonstration modules (rSOC), at Idaho National Laboratory (INL) and a private, stand-alone microgrid, scheduled for installation and commissioning in early 2023. OxEon’s SOEC/SOFC technology builds on the success of the SOEC stack installed on NASA’s Mars Perseverance Rover that has produced high-purity O2 by electrolyzing Mars atmosphere CO2 nine times to date. OxEon Energy’s technology space integrates cross-sector coupling to produce hydrogen or syngas from SOEC, electricity via SOFC, and transportation fuels from syngas through Fischer-Tropsch synthesis. A low energy plasma reformer provides an alternative approach of producing syngas from low value hydrocarbons. OxEon’s four complementary technologies enable a flexible approach to leveling fluctuating energy from renewables and converting it to accessible, storable, and higher value fuels and chemicals. The reversible SOEC/SOFC systems described in this work demonstrate the opportunity to generate and store H2 fuel as a method to stabilize and capture excess production from renewable or nuclear energy sources. The two demonstration units described in this work integrate OxEon’s reversible SOEC/SOFC stacks with an effective and reliable balance of plant (BOP) system. The high temperature electrolysis (HTE) systems produce hydrogen through electrolysis using solid oxide cell (SOC) technology derived from OxEon’s heritage stack technology and the advancements made during the development of stacks for NASA’s Mars2020 mission. The two demonstration units described in this work use the same modular system design based on 4-stack quad assemblies. The INL system consists of three 4-stack quad assemblies to meet the 30 kW SOEC/ 10 kW SOFC target. OxEon also designed the manifold and plenum assembly to interface with INL’s existing 50 kW test stand and scaled the hot section unit (HSU) to enclose the system. Pressure drop across the system is minimized by supplying even flow to each of the three stack quads, and allows for air delivery in SOFC mode with a blower rather than an air compressor. INL system installation and testing is scheduled for early 2023. A previous 10 kW SOEC system demonstration at INL exceeded project objectives with 14.5 kW system power output, with uniform performance measured from each of 4 stacks. OxEon is scheduled to deliver a 20 kW SOEC/ 10 kW SOFC system to the private microgrid at Stone Edge Farm in early 2023. The system is comprised of 2 quad modules and BOP that will connect with onsite hydrogen storage and renewable energy generation plant. The system will generate hydrogen in SOEC mode using renewable energy supplied by the farm’s solar array. Hydrogen produced in SOEC mode will be compressed and stored by a system designed by HyET Hydrogen B.V. During times of low renewabl","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135089053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}