首页 > 最新文献

Economic Geology最新文献

英文 中文
Alteration Mapping for Porphyry Cu Targeting in the Western Chagai Belt, Pakistan, Using ZY1-02D Spaceborne Hyperspectral Data 利用 ZY1-02D 星载高光谱数据绘制巴基斯坦西查盖矿带斑岩铜矿靶区蚀变图
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-01 DOI: 10.5382/econgeo.5045
Lei Liu, Chuntao Yin, Yasir Shaheen Khalil, Jun Hong, Jilu Feng, Huishan Zhang
The Chagai porphyry Cu belt in Pakistan is an important metallogenic terrain extending approximately 400 km in an east-west direction. Most of the known porphyry Cu deposits, such as the world-class Reko Diq deposit and Saindak deposit, are located in the western Chagai belt. In this study, the ZY1-02D hyperspectral data acquired by a recently launched spaceborne imaging spectrometer with 166 bands within a 0.4- to 2.5-μm spectral region were used to map mineral information over 8,000 km2 for exploring potential targets of porphyry Cu mineralization in the western Chagai belt. False color composite, spectral angle mapper, and wavelength position mapping methods were used in this research leading to the identification of a series of alteration minerals (including muscovite [sericite], kaolinite, alunite, epidote, chlorite, and calcite) from ZY1-02D data. The alteration mineral maps derived from ZY1-02D data match well with the known deposits and field inspections. Twenty-three new targets were identified as potential porphyry Cu mineralization targets for further exploration in the study area. Three targets, north of Saindak, Koh-i-Sultan, and Durban Chah, and six alteration sites in the southwest of Durban Chah, were inspected in the field, and Cu-Au mineralization was confirmed in all these inspected areas. As the ZY1-02D hyperspectral data covers most of the land area of the earth, this study provides new insights for mineral exploration and lithologic mapping in remote regions.
巴基斯坦的查盖斑岩铜矿带是一个重要的成矿地形,东西向延伸约 400 公里。大多数已知的斑岩铜矿床,如世界级的Reko Diq矿床和Saindak矿床,都位于查盖带西部。在这项研究中,利用最近发射的星载成像光谱仪获得的 ZY1-02D 高光谱数据(0.4-2.5μm 光谱区内有 166 个波段),绘制了 8,000 平方公里的矿产信息图,以探索西部查盖带斑岩铜矿化的潜在目标。这项研究采用了假色复合法、光谱角度绘图法和波长位置绘图法,从而从 ZY1-02D 数据中识别出一系列蚀变矿物(包括褐铁矿[绢云母]、高岭石、褐铁矿、绿泥石、绿帘石和方解石)。根据 ZY1-02D 数据绘制的蚀变矿物图与已知矿床和实地考察结果十分吻合。确定了 23 个新目标,作为在研究区域进一步勘探的潜在斑岩铜矿化目标。对 Saindak、Koh-i-Sultan 和 Durban Chah 北部的三个目标以及 Durban Chah 西南部的六个蚀变点进行了实地考察,并在所有这些考察区域确认了铜金矿化。由于 ZY1-02D 高光谱数据覆盖了地球上大部分陆地区域,这项研究为偏远地区的矿产勘探和岩性制图提供了新的见解。
{"title":"Alteration Mapping for Porphyry Cu Targeting in the Western Chagai Belt, Pakistan, Using ZY1-02D Spaceborne Hyperspectral Data","authors":"Lei Liu, Chuntao Yin, Yasir Shaheen Khalil, Jun Hong, Jilu Feng, Huishan Zhang","doi":"10.5382/econgeo.5045","DOIUrl":"https://doi.org/10.5382/econgeo.5045","url":null,"abstract":"The Chagai porphyry Cu belt in Pakistan is an important metallogenic terrain extending approximately 400 km in an east-west direction. Most of the known porphyry Cu deposits, such as the world-class Reko Diq deposit and Saindak deposit, are located in the western Chagai belt. In this study, the ZY1-02D hyperspectral data acquired by a recently launched spaceborne imaging spectrometer with 166 bands within a 0.4- to 2.5-μm spectral region were used to map mineral information over 8,000 km<sup>2</sup> for exploring potential targets of porphyry Cu mineralization in the western Chagai belt. False color composite, spectral angle mapper, and wavelength position mapping methods were used in this research leading to the identification of a series of alteration minerals (including muscovite [sericite], kaolinite, alunite, epidote, chlorite, and calcite) from ZY1-02D data. The alteration mineral maps derived from ZY1-02D data match well with the known deposits and field inspections. Twenty-three new targets were identified as potential porphyry Cu mineralization targets for further exploration in the study area. Three targets, north of Saindak, Koh-i-Sultan, and Durban Chah, and six alteration sites in the southwest of Durban Chah, were inspected in the field, and Cu-Au mineralization was confirmed in all these inspected areas. As the ZY1-02D hyperspectral data covers most of the land area of the earth, this study provides new insights for mineral exploration and lithologic mapping in remote regions.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"26 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140096855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking Porphyry Cu Formation to Tectonic Change in Postsubduction Settings: A Case Study from the Giant Yulong Belt, Eastern Tibet 后俯冲环境中斑岩铜矿形成与构造变化的联系:西藏东部巨型玉龙带案例研究
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-01 DOI: 10.5382/econgeo.5052
Ming-Liang Huang, Xian-Wu Bi, Rui-Zhong Hu, Massimo Chiaradia, Jing-Jing Zhu, Lei-Luo Xu, Zong-Yong Yang
Porphyry deposits in magmatic arcs form coincident with changes to steady-state oceanic subduction conditions, such as changes in plate convergence rate and vector or angle of subduction. However, it remains unclear whether such processes also operated during formation of postsubduction porphyry deposits. The Yulong magmatic belt in the eastern Tibetan Plateau consists of middle to late Eocene igneous rocks (~51–35 Ma) that formed during the India-Asia collision, whereas all known porphyry deposits are associated with late Eocene rocks (43–35 Ma). A synthesis of new and published geochemical data shows marked variations from the middle to late Eocene, including increasing whole-rock La/Yb, Sr/Y, and EuN/EuN* values, as well as zircon EuN/EuN* values. These geochemical variations, together with petrographic observations, indicate a transition from plagioclase-dominated to amphibole-dominated fractionation from the middle to late Eocene.Coupled changes of magma compositions and porphyry Cu metallogeny from the middle to late Eocene coincided with, or were slightly preceded by, the onset of regional uplift and crustal thickening, triggered by the India-Asia hard collision and rapid deceleration of the India-Asia convergence rate at ca. 50 to 44 Ma. Crustal thickening may have caused prolonged magma differentiation at greater depths and accumulation of dissolved H2O, both of which contributed to amphibole-dominated fractionation and generation of hydrous melt that are prospective for porphyry Cu mineralization. Our study highlights the importance of tectonic changes in the formation of the Yulong and other postsubduction porphyry Cu belts—a scenario similar to that operated in subduction-related settings such as the Andes.
岩浆弧中斑岩矿床的形成与稳态大洋俯冲条件的变化相吻合,如板块辐合速率和俯冲矢量或角度的变化。然而,在俯冲后斑岩矿床的形成过程中是否也有此类过程,目前仍不清楚。青藏高原东部的玉龙岩浆岩带由印度-亚洲碰撞期间形成的中晚新世火成岩(约 51-35 Ma)组成,而所有已知的斑岩矿床都与晚更新世岩石(43-35 Ma)有关。对新的和已公布的地球化学数据的综合分析表明,从中新世到晚更新世有明显的变化,包括全岩 La/Yb、Sr/Y 和 EuN/EuN* 值以及锆石 EuN/EuN* 值的增加。这些地球化学变化以及岩石学观察结果表明,从中新世到晚始新世,岩浆成分和斑岩铜金属成因的耦合变化与印度-亚洲硬碰撞以及印度-亚洲辐合速度在约50至44Ma时迅速减慢所引发的区域隆升和地壳增厚相吻合,或者略早于这一时期。50 至 44 Ma。地壳增厚可能导致岩浆在更深的地方长时间分化,并积累了溶解的H2O,这两者都促进了以闪石为主的分馏和含水熔体的生成,而含水熔体是斑岩铜矿化的远景。我们的研究强调了构造变化在玉龙和其他俯冲后斑岩铜矿带形成过程中的重要性--这与安第斯山脉等俯冲相关地区的情况类似。
{"title":"Linking Porphyry Cu Formation to Tectonic Change in Postsubduction Settings: A Case Study from the Giant Yulong Belt, Eastern Tibet","authors":"Ming-Liang Huang, Xian-Wu Bi, Rui-Zhong Hu, Massimo Chiaradia, Jing-Jing Zhu, Lei-Luo Xu, Zong-Yong Yang","doi":"10.5382/econgeo.5052","DOIUrl":"https://doi.org/10.5382/econgeo.5052","url":null,"abstract":"Porphyry deposits in magmatic arcs form coincident with changes to steady-state oceanic subduction conditions, such as changes in plate convergence rate and vector or angle of subduction. However, it remains unclear whether such processes also operated during formation of postsubduction porphyry deposits. The Yulong magmatic belt in the eastern Tibetan Plateau consists of middle to late Eocene igneous rocks (~51–35 Ma) that formed during the India-Asia collision, whereas all known porphyry deposits are associated with late Eocene rocks (43–35 Ma). A synthesis of new and published geochemical data shows marked variations from the middle to late Eocene, including increasing whole-rock La/Yb, Sr/Y, and Eu<sub>N</sub>/Eu<sub>N</sub>* values, as well as zircon Eu<sub>N</sub>/Eu<sub>N</sub>* values. These geochemical variations, together with petrographic observations, indicate a transition from plagioclase-dominated to amphibole-dominated fractionation from the middle to late Eocene.Coupled changes of magma compositions and porphyry Cu metallogeny from the middle to late Eocene coincided with, or were slightly preceded by, the onset of regional uplift and crustal thickening, triggered by the India-Asia hard collision and rapid deceleration of the India-Asia convergence rate at ca. 50 to 44 Ma. Crustal thickening may have caused prolonged magma differentiation at greater depths and accumulation of dissolved H<sub>2</sub>O, both of which contributed to amphibole-dominated fractionation and generation of hydrous melt that are prospective for porphyry Cu mineralization. Our study highlights the importance of tectonic changes in the formation of the Yulong and other postsubduction porphyry Cu belts—a scenario similar to that operated in subduction-related settings such as the Andes.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"20 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140096930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLUME-GENERATED 90° STRESS CHANGE LINKED TO TRANSITION FROM RADIATING TO CIRCUMFERENTIAL DOLERITE DIKE SWARMS OF THE SIBERIAN TRAPS LARGE IGNEOUS PROVINCE AND TO EMPLACEMENT OF THE NORILSK-TALNAKH ORE DEPOSITS 西伯利亚陷落大火成岩带从放射状到环状辉绿岩堤群的过渡以及诺里尔斯克-塔尔纳克矿床的形成与羽状产生的 90° 应力变化有关
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-01 DOI: 10.5382/econgeo.5065
R.E. Ernst, H. El Bilali, K. L. Buchan, S.M. Jowitt
A 90° change in stress orientation has been previously proposed as the trigger for the final emplacement of the world-class Norilsk-Talnakh magmatic sulfide mineralization via the migration of accumulated sulfide melts from elsewhere within the plumbing system of the Siberian Traps large igneous province (LIP). We propose that this stress change does not require and was not triggered by a distal change in plate boundary stresses, but instead can be explained both temporally and spatially by stress changes recorded in the dike swarm patterns of the Siberian Traps LIP, namely the transition from a giant radiating dike swarm (associated with mantle plume uplift) to a giant circumferential swarm (linked to flattening of the plume head). The mantle plume stress-related changes recorded by these dike swarms, rather than distal plate boundary stress changes, were therefore most likely the trigger for the emplacement of the Norilsk-Talnakh mineralization. Other LIPs that have both giant radiating and circumferential dike swarms most likely reflect similar major and rapid changes in stress orientation, indicating that mantle plume-induced stress changes revealed by dike swarms should be considered an additional tool in magmatic sulfide exploration.
之前有人提出,应力方向的 90° 变化是世界级诺里尔斯克-塔尔纳克岩浆硫化物矿化最终形成的触发因素,它是通过西伯利亚陷阱大型火成岩矿带(LIP)管道系统内其他地方累积的硫化物熔体的迁移而形成的。我们提出,这种应力变化不需要也不是由板块边界应力的远端变化引发的,而是可以从时间和空间上通过西伯利亚陷阱大火成岩省的堤群模式所记录的应力变化来解释,即从巨大的辐射堤群(与地幔羽流抬升有关)向巨大的环向堤群过渡(与羽流头部的扁平化有关)。因此,这些堤群所记录的与地幔羽流应力有关的变化,而不是远端板块边界应力变化,很可能是诺里尔斯克-塔尔纳克矿化的触发因素。其他既有巨型放射状堤群又有环状堤群的低矿化度岩浆体很可能反映了类似的应力取向的重大而迅速的变化,这表明堤群揭示的地幔羽流引起的应力变化应被视为岩浆硫化物勘探的又一工具。
{"title":"PLUME-GENERATED 90° STRESS CHANGE LINKED TO TRANSITION FROM RADIATING TO CIRCUMFERENTIAL DOLERITE DIKE SWARMS OF THE SIBERIAN TRAPS LARGE IGNEOUS PROVINCE AND TO EMPLACEMENT OF THE NORILSK-TALNAKH ORE DEPOSITS","authors":"R.E. Ernst, H. El Bilali, K. L. Buchan, S.M. Jowitt","doi":"10.5382/econgeo.5065","DOIUrl":"https://doi.org/10.5382/econgeo.5065","url":null,"abstract":"A 90° change in stress orientation has been previously proposed as the trigger for the final emplacement of the world-class Norilsk-Talnakh magmatic sulfide mineralization via the migration of accumulated sulfide melts from elsewhere within the plumbing system of the Siberian Traps large igneous province (LIP). We propose that this stress change does not require and was not triggered by a distal change in plate boundary stresses, but instead can be explained both temporally and spatially by stress changes recorded in the dike swarm patterns of the Siberian Traps LIP, namely the transition from a giant radiating dike swarm (associated with mantle plume uplift) to a giant circumferential swarm (linked to flattening of the plume head). The mantle plume stress-related changes recorded by these dike swarms, rather than distal plate boundary stress changes, were therefore most likely the trigger for the emplacement of the Norilsk-Talnakh mineralization. Other LIPs that have both giant radiating and circumferential dike swarms most likely reflect similar major and rapid changes in stress orientation, indicating that mantle plume-induced stress changes revealed by dike swarms should be considered an additional tool in magmatic sulfide exploration.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"20 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140096852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant Rare Earth Element Accumulation Related to Voluminous, Highly Evolved Carbonatite: A Microanalytical Study of Carbonate Minerals From the Bayan Obo Deposit, China 与体积巨大、高度演化的碳酸盐岩有关的巨型稀土元素聚集:中国巴彦奥布矿藏碳酸盐矿物显微分析研究
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-01 DOI: 10.5382/econgeo.5060
Xiao-Chun Li, Hong-Rui Fan, Jian-Hui Su, David I. Groves, Kui-Feng Yang, Xin-Fu Zhao
The giant Bayan Obo deposit in China represents the largest rare earth element (REE) resource in the world, but the mechanisms for its highly anomalous REE enrichment have long been controversial. The central debate concerns the nature and origin of the ore-hosting dolomite. In this study, a texturally constrained microanalytical study of carbonate minerals from the Bayan Obo ore-hosting dolomite is presented to resolve this controversy.The dolomite rocks contain two major components: the early-stage coarse-grained dolomite (CD) and the late-stage fine-grained dolomite (FD). The CD dolomite grains have C-O isotope ratios (δ13CVienna-PeeDee Belemnite (V-PDB): –4.8 to –3.3‰; δ18OVienna-standard mean ocean water (V-SMOW): 7.1 to 11.9‰) plotting in or adjacent to the primary igneous carbonatite field, with a narrow range of low 87Sr/86Sr ratios (0.70262–0.70327). The mantle-like C-O and Sr isotopes indicate that the coarse-grained dolomite rocks are magmatic in origin. Dolomite grains from the FD have experienced extensive hydrothermal alteration related to both REE mineralization and post-ore metamorphism of the Bayan Obo deposit. The domains of primary unaltered dolomite have high SrO and MnO contents that clearly distinguish them from sedimentary carbonates. The 87Sr/86Sr ratios of unaltered dolomite domains range from 0.70271 to 0.70473, with the majority lower than 0.7035, contrasting with higher 87Sr/86Sr ratios of Mesoproterozoic sedimentary carbonates globally. Thus, the primary unaltered fine-grained dolomite, the precursor to the FD, is also proposed to be a carbonatite.Compared with dolomite grains from the CD, most of the unaltered dolomite domains within the FD are more enriched in FeO and MnO and have higher δ13CV-PDB (-4.9 to 0.3 ‰) and δ18OV-SMOW (9.4 to 17.1 ‰) values. In addition, the FD contains abundant REE- and volatile-rich hydrothermal minerals and Fe-Mg carbonates, which are rare in the CD. The geochemical and mineralogical data in conjunction indicate that the melts forming the late-stage FD were much more evolved than those forming the early-stage CD. It is noteworthy that the unaltered dolomite domains within the FD have a wider range of 87Sr/86Sr ratios than those within the CD, which implies that the CD and FD, at least a proportion of them, are unlikely to have crystallized from the same progenitor magmas. Some FD was possibly the product of fractionation of less-evolved carbonatitic magma that generated the CD, whereas other FD crystallized from new pulses of magmas that were highly fractionated at depth.When compared with other carbonatite complexes, the Bayan Obo carbonatite suite is notable for having a large surface area (~48 km2 in outcrop) and containing an anomalously large proportion of highly evolved components. The voluminous
中国的巴彦鄂博巨型矿床是世界上最大的稀土元素(REE)资源,但其稀土元素高度异常富集的机制长期以来一直存在争议。争论的焦点是矿床白云岩的性质和来源。本研究对巴彦奥博矿床白云岩中的碳酸盐矿物进行了纹理约束显微分析研究,以解决这一争议。白云岩包含两个主要成分:早期粗粒白云岩(CD)和晚期细粒白云岩(FD)。CD白云岩颗粒的C-O同位素比值(δ13C维也纳-皮迪白云岩(V-PDB):-4.8至-3.3‰;δ18OV维也纳-标准平均海水(V-SMOW):7.1至11.9‰):7.1至11.9‰),分布在原生火成碳酸盐岩场内或附近,87Sr/86Sr比值范围较窄(0.70262-0.70327)。类似地幔的 C-O 和 Sr 同位素表明,粗粒白云岩源于岩浆。来自 FD 的白云岩颗粒经历了广泛的热液蚀变,这与 REE 矿化和巴彦奥博矿床的矿后变质作用有关。原生未蚀变白云岩域的氧化硅和氧化锰含量较高,明显有别于沉积碳酸盐岩。未变质白云岩岩域的 87Sr/86Sr 比率在 0.70271 至 0.70473 之间,大部分低于 0.7035,与全球中新生代沉积碳酸盐岩较高的 87Sr/86Sr 比率形成鲜明对比。与CD中的白云岩颗粒相比,FD中的大部分未变质白云岩域富含更多的FeO和MnO,具有更高的δ13CV-PDB(-4.9至0.3‰)和δ18OV-SMOW(9.4至17.1‰)值。此外,FD 含有大量富含 REE 和挥发性的热液矿物和铁镁碳酸盐,这在 CD 中是罕见的。地球化学和矿物学数据共同表明,形成晚期FD的熔体要比形成早期CD的熔体进化得多。值得注意的是,FD 中未发生变化的白云岩域的 87Sr/86Sr 比值范围比 CD 中的更宽,这意味着 CD 和 FD(至少其中一部分)不太可能是由相同的原生岩浆结晶而成。一些FD可能是生成CD的低演化碳酸盐岩浆分馏的产物,而其他FD则是从深部高度分馏的新岩浆脉冲中结晶出来的。与其他碳酸盐岩群相比,巴彦奥博碳酸盐岩群的显著特点是表面积大(露头面积约48平方公里),而且含有异常大比例的高度演化成分。大量的演化碳酸盐岩显然为大量矿石金属的积累提供了基础。因此,建议巴彦奥博的巨型 REE 矿床与大体积、高演化碳酸盐岩有关。
{"title":"Giant Rare Earth Element Accumulation Related to Voluminous, Highly Evolved Carbonatite: A Microanalytical Study of Carbonate Minerals From the Bayan Obo Deposit, China","authors":"Xiao-Chun Li, Hong-Rui Fan, Jian-Hui Su, David I. Groves, Kui-Feng Yang, Xin-Fu Zhao","doi":"10.5382/econgeo.5060","DOIUrl":"https://doi.org/10.5382/econgeo.5060","url":null,"abstract":"The giant Bayan Obo deposit in China represents the largest rare earth element (REE) resource in the world, but the mechanisms for its highly anomalous REE enrichment have long been controversial. The central debate concerns the nature and origin of the ore-hosting dolomite. In this study, a texturally constrained microanalytical study of carbonate minerals from the Bayan Obo ore-hosting dolomite is presented to resolve this controversy.The dolomite rocks contain two major components: the early-stage coarse-grained dolomite (CD) and the late-stage fine-grained dolomite (FD). The CD dolomite grains have C-O isotope ratios (δ<sup>13</sup>C<sub>Vienna-PeeDee Belemnite (V-PDB)</sub>: –4.8 to –3.3‰; δ<sup>18</sup>O<sub>Vienna-standard mean ocean water (V-SMOW)</sub>: 7.1 to 11.9‰) plotting in or adjacent to the primary igneous carbonatite field, with a narrow range of low <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.70262–0.70327). The mantle-like C-O and Sr isotopes indicate that the coarse-grained dolomite rocks are magmatic in origin. Dolomite grains from the FD have experienced extensive hydrothermal alteration related to both REE mineralization and post-ore metamorphism of the Bayan Obo deposit. The domains of primary unaltered dolomite have high SrO and MnO contents that clearly distinguish them from sedimentary carbonates. The <sup>87</sup>Sr/<sup>86</sup>Sr ratios of unaltered dolomite domains range from 0.70271 to 0.70473, with the majority lower than 0.7035, contrasting with higher <sup>87</sup>Sr/<sup>86</sup>Sr ratios of Mesoproterozoic sedimentary carbonates globally. Thus, the primary unaltered fine-grained dolomite, the precursor to the FD, is also proposed to be a carbonatite.Compared with dolomite grains from the CD, most of the unaltered dolomite domains within the FD are more enriched in FeO and MnO and have higher δ<sup>13</sup>C<sub>V-PDB</sub> (-4.9 to 0.3 ‰) and δ<sup>18</sup>O<sub>V-SMOW</sub> (9.4 to 17.1 ‰) values. In addition, the FD contains abundant REE- and volatile-rich hydrothermal minerals and Fe-Mg carbonates, which are rare in the CD. The geochemical and mineralogical data in conjunction indicate that the melts forming the late-stage FD were much more evolved than those forming the early-stage CD. It is noteworthy that the unaltered dolomite domains within the FD have a wider range of <sup>87</sup>Sr/<sup>86</sup>Sr ratios than those within the CD, which implies that the CD and FD, at least a proportion of them, are unlikely to have crystallized from the same progenitor magmas. Some FD was possibly the product of fractionation of less-evolved carbonatitic magma that generated the CD, whereas other FD crystallized from new pulses of magmas that were highly fractionated at depth.When compared with other carbonatite complexes, the Bayan Obo carbonatite suite is notable for having a large surface area (~48 km<sup>2</sup> in outcrop) and containing an anomalously large proportion of highly evolved components. The voluminous ","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"22 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140096921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
San Albino, Nicaragua: A Low-Angle, Thrust-Controlled Orogenic Gold Deposit 尼加拉瓜圣阿尔比诺:低角度、受推力控制的造山运动金矿藏
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-03-01 DOI: 10.5382/econgeo.5042
Rael D. Lipson, Richard J. Goldfarb, Ben M. Frieman, John Payne
The San Albino deposit is an orogenic gold occurrence hosted by a low-angle thrust that is the site of a new open-pit mine in northern Nicaragua. The deposit is hosted in greenschist facies rocks of the Jurassic metasedimentary Neuvo Segovia Formation. The schist was uplifted and exposed during arc accretion and Cretaceous thin-skin deformation, forming the NE-striking Colon fold-and-thrust belt. Deformation included emplacement of the 119 to 113 Ma NE-trending Dipilto batholith into the regionally metamorphosed clastic rocks about 5 km northwest of the San Albino deposit. Mineralization is dominated by three laminated quartz vein systems (i.e., San Albino, Naranjo, Arras) that broadly follow shallowly dipping (approx. 30°) carbonaceous shears roughly concordant to schistosity along the limbs of a doubly plunging antiform. The three main parallel shears are each separated by about 90 m and individually reach a maximum thickness of about 8 m. Maximum thickness of ore zones is where post-ore local folding and reverse motion along the shallow shears has duplicated the laminated low-angle gold-bearing veins (D2 and early D3). Additional gold was added to the veins, with abundant sulfides, during a subsequent brecciation event of the early formed quartz veins that accompanied progressive thrusting (late D3). This predated boudinage of the veins during continued compression and thrust loading (D4); high gold grades are particularly notable along pyrite- and arsenopyrite-bearing stylolites formed during D4 pressure solution. The D2 to D3 gold event is likely coeval with Albian uplift of the Dipilto batholith and with back thrusting in the schist aided by the stress inhomogeneities provided by the igneous complex.Low-angle thrust-controlled orogenic gold deposits may represent world-class exploration targets because of their large linear footprints, although they are traditionally looked at as less favorable exploration targets relative to gold systems developed more commonly along high-angle reverse faults. Our case study of the San Albino deposit shows that although low-angle deposits are not inherently misoriented for failure like the more common subvertical reverse fault-related deposits, they may be sites of significant pressure buildup due to hydrothermal mineral precipitation during initial water-rock interaction or slight temperature decreases along the low-angle flow path. Resulting fluid cycling may lead to thick laminated vein development, such as seen at San Albino, where especially high-grade zones may be associated with local steepening and/or dilational zones within the broader, low-angle vein-hosting shear system.
圣阿尔比诺矿床是尼加拉瓜北部一个新的露天矿的所在地,该矿床由低角度的推力作用形成的造山金矿。该矿床赋存于侏罗纪元成岩Neuvo Segovia地层的绿片岩中。片岩在弧形增生和白垩纪薄皮变形过程中隆起并出露,形成了东北走向的科隆褶皱推覆带。变形包括将119至113 Ma NE向的Dipilto浴成岩置入圣阿尔比诺矿床西北约5公里处的区域变质碎屑岩中。矿化主要由三个层状石英脉系统(即圣阿尔比诺、纳兰霍和阿拉斯)组成,它们大致沿浅倾角(约 30°)碳质剪切岩分布,与双垂向蚁状岩边缘的片岩大体一致。矿区的最大厚度位于矿后局部褶皱和沿浅剪切的反向运动复制了层状低角度含金矿脉(D2 和早期的 D3)的位置。在早期形成的石英矿脉随后的一次角砾岩化过程中,伴随着渐进的推力(D3 晚期),矿脉中又增加了大量硫化物。在持续的挤压和推力加载(D4)过程中,矿脉发生了褐铁矿化;在D4压力溶蚀过程中形成的含黄铁矿和砷黄铁矿的苯乙烯岩中,金的品位特别高。D2 到 D3 金事件很可能与迪比尔托浴岩的阿尔卑斯隆起以及片岩在火成岩复合体提供的应力不均匀性帮助下的反向推力同时发生。低角度推力控制的成因金矿床因其线性足迹大而可能成为世界级的勘探目标,尽管与更常见的沿高角度逆断层发育的金系统相比,它们在传统上被视为不太有利的勘探目标。我们对圣阿尔比诺矿床的案例研究表明,虽然低角度矿床不像更常见的俯冲逆断层相关矿床那样天生就会发生方向性失误而崩塌,但由于在最初的水-岩相互作用过程中热液矿物沉淀或低角度流道沿线温度略有下降,它们可能是压力显著积聚的地点。由此产生的流体循环可能会导致厚层状矿脉的发育,如在圣阿尔比诺看到的情况,在那里,特别高品位的矿带可能与更广泛的低角度矿脉寄生剪切系统中的局部陡化和/或扩张带有关。
{"title":"San Albino, Nicaragua: A Low-Angle, Thrust-Controlled Orogenic Gold Deposit","authors":"Rael D. Lipson, Richard J. Goldfarb, Ben M. Frieman, John Payne","doi":"10.5382/econgeo.5042","DOIUrl":"https://doi.org/10.5382/econgeo.5042","url":null,"abstract":"The San Albino deposit is an orogenic gold occurrence hosted by a low-angle thrust that is the site of a new open-pit mine in northern Nicaragua. The deposit is hosted in greenschist facies rocks of the Jurassic metasedimentary Neuvo Segovia Formation. The schist was uplifted and exposed during arc accretion and Cretaceous thin-skin deformation, forming the NE-striking Colon fold-and-thrust belt. Deformation included emplacement of the 119 to 113 Ma NE-trending Dipilto batholith into the regionally metamorphosed clastic rocks about 5 km northwest of the San Albino deposit. Mineralization is dominated by three laminated quartz vein systems (i.e., San Albino, Naranjo, Arras) that broadly follow shallowly dipping (approx. 30°) carbonaceous shears roughly concordant to schistosity along the limbs of a doubly plunging antiform. The three main parallel shears are each separated by about 90 m and individually reach a maximum thickness of about 8 m. Maximum thickness of ore zones is where post-ore local folding and reverse motion along the shallow shears has duplicated the laminated low-angle gold-bearing veins (D<sub>2</sub> and early D<sub>3</sub>). Additional gold was added to the veins, with abundant sulfides, during a subsequent brecciation event of the early formed quartz veins that accompanied progressive thrusting (late D<sub>3</sub>). This predated boudinage of the veins during continued compression and thrust loading (D<sub>4</sub>); high gold grades are particularly notable along pyrite- and arsenopyrite-bearing stylolites formed during D<sub>4</sub> pressure solution. The D<sub>2</sub> to D<sub>3</sub> gold event is likely coeval with Albian uplift of the Dipilto batholith and with back thrusting in the schist aided by the stress inhomogeneities provided by the igneous complex.Low-angle thrust-controlled orogenic gold deposits may represent world-class exploration targets because of their large linear footprints, although they are traditionally looked at as less favorable exploration targets relative to gold systems developed more commonly along high-angle reverse faults. Our case study of the San Albino deposit shows that although low-angle deposits are not inherently misoriented for failure like the more common subvertical reverse fault-related deposits, they may be sites of significant pressure buildup due to hydrothermal mineral precipitation during initial water-rock interaction or slight temperature decreases along the low-angle flow path. Resulting fluid cycling may lead to thick laminated vein development, such as seen at San Albino, where especially high-grade zones may be associated with local steepening and/or dilational zones within the broader, low-angle vein-hosting shear system.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"71 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140135939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver Behavior During Magmatic and Magmatic-Hydrothermal Evolution of a Highly Evolved Reduced Granitic System Related to the Giant Shuangjianzishan Ag-Pb-Zn-(Sn) Epithermal Deposit, Northeast China 中国东北双剑子山银铅锌(锡)热液巨型矿床相关高度演化的还原花岗岩系岩浆和岩浆-热液演化过程中的银行为
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-01-01 DOI: 10.5382/econgeo.5031
Kaixuan Hui, Bertrand Rottier, Kezhang Qin, Zoltan Zajacz, Alexandra Tsay, Junxing Zhao, Shen Gao, Ruizhe Shi
Magmatic-related epithermal silver-rich polymetallic deposits are among the most important sources of Ag in the world, and they are found associated with magmatic systems with striking differences. Most of the time, they are associated either with I-type oxidized (magnetite-series granite) intermediate to evolved intrusions or with S-type/A-type reduced (ilmenite-series granite) highly evolved intrusions. To better understand these associations, the Ag evolution has been tracked during the magmatic differentiation and the magmatic-hydrothermal transition stage of A-type highly evolved porphyritic granites associated with the giant Shuangjianzishan Ag-Pb-Zn-(Sn) epithermal deposit, the largest known Ag deposit of Asia (145 million tonnes at 128.5 g/t Ag and 2.2 wt % Pb + Zn) located in the largest known metallogenic province for Ag in China (the southern Great Xing’an Range). At the Shuangjianzishan deposit, the porphyritic granite complex consists of three temporally distinct intrusions—a coarse-grained monzogranite porphyry, a fine-grained syenogranite porphyry, and a fine-grained syenogranite—having crystallized at ~2 kbar and ~750°C and recording a continuous magmatic differentiation trend. The silicate melt that generated the last highly differentiated intrusion (fine-grained syenogranite) is interpreted as the source of the mineralizing fluids forming the Shuangjianzishan Ag-Pb-Zn-(Sn) epithermal deposit, as it is the only intrusive unit that reached fluid saturation, as indicated by cotrapped fluid and melt inclusions in quartz phenocrysts and by the occurrences of unidirectional solidification textures (USTs). Silver evolution in the different porphyritic granite facies was reconstructed with laser ablation-inductively coupled plasma-mass spectrometry analyses of quartz-hosted silicate melt inclusions, amphibole-hosted magmatic sulfide inclusions, and chemical modeling. The silicate melt forming the porphyritic granite complex was sulfide saturated during the first crystallization stage, as shown by the occurrence of Ag-rich monosulfide solid solution (MSS) inclusions hosted in amphibole phenocrysts from the coarse-grained monzogranite porphyry and from mafic microgranular enclaves hosted in the coarse-grained monzogranite porphyry. However, these Ag-rich MSSs had only a minimal impact on the Ag budget of the magmatic system, as shown by the increase of the Ag concentration (~100–1,000 ppb) in quartz-hosted silicate melt inclusions during the further evolution of the system until fluid exsolution was reached. These results combined with mass balance modeling suggest that Ag and Sn are efficiently transferred to the evolving residual melt during crystallization and crystal-melt segregation. The results of this study indicate that highly Ag endowed epithermal polymetallic deposits can be formed from the exsolution of Ag-rich mineralizing fluids from relatively low volume, highly evolved, reduced melts, similar to those responsible for the fo
与岩浆有关的表生富银多金属矿床是世界上最重要的银矿来源之一,这些矿床与岩浆系统伴生,差异显著。大多数情况下,它们要么与 I 型氧化(磁铁矿系列花岗岩)中进化侵入体有关,要么与 S 型/A 型还原(钛铁矿系列花岗岩)高度进化侵入体有关。为了更好地理解这些关联,我们对与巨大的双剑子山银-铅-锌-(锡)热液矿床相关的 A 型高度演化斑状花岗岩的岩浆分异和岩浆-热液转换阶段的银演化进行了追踪,该矿床是亚洲已知最大的银矿床(1.45 亿吨,银品位 128.5 克/吨,铅锌品位 2.2 重量%),位于中国已知最大的银成矿省(大兴安岭南部)。在双剑子山矿床,斑状花岗岩复合体由三个时间上截然不同的侵入体组成--粗粒单斜斑岩、细粒正长斑岩和细粒正长斑岩--它们在大约2千巴和大约750摄氏度的温度下结晶,并记录了连续的岩浆分异趋势。生成最后一个高度分异侵入体(细粒正长花岗岩)的硅酸盐熔体被解释为形成双剑子山银-铅-锌-(锡)热液矿床的成矿流体的来源,因为它是唯一达到流体饱和的侵入体单元,石英表晶中的共包裹体和熔体包裹体以及出现的单向凝固纹理(UST)都表明了这一点。通过对石英寄生硅酸盐熔体包裹体、闪石寄生岩浆硫化物包裹体的激光烧蚀-电感耦合等离子体-质谱分析以及化学建模,重建了不同斑状花岗岩岩相中银的演化过程。形成斑状花岗岩复合体的硅酸盐熔体在第一结晶阶段硫化物饱和,这表现在粗粒单斜斑岩中的闪石表晶和粗粒单斜斑岩中的黑云母微晶包体中都有富含Ag的单硫化物固溶体(MSS)包裹体。然而,这些富含Ag的MSS对岩浆系统Ag预算的影响微乎其微,这表现在系统进一步演化直至流体外溶解过程中,石英寄存硅酸盐熔体包裹体中Ag浓度的增加(约100-1000ppb)。这些结果与质量平衡模型相结合表明,在结晶和晶体-熔体偏析过程中,银和锡被有效地转移到不断演化的残余熔体中。这项研究结果表明,富含银的表生多金属矿床可以通过富含银的成矿流体从体积相对较小、高度演化的还原熔体中溶出而形成,这与富含锡的绿森矿床的形成过程类似。
{"title":"Silver Behavior During Magmatic and Magmatic-Hydrothermal Evolution of a Highly Evolved Reduced Granitic System Related to the Giant Shuangjianzishan Ag-Pb-Zn-(Sn) Epithermal Deposit, Northeast China","authors":"Kaixuan Hui, Bertrand Rottier, Kezhang Qin, Zoltan Zajacz, Alexandra Tsay, Junxing Zhao, Shen Gao, Ruizhe Shi","doi":"10.5382/econgeo.5031","DOIUrl":"https://doi.org/10.5382/econgeo.5031","url":null,"abstract":"Magmatic-related epithermal silver-rich polymetallic deposits are among the most important sources of Ag in the world, and they are found associated with magmatic systems with striking differences. Most of the time, they are associated either with I-type oxidized (magnetite-series granite) intermediate to evolved intrusions or with S-type/A-type reduced (ilmenite-series granite) highly evolved intrusions. To better understand these associations, the Ag evolution has been tracked during the magmatic differentiation and the magmatic-hydrothermal transition stage of A-type highly evolved porphyritic granites associated with the giant Shuangjianzishan Ag-Pb-Zn-(Sn) epithermal deposit, the largest known Ag deposit of Asia (145 million tonnes at 128.5 g/t Ag and 2.2 wt % Pb + Zn) located in the largest known metallogenic province for Ag in China (the southern Great Xing’an Range). At the Shuangjianzishan deposit, the porphyritic granite complex consists of three temporally distinct intrusions—a coarse-grained monzogranite porphyry, a fine-grained syenogranite porphyry, and a fine-grained syenogranite—having crystallized at ~2 kbar and ~750°C and recording a continuous magmatic differentiation trend. The silicate melt that generated the last highly differentiated intrusion (fine-grained syenogranite) is interpreted as the source of the mineralizing fluids forming the Shuangjianzishan Ag-Pb-Zn-(Sn) epithermal deposit, as it is the only intrusive unit that reached fluid saturation, as indicated by cotrapped fluid and melt inclusions in quartz phenocrysts and by the occurrences of unidirectional solidification textures (USTs). Silver evolution in the different porphyritic granite facies was reconstructed with laser ablation-inductively coupled plasma-mass spectrometry analyses of quartz-hosted silicate melt inclusions, amphibole-hosted magmatic sulfide inclusions, and chemical modeling. The silicate melt forming the porphyritic granite complex was sulfide saturated during the first crystallization stage, as shown by the occurrence of Ag-rich monosulfide solid solution (MSS) inclusions hosted in amphibole phenocrysts from the coarse-grained monzogranite porphyry and from mafic microgranular enclaves hosted in the coarse-grained monzogranite porphyry. However, these Ag-rich MSSs had only a minimal impact on the Ag budget of the magmatic system, as shown by the increase of the Ag concentration (~100–1,000 ppb) in quartz-hosted silicate melt inclusions during the further evolution of the system until fluid exsolution was reached. These results combined with mass balance modeling suggest that Ag and Sn are efficiently transferred to the evolving residual melt during crystallization and crystal-melt segregation. The results of this study indicate that highly Ag endowed epithermal polymetallic deposits can be formed from the exsolution of Ag-rich mineralizing fluids from relatively low volume, highly evolved, reduced melts, similar to those responsible for the fo","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"20 1","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139752511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tin Mineralization in the Triassic Chacaltaya District (Cordillera Real, Bolivia) Traced by In Situ Chemical and δ18O-δ11B Compositions of Tourmaline 通过电气石的原位化学成分和δ18O-δ11B成分追踪三叠纪查卡尔塔亚地区(玻利维亚雷阿尔山脉)的锡矿化情况
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-12-18 DOI: 10.5382/econgeo.5051
L. Torró, Matthieu Harlaux, Angela Castro-Morante, Jean Vallance, Lorenzo Tavazzani, A. Bouvier, T. Bovay, Cyril Chelle-Michou, Thierry P. A. Sempere, Joan Carles Melgarejo
We present a petrographic and geochemical study of tourmaline from the Triassic Chacaltaya Sn-polymetallic district in the Cordillera Real of Bolivia. Tourmaline is associated with greisens, breccias, and veins, which occur around the Triassic Chacaltaya peraluminous granitic stock hosted by Silurian metasedimentary rocks. Three main petrographic types of hydrothermal tourmaline have been identified: pre-ore greisen-related (Tur-1), syn-ore breccia-related (Tur-2), and syn-ore vein-related (Tur-3). The three types of tourmaline belong to the alkali group and have Fe-rich compositions mostly close to the schorl end member. Overlapping Fe/(Fe + Mg) ratios suggest broadly similar compositions of the hydrothermal fluids during the deposition of tourmaline. The most notable differences in minor and trace element contents include relative enrichment in Zn and Li in Tur-1 and relative enrichment in Ca, Sc, V, Cr, Sr, Sn, Y, Cs, Be, and Zr in Tur-3, with Tur-2 showing intermediate compositions between those of Tur-1 and Tur-3. The progressive enrichment in Sn from Tur-1 (avg = 14 ppm) through Tur-2 (avg = 311 ppm) and Tur-3 (avg = 476 ppm) indicates an increase of Sn concentrations in the hydrothermal system coinciding with cassiterite deposition in breccias and veins. The transition from high Li and Zn contents in Tur-1 to elevated Ca, Sr, V, and Cr contents in Tur-3 is interpreted as reflecting interaction between a hydrothermal fluid of magmatic origin and the metasedimentary country rocks. Strong and relatively steady positive Eu anomalies in all tourmaline types suggest dominantly reduced hydrothermal conditions. In situ δ18O and δ11B analyses of greisen-related Tur-1 reveal crystallization in isotopic equilibrium with magmatic water derived from a peraluminous S-type granite. In contrast, higher δ18O values of breccia-related Tur-2 and vein-related Tur-3 indicate crystallization in isotopic equilibrium with a fluid of metamorphic origin or a magmatic fluid that variably interacted with the metasedimentary host rocks. Geochemical modeling reproduces interactions between a fluid of magmatic origin and the host metasedimentary rocks at moderate water/rock ratios between 0.1 and 0.5. We conclude that cassiterite mineralization in the Chacaltaya district was formed primarily through interaction between B-Sn–rich magmatic fluids and the metasedimentary country rocks.
我们对玻利维亚雷亚尔山脉三叠纪查卡尔塔亚Sn多金属区的电气石进行了岩石学和地球化学研究。电气石与灰岩、角砾岩和矿脉有关,它们出现在三叠纪查卡尔塔亚过铝花岗岩群周围,由志留纪变质岩所承载。已确定的热液电气石主要有三种岩相类型:与前矿石灰岩相关的(Tur-1)、与同矿石角砾岩相关的(Tur-2)和与同矿石矿脉相关的(Tur-3)。這三種電氣石均屬於鹼性電氣石組別,其富鐵成分大多接近鈉礦石末端成員。重疊的鐵/(鐵+鎂)比率顯示電氣石沉積期間的熱液成分大致相同。次要元素和微量元素含量的最顯著差異包括 Tur-1 的 Zn 和 Li 相對富集,以及 Tur-3 的 Ca、Sc、V、Cr、Sr、Sn、Y、Cs、Be 和 Zr 相對富集,而 Tur-2 的成分則介乎 Tur-1 和 Tur-3 之間。从 Tur-1(平均百万分之 14)到 Tur-2(平均百万分之 311)和 Tur-3(平均百万分之 476),锡逐渐富集,这表明热液系统中锡浓度的增加与锡石在角砾岩和矿脉中的沉积相吻合。从 Tur-1 的高 Li 和 Zn 含量到 Tur-3 的高 Ca、Sr、V 和 Cr 含量,可以解释为反映了岩浆源热液与变质岩之间的相互作用。所有電氣石類型都有強烈和相對穩定的正 Eu 異常現象,顯示出主要的熱液還原條件。对与绿泥石有关的 Tur-1 进行的原位 δ18O 和 δ11B 分析表明,其结晶与来自过铝 S 型花岗岩的岩浆水处于同位素平衡状态。相比之下,与角砾岩相关的 Tur-2 和与岩脉相关的 Tur-3 的 δ18O 值较高,表明其结晶与变质源流体或岩浆流体在同位素上处于平衡状态,而岩浆流体与变质岩母岩之间存在不同程度的相互作用。地球化学建模再现了岩浆流体与变质岩主岩之间在 0.1 至 0.5 的中等水/岩比率下的相互作用。我们的结论是,查卡尔塔亚地区的锡石矿化主要是通过富含硼锑的岩浆流体与变质岩之间的相互作用形成的。
{"title":"Tin Mineralization in the Triassic Chacaltaya District (Cordillera Real, Bolivia) Traced by In Situ Chemical and δ18O-δ11B Compositions of Tourmaline","authors":"L. Torró, Matthieu Harlaux, Angela Castro-Morante, Jean Vallance, Lorenzo Tavazzani, A. Bouvier, T. Bovay, Cyril Chelle-Michou, Thierry P. A. Sempere, Joan Carles Melgarejo","doi":"10.5382/econgeo.5051","DOIUrl":"https://doi.org/10.5382/econgeo.5051","url":null,"abstract":"\u0000 We present a petrographic and geochemical study of tourmaline from the Triassic Chacaltaya Sn-polymetallic district in the Cordillera Real of Bolivia. Tourmaline is associated with greisens, breccias, and veins, which occur around the Triassic Chacaltaya peraluminous granitic stock hosted by Silurian metasedimentary rocks. Three main petrographic types of hydrothermal tourmaline have been identified: pre-ore greisen-related (Tur-1), syn-ore breccia-related (Tur-2), and syn-ore vein-related (Tur-3). The three types of tourmaline belong to the alkali group and have Fe-rich compositions mostly close to the schorl end member. Overlapping Fe/(Fe + Mg) ratios suggest broadly similar compositions of the hydrothermal fluids during the deposition of tourmaline. The most notable differences in minor and trace element contents include relative enrichment in Zn and Li in Tur-1 and relative enrichment in Ca, Sc, V, Cr, Sr, Sn, Y, Cs, Be, and Zr in Tur-3, with Tur-2 showing intermediate compositions between those of Tur-1 and Tur-3. The progressive enrichment in Sn from Tur-1 (avg = 14 ppm) through Tur-2 (avg = 311 ppm) and Tur-3 (avg = 476 ppm) indicates an increase of Sn concentrations in the hydrothermal system coinciding with cassiterite deposition in breccias and veins. The transition from high Li and Zn contents in Tur-1 to elevated Ca, Sr, V, and Cr contents in Tur-3 is interpreted as reflecting interaction between a hydrothermal fluid of magmatic origin and the metasedimentary country rocks. Strong and relatively steady positive Eu anomalies in all tourmaline types suggest dominantly reduced hydrothermal conditions. In situ δ18O and δ11B analyses of greisen-related Tur-1 reveal crystallization in isotopic equilibrium with magmatic water derived from a peraluminous S-type granite. In contrast, higher δ18O values of breccia-related Tur-2 and vein-related Tur-3 indicate crystallization in isotopic equilibrium with a fluid of metamorphic origin or a magmatic fluid that variably interacted with the metasedimentary host rocks. Geochemical modeling reproduces interactions between a fluid of magmatic origin and the host metasedimentary rocks at moderate water/rock ratios between 0.1 and 0.5. We conclude that cassiterite mineralization in the Chacaltaya district was formed primarily through interaction between B-Sn–rich magmatic fluids and the metasedimentary country rocks.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":" 28","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138963442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nature and Origin of a Massive Sulfide Occurrence in the Karrat Group: Evidence for Paleoproterozoic VMS Mineralization in Central West Greenland 卡拉特群大规模硫化物矿床的性质和起源:格陵兰岛中西部古生代 VMS 矿化的证据
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-12-18 DOI: 10.5382/econgeo.5036
Y. M. DeWolfe, J. Kolb, E. Sørensen, D. Rosa, P. Guarnieri
Mafic volcanic rocks of the Kangilleq Formation of the Paleoproterozoic Karrat Group host volcanogenic massive sulfide (VMS) mineralization in the area of central Kangiusap Kuua, central West Greenland. The mafic volcanic rocks display evidence of subaqueous, effusive eruption and redeposition by mass debris flows generated along fault scarps on the sea floor. A zone of semiconformable quartz alteration and disconformable chlorite alteration within hydrothermal breccias and mafic tuff breccias near the top of the volcanic sequence is interpreted to reflect a synvolcanic hydrothermal system. Conformable, massive to semimassive, and discordant, stringer-style sulfide mineralization is hosted within the quartz- and chlorite-altered volcanic rocks. The massive to semimassive sulfide mineralization is ~10 m thick and crops out along strike for ~2,000 m. The stringer zone is ≤10 m thick with individual sulfide stringers ranging in width from 5 to 90 cm. All sulfide zones are dominated by coarse pyrrhotite and pyrite, with trace amounts of sphalerite and chalcopyrite. The pillow lavas are subalkaline with geochemical characteristics typical of modern transitional to tholeiitic mid-ocean ridge or back-arc basin basalt. Trace element and Nd isotope data suggest that these lavas erupted in an epicratonic, back-arc basin. Characteristics of the host rocks indicate a period of localized rifting, volcanism, and VMS formation during genesis of the Karrat Group, which is dominated by siliciclastic rocks.
在西格陵兰岛中部的 Kangiusap Kuua 中部地区,古新生代卡拉特组 Kangilleq 地层的岩浆火山岩承载着火山成因块状硫化物矿化。岩浆状火山岩显示了水下喷发和沿海底断层疤痕产生的大量碎屑流重新沉积的迹象。在火山序列顶部附近的热液角砾岩和黑云母凝灰岩角砾岩中,有一个半变形石英蚀变和不变形绿泥石蚀变区,据解释,这反映了一个同步火山热液系统。石英和绿泥石蚀变的火山岩中蕴藏着顺应性、块状至半块状、不和谐的绞股蓝式硫化物矿化。块状至半块状硫化物矿化物厚约 10 米,沿走向延伸约 2,000 米。所有硫化物区都以粗黄铁矿和黄铁矿为主,还有微量的闪锌矿和黄铜矿。枕状熔岩呈亚碱性,具有典型的现代过渡至透辉石型洋中脊或弧后盆地玄武岩的地球化学特征。微量元素和钕同位素数据表明,这些熔岩是在后弧海盆中喷发的。母岩的特征表明,在以硅质碎屑岩为主的卡拉特组的形成过程中,曾发生过局部的断裂、火山活动和VMS形成。
{"title":"Nature and Origin of a Massive Sulfide Occurrence in the Karrat Group: Evidence for Paleoproterozoic VMS Mineralization in Central West Greenland","authors":"Y. M. DeWolfe, J. Kolb, E. Sørensen, D. Rosa, P. Guarnieri","doi":"10.5382/econgeo.5036","DOIUrl":"https://doi.org/10.5382/econgeo.5036","url":null,"abstract":"\u0000 Mafic volcanic rocks of the Kangilleq Formation of the Paleoproterozoic Karrat Group host volcanogenic massive sulfide (VMS) mineralization in the area of central Kangiusap Kuua, central West Greenland. The mafic volcanic rocks display evidence of subaqueous, effusive eruption and redeposition by mass debris flows generated along fault scarps on the sea floor. A zone of semiconformable quartz alteration and disconformable chlorite alteration within hydrothermal breccias and mafic tuff breccias near the top of the volcanic sequence is interpreted to reflect a synvolcanic hydrothermal system. Conformable, massive to semimassive, and discordant, stringer-style sulfide mineralization is hosted within the quartz- and chlorite-altered volcanic rocks. The massive to semimassive sulfide mineralization is ~10 m thick and crops out along strike for ~2,000 m. The stringer zone is ≤10 m thick with individual sulfide stringers ranging in width from 5 to 90 cm. All sulfide zones are dominated by coarse pyrrhotite and pyrite, with trace amounts of sphalerite and chalcopyrite.\u0000 The pillow lavas are subalkaline with geochemical characteristics typical of modern transitional to tholeiitic mid-ocean ridge or back-arc basin basalt. Trace element and Nd isotope data suggest that these lavas erupted in an epicratonic, back-arc basin. Characteristics of the host rocks indicate a period of localized rifting, volcanism, and VMS formation during genesis of the Karrat Group, which is dominated by siliciclastic rocks.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":" 8","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138963669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geology and Structure of the Río Blanco Cu-Mo Porphyry Deposit, Central Chile 智利中部 Río Blanco 铜-钼斑岩矿藏的地质与结构
IF 5.8 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-12-18 DOI: 10.5382/econgeo.5043
J. Skarmeta, Fernando Ortiz, Marco Solé
The Río Blanco-Los Bronces deposit is the largest Cu-Mo porphyry deposit in the world in terms of contained Cu metal. It is the product of protracted superposed magmatic and hydrothermal activity associated with multiple intrusive and brecciation events, with simultaneous regional uplift, erosion and unroofing, and decompression. Magmatism resulted in three major mineralization-alteration stages. The premineralization stage occurred during the emplacement of the San Francisco batholith, resulting in late magmatic and early hydrothermal events. The synmineralization stage corresponds to the main hydrothermal events associated with the Río Blanco-Los Bronces porphyry and breccia complexes, which were related to three intrusion phases, widespread brecciation, and an epithermal-style advanced argillic alteration. Late-stage magmatism, followed by hydrothermal activity, was associated with the emplacement of subvolcanic rhyolite complexes and late-stage porphyry intrusions. The synmineralization intrusions are associated with high-grade breccia bodies that have well-defined alteration-zonation patterns. Compilation and analysis of the historical Río Blanco structural data sets from the different mines, tunnels, and pits have allowed the assignment of all mapped structures to four hierarchical orders based on their continuity, crosscutting relationships, and infill compositions. The larger structures (orders 0 and 1) have along-strike continuity, correlate between drifts and/or mine levels, whereas smaller structures (orders 2 and 3) were grouped according to their dimensions and distributions within the larger-order structure-defined panels. All orders 0 and 1 structures were modeled in three dimensions, while orders 2 and 3 were in two dimensions. The structures mapped at Río Blanco have an intimate relationship with the pre- to the late-stage geologic evolution of magmatism and mineralization. The regional- and to a lesser extent district-scale structural evolution was related to premineralization basin-opening and subsequent tectonic inversion, whereas at the camp scale, syn- to late mineralization intrusions and related hydrothermal features were superimposed on this inherited structural architecture.
Río Blanco-Los Bronces 矿床是世界上含铜金属量最大的铜-钼斑岩矿床。它是岩浆活动和热液活动长期叠加的产物,与多次侵入和角砾岩事件有关,并同时伴有区域隆升、侵蚀和解顶以及减压。岩浆活动导致了三个主要的矿化-蜕变阶段。前矿化阶段发生在旧金山浴成岩的形成过程中,导致了晚期岩浆活动和早期热液活动。同步矿化阶段与 Río Blanco-Los Bronces 斑岩和砾岩复合体相关的主要热液事件相对应,这些热液事件与三个侵入阶段、广泛的砾岩和表生型高级箭石蚀变有关。晚期岩浆活动之后的热液活动与次火山流纹岩复合体和晚期斑岩侵入体的形成有关。同步矿化侵入体与高品位角砾岩体有关,这些角砾岩体具有明确的蚀变-分带模式。 通过对来自不同矿山、隧道和矿坑的历史 Río Blanco 构造数据集进行汇编和分析,可以根据其连续性、横切关系和填充成分将所有绘制的构造划分为四个等级。较大的结构(阶次 0 和 1)具有沿矿脉的连续性,在掘进巷道和/或矿层之间具有相关性,而较小的结构(阶次 2 和 3)则根据其尺寸和在较大阶次结构定义的板块内的分布情况进行分组。所有 0 级和 1 级构造均为三维建模,2 级和 3 级构造为二维建模。在 Río Blanco 绘制的结构与岩浆作用和矿化的前期到后期地质演变有着密切的关系。区域尺度的构造演化与成矿前的盆地开辟和随后的构造反转有关,其次是地区尺度的构造演化与成矿前的盆地开辟和随后的构造反转有关,而在营地尺度上,成矿同期至后期的侵入体和相关的热液特征叠加在这一继承的构造结构上。
{"title":"Geology and Structure of the Río Blanco Cu-Mo Porphyry Deposit, Central Chile","authors":"J. Skarmeta, Fernando Ortiz, Marco Solé","doi":"10.5382/econgeo.5043","DOIUrl":"https://doi.org/10.5382/econgeo.5043","url":null,"abstract":"The Río Blanco-Los Bronces deposit is the largest Cu-Mo porphyry deposit in the world in terms of contained Cu metal. It is the product of protracted superposed magmatic and hydrothermal activity associated with multiple intrusive and brecciation events, with simultaneous regional uplift, erosion and unroofing, and decompression. Magmatism resulted in three major mineralization-alteration stages. The premineralization stage occurred during the emplacement of the San Francisco batholith, resulting in late magmatic and early hydrothermal events. The synmineralization stage corresponds to the main hydrothermal events associated with the Río Blanco-Los Bronces porphyry and breccia complexes, which were related to three intrusion phases, widespread brecciation, and an epithermal-style advanced argillic alteration. Late-stage magmatism, followed by hydrothermal activity, was associated with the emplacement of subvolcanic rhyolite complexes and late-stage porphyry intrusions. The synmineralization intrusions are associated with high-grade breccia bodies that have well-defined alteration-zonation patterns. Compilation and analysis of the historical Río Blanco structural data sets from the different mines, tunnels, and pits have allowed the assignment of all mapped structures to four hierarchical orders based on their continuity, crosscutting relationships, and infill compositions. The larger structures (orders 0 and 1) have along-strike continuity, correlate between drifts and/or mine levels, whereas smaller structures (orders 2 and 3) were grouped according to their dimensions and distributions within the larger-order structure-defined panels. All orders 0 and 1 structures were modeled in three dimensions, while orders 2 and 3 were in two dimensions. The structures mapped at Río Blanco have an intimate relationship with the pre- to the late-stage geologic evolution of magmatism and mineralization. The regional- and to a lesser extent district-scale structural evolution was related to premineralization basin-opening and subsequent tectonic inversion, whereas at the camp scale, syn- to late mineralization intrusions and related hydrothermal features were superimposed on this inherited structural architecture.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"38 ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139176234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superimposed Gold Mineralization Events in the Tuanshanbei Orogenic Gold Deposit, Central Jiangnan Orogen, South China 华南江南造山带中部团山北造山带金矿床的叠加金矿化事件
1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2023-11-06 DOI: 10.5382/econgeo.5034
Cheng Wang, Yong-Jun Shao, Richard Goldfarb, Shi-Min Tan, Ji Sun, Chao Zhou, Han Zheng, Qing-Quan Liu, Yi-Qu Xiong
Abstract The Jiangnan orogen, one of the largest gold-producing areas in China, has experienced multiple orogenic events with complex structural overprinting that is marked by multiple stages of magmatism, deformation, metamorphism, and orogenic gold mineralization. Different orogenic events have been recognized in the Neoproterozoic, mid-Paleozoic, Triassic, and Early Cretaceous, reflecting collisions and intracontinental orogenic episodes. The age of gold deposition in the Jiangnan orogen, however, has been poorly constrained owing to the absence of suitable dating minerals. Field studies in the orogen indicate the Tuanshanbei gold deposit includes two generations of auriferous quartz-ankerite-pyrite-arsenopyrite veins (Q2 and Q3), with the latter of the two notable for containing more abundant ankerite and base metal sulfides. The Q2 veins were formed throughout the near S-N–directed shortening associated with D1 deformation and along resulting subhorizontal to low-angle-dipping EW- to WNW-striking transpressive faults. The Q3 veins, containing about 70% of the total gold resource, were primarily localized in moderately to steeply dipping NW-striking tensional/tensional shear faults and moderately dipping NE- to NNE-striking transpressive faults that were products of NW-SE–directed shortening during D2 deformation. Both vein generations are temporally younger than the 437.2 ± 4.2 Ma Tuanshanbei granodiorite host, and both are crosscut by postgold ca. 225 Ma diabase dikes. Hydrothermal monazite coexists with native gold and gold-bearing metal sulfides in the Q2 and Q3 veins. The Q2 monazite yielded a Tera-Wasserburg lower intercept age of 415.1 ± 2.1 Ma, consistent within error with an ankerite Sm-Nd isochron age of 410 ± 15 Ma and a laser ablation-inductively coupled plasma-mass spectrometry hydrothermal zircon 206Pb/238U age of 411.2 ± 4.0 Ma. The Q3 monazite yielded a Tera-Wasserburg lower intercept age of 234.3 ± 1.1 Ma. These new ages suggest that the Early Devonian gold event was overprinted by hydrothermal activity along the same structural system almost 200 m.y. later such that the gold resource must be a product of two temporally distinct events. Geologic and structural evidence, coupled with existing published geochemical data, suggests both ore-forming events were related to crustal metamorphism typical of most orogenic gold deposits. Fluids would have been derived from Neoproterozoic metasedimentary basement rocks, most likely from metamorphic devolatilization of the Neoproterozoic Cangxiyan Group greenschist-amphibolite facies metasediments. There is no evidence suggesting any type of magmatic contribution to the ore-forming process at either time. The data are best interpreted to suggest that various parts of the basement were metamorphosed near the greenschist-amphibolite boundary at different times, but during both times, the gold-bearing metamorphic fluids eventually migrated into the same structural conduits.
摘要江南造山带是中国最大的金矿产区之一,经历了多期岩浆作用、变形作用、变质作用和造山带金矿化的构造叠印复杂的造山活动。在新元古代、中古生代、三叠纪和早白垩世发现了不同的造山事件,反映了碰撞和陆内造山事件。然而,由于缺乏合适的定年矿物,对江南造山带金的沉积时代的限定很差。造山带野外研究表明,团山北金矿床发育2代含金石英-铁云母-黄铁矿-毒砂脉(Q2和Q3),其中后2代含铁云母和贱金属硫化物较多。Q2脉体形成于与D1变形相关的近南北向缩短,以及由此产生的亚水平至低倾角EW-至wnw向的逆压断层。Q3矿脉主要分布在中~陡倾nw向张/张剪切断裂和中倾NE ~ nne向逆压断裂中,是D2变形过程中nw - se向缩短的产物,约占总金矿量的70%。这两代矿脉在时间上都比团山北花岗闪长岩寄主(437.2±4.2 Ma)年轻,均被约225 Ma的辉绿岩脉截断。在Q2和Q3矿脉中,热液独居石与原生金及含金金属硫化物共存。Q2独居石的Tera-Wasserburg下截距年龄为415.1±2.1 Ma,与铁白云石Sm-Nd等时年龄410±15 Ma和激光烧蚀-电感耦合等离子质谱热液锆石206Pb/238U年龄411.2±4.0 Ma的误差一致。Q3独居石的Tera-Wasserburg低截距年龄为234.3±1.1 Ma。这些新时代表明,早泥盆世的黄金事件在大约200万年后被沿着同一构造体系的热液活动覆盖,因此黄金资源必须是两个时间上不同的事件的产物。地质和构造证据,加上现有已发表的地球化学数据,表明这两个成矿事件都与大多数造山带金矿床的典型地壳变质作用有关。流体来源于新元古代变质沉积基底岩,极有可能来自新元古代苍溪岩群绿片岩-角闪岩相变质脱挥发作用。没有证据表明任何类型的岩浆对这两个时期的成矿过程有贡献。这些数据最好的解释是,基底的不同部分在不同时期在绿片岩-角闪岩边界附近变质,但在这两个时期,含金变质流体最终迁移到相同的构造导管中。
{"title":"Superimposed Gold Mineralization Events in the Tuanshanbei Orogenic Gold Deposit, Central Jiangnan Orogen, South China","authors":"Cheng Wang, Yong-Jun Shao, Richard Goldfarb, Shi-Min Tan, Ji Sun, Chao Zhou, Han Zheng, Qing-Quan Liu, Yi-Qu Xiong","doi":"10.5382/econgeo.5034","DOIUrl":"https://doi.org/10.5382/econgeo.5034","url":null,"abstract":"Abstract The Jiangnan orogen, one of the largest gold-producing areas in China, has experienced multiple orogenic events with complex structural overprinting that is marked by multiple stages of magmatism, deformation, metamorphism, and orogenic gold mineralization. Different orogenic events have been recognized in the Neoproterozoic, mid-Paleozoic, Triassic, and Early Cretaceous, reflecting collisions and intracontinental orogenic episodes. The age of gold deposition in the Jiangnan orogen, however, has been poorly constrained owing to the absence of suitable dating minerals. Field studies in the orogen indicate the Tuanshanbei gold deposit includes two generations of auriferous quartz-ankerite-pyrite-arsenopyrite veins (Q2 and Q3), with the latter of the two notable for containing more abundant ankerite and base metal sulfides. The Q2 veins were formed throughout the near S-N–directed shortening associated with D1 deformation and along resulting subhorizontal to low-angle-dipping EW- to WNW-striking transpressive faults. The Q3 veins, containing about 70% of the total gold resource, were primarily localized in moderately to steeply dipping NW-striking tensional/tensional shear faults and moderately dipping NE- to NNE-striking transpressive faults that were products of NW-SE–directed shortening during D2 deformation. Both vein generations are temporally younger than the 437.2 ± 4.2 Ma Tuanshanbei granodiorite host, and both are crosscut by postgold ca. 225 Ma diabase dikes. Hydrothermal monazite coexists with native gold and gold-bearing metal sulfides in the Q2 and Q3 veins. The Q2 monazite yielded a Tera-Wasserburg lower intercept age of 415.1 ± 2.1 Ma, consistent within error with an ankerite Sm-Nd isochron age of 410 ± 15 Ma and a laser ablation-inductively coupled plasma-mass spectrometry hydrothermal zircon 206Pb/238U age of 411.2 ± 4.0 Ma. The Q3 monazite yielded a Tera-Wasserburg lower intercept age of 234.3 ± 1.1 Ma. These new ages suggest that the Early Devonian gold event was overprinted by hydrothermal activity along the same structural system almost 200 m.y. later such that the gold resource must be a product of two temporally distinct events. Geologic and structural evidence, coupled with existing published geochemical data, suggests both ore-forming events were related to crustal metamorphism typical of most orogenic gold deposits. Fluids would have been derived from Neoproterozoic metasedimentary basement rocks, most likely from metamorphic devolatilization of the Neoproterozoic Cangxiyan Group greenschist-amphibolite facies metasediments. There is no evidence suggesting any type of magmatic contribution to the ore-forming process at either time. The data are best interpreted to suggest that various parts of the basement were metamorphosed near the greenschist-amphibolite boundary at different times, but during both times, the gold-bearing metamorphic fluids eventually migrated into the same structural conduits.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"233 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135685058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Economic Geology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1