Pub Date : 2023-12-12Epub Date: 2023-05-17DOI: 10.1128/ecosalplus.esp-0018-2022
Megan T Zangara, Lena Darwish, Brian K Coombes
The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of Enterobacteriaceae species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new Escherichia coli subtype called adherent-invasive E. coli (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original in vitro phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.
{"title":"Characterizing the Pathogenic Potential of Crohn's Disease-Associated Adherent-Invasive <i>Escherichia coli</i>.","authors":"Megan T Zangara, Lena Darwish, Brian K Coombes","doi":"10.1128/ecosalplus.esp-0018-2022","DOIUrl":"10.1128/ecosalplus.esp-0018-2022","url":null,"abstract":"<p><p>The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of <i>Enterobacteriaceae</i> species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new <i>Escherichia coli</i> subtype called adherent-invasive <i>E. coli</i> (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original <i>in vitro</i> phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"1 1","pages":"eesp00182022"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48769601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-04-04DOI: 10.1128/ecosalplus.esp-0010-2022
Lon M Chubiz
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
{"title":"The Mar, Sox, and Rob Systems.","authors":"Lon M Chubiz","doi":"10.1128/ecosalplus.esp-0010-2022","DOIUrl":"10.1128/ecosalplus.esp-0010-2022","url":null,"abstract":"<p><p>Environments inhabited by <i>Enterobacteriaceae</i> are diverse and often stressful. This is particularly true for <i>Escherichia coli</i> and <i>Salmonella</i> during host association in the gastrointestinal systems of animals. There, <i>E. coli</i> and <i>Salmonella</i> must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the <i>Enterobacteriaceae</i>. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the <i>mar-sox-rob</i> regulon. This review will provide an overview of the <i>mar-sox-rob</i> regulon and molecular architecture of the Mar, Sox, and Rob systems.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"1 1","pages":"eesp00102022"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47305824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-06-01DOI: 10.1128/ecosalplus.esp-0011-2023
Tohru Minamino, Miki Kinoshita
Many motile bacteria use flagella for locomotion under a variety of environmental conditions. Because bacterial flagella are under the control of sensory signal transduction pathways, each cell is able to autonomously control its flagellum-driven locomotion and move to an environment favorable for survival. The flagellum of Salmonella enterica serovar Typhimurium is a supramolecular assembly consisting of at least three distinct functional parts: a basal body that acts as a bidirectional rotary motor together with multiple force generators, each of which serves as a transmembrane proton channel to couple the proton flow through the channel with torque generation; a filament that functions as a helical propeller that produces propulsion; and a hook that works as a universal joint that transmits the torque produced by the rotary motor to the helical propeller. At the base of the flagellum is a type III secretion system that transports flagellar structural subunits from the cytoplasm to the distal end of the growing flagellar structure, where assembly takes place. In recent years, high-resolution cryo-electron microscopy (cryoEM) image analysis has revealed the overall structure of the flagellum, and this structural information has made it possible to discuss flagellar assembly and function at the atomic level. In this article, we describe what is known about the structure, assembly, and function of Salmonella flagella.
许多运动细菌在各种环境条件下利用鞭毛进行运动。由于细菌鞭毛受感觉信号转导途径的控制,因此每个细胞都能自主控制鞭毛驱动的运动,并移动到有利于生存的环境中。Typhimurium 肠炎沙门氏菌的鞭毛是一个超分子组件,至少由三个不同的功能部分组成:一个基体,作为双向旋转电机和多个力发生器,每个力发生器都是一个跨膜质子通道,将质子流经通道与产生扭矩结合起来;一个丝状体,作为螺旋推进器,产生推进力;一个钩状体,作为万向接头,将旋转电机产生的扭矩传递给螺旋推进器。在鞭毛的基部有一个 III 型分泌系统,它将鞭毛结构亚基从细胞质运送到生长鞭毛结构的远端,并在那里进行组装。近年来,高分辨率冷冻电镜(cryoEM)图像分析揭示了鞭毛的整体结构,这些结构信息使得在原子水平上讨论鞭毛的组装和功能成为可能。在本文中,我们将介绍目前已知的沙门氏菌鞭毛的结构、组装和功能。
{"title":"Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion.","authors":"Tohru Minamino, Miki Kinoshita","doi":"10.1128/ecosalplus.esp-0011-2023","DOIUrl":"10.1128/ecosalplus.esp-0011-2023","url":null,"abstract":"<p><p>Many motile bacteria use flagella for locomotion under a variety of environmental conditions. Because bacterial flagella are under the control of sensory signal transduction pathways, each cell is able to autonomously control its flagellum-driven locomotion and move to an environment favorable for survival. The flagellum of <i>Salmonella enterica</i> serovar Typhimurium is a supramolecular assembly consisting of at least three distinct functional parts: a basal body that acts as a bidirectional rotary motor together with multiple force generators, each of which serves as a transmembrane proton channel to couple the proton flow through the channel with torque generation; a filament that functions as a helical propeller that produces propulsion; and a hook that works as a universal joint that transmits the torque produced by the rotary motor to the helical propeller. At the base of the flagellum is a type III secretion system that transports flagellar structural subunits from the cytoplasm to the distal end of the growing flagellar structure, where assembly takes place. In recent years, high-resolution cryo-electron microscopy (cryoEM) image analysis has revealed the overall structure of the flagellum, and this structural information has made it possible to discuss flagellar assembly and function at the atomic level. In this article, we describe what is known about the structure, assembly, and function of <i>Salmonella</i> flagella.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00112023"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9705246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-04-04DOI: 10.1128/ecosalplus.esp-0010-2022
Lon M Chubiz
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
肠杆菌科细菌栖息的环境多种多样,而且往往充满压力。大肠杆菌和沙门氏菌在动物胃肠道系统中与宿主结合时尤其如此。在那里,大肠杆菌和沙门氏菌必须在接触宿主产生或摄入的各种抗菌化合物后才能存活。为实现这一目标,细胞生理和新陈代谢需要发生大量变化。肠杆菌科细菌中的 Mar、Sox 和 Rob 系统是负责感知和应对抗生素等细胞内化学压力的核心调控网络。每个不同的调控网络都控制着一组重叠的下游基因的表达,这些基因的共同作用增强了对各种抗菌化合物的耐药性。这组基因被称为 mar-sox-rob 调节子。本综述将概述 mar-sox-rob 调节子以及 Mar、Sox 和 Rob 系统的分子结构。
{"title":"The Mar, Sox, and Rob Systems.","authors":"Lon M Chubiz","doi":"10.1128/ecosalplus.esp-0010-2022","DOIUrl":"10.1128/ecosalplus.esp-0010-2022","url":null,"abstract":"<p><p>Environments inhabited by <i>Enterobacteriaceae</i> are diverse and often stressful. This is particularly true for <i>Escherichia coli</i> and <i>Salmonella</i> during host association in the gastrointestinal systems of animals. There, <i>E. coli</i> and <i>Salmonella</i> must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the <i>Enterobacteriaceae</i>. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the <i>mar-sox-rob</i> regulon. This review will provide an overview of the <i>mar-sox-rob</i> regulon and molecular architecture of the Mar, Sox, and Rob systems.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00102022"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9503297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-01-09DOI: 10.1128/ecosalplus.esp-0020-2022
Yaoqin Hong, Dalong Hu, Anthony D Verderosa, Jilong Qin, Makrina Totsika, Peter R Reeves
The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.
O 型抗原是一种长多糖,构成外膜锚定脂多糖的远端部分,是革兰氏阴性细菌保护性外膜的关键成分之一。大多数菌种都能产生一种结构多样的 O 型抗原,几乎所有多糖成分都具有由 Wzx/Wzy 途径产生的复杂结构。这种途径在细胞质膜的细胞膜面上产生主要由 3-8 种糖组成的重复单位,这些重复单位被 Wzx 翻转酶转运到细胞质周围,然后被 Wzy 聚合酶聚合成长链多糖。Wzy 聚合酶是一种高度多样化的整体膜蛋白,通常含有 10-14 个跨膜片段。生化证据证实,Wzy聚合酶是聚合的唯一驱动力,最近的研究进展也开始揭开其相互作用伙伴Wzz的神秘面纱,为推测这两种蛋白在多糖生物发生过程中如何协同运作提供了一些启示。然而,我们对高度可变的 Wzy 蛋白如何作为 O 抗原加工机制的一部分发挥作用仍然知之甚少。在此,我们讨论了目前对重复单位聚合的理解进展,并提出了一个最新模型,以解释在多种革兰氏阴性菌脂多糖中发现的额外短链O抗原聚合物的形成及其在生物合成过程中的重要性。
{"title":"Repeat-Unit Elongations To Produce Bacterial Complex Long Polysaccharide Chains, an O-Antigen Perspective.","authors":"Yaoqin Hong, Dalong Hu, Anthony D Verderosa, Jilong Qin, Makrina Totsika, Peter R Reeves","doi":"10.1128/ecosalplus.esp-0020-2022","DOIUrl":"10.1128/ecosalplus.esp-0020-2022","url":null,"abstract":"<p><p>The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00202022"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729934/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-05-09DOI: 10.1128/ecosalplus.esp-0038-2020
François Cornet, Corentin Blanchais, Romane Dusfour-Castan, Alix Meunier, Valentin Quebre, Hicham Sekkouri Alaoui, François Boudsoq, Manuel Campos, Estelle Crozat, Catherine Guynet, Franck Pasta, Philippe Rousseau, Bao Ton Hoang, Jean-Yves Bouet
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
DNA 分离可确保细胞复制后的后代至少获得每个 DNA 分子或复制子的一个拷贝。这一重要的细胞过程包括不同阶段,最终导致复制子的物理分离和向未来子细胞的移动。在这里,我们回顾了肠杆菌的这些阶段和过程,重点是其中的分子机制及其控制。
{"title":"DNA Segregation in Enterobacteria.","authors":"François Cornet, Corentin Blanchais, Romane Dusfour-Castan, Alix Meunier, Valentin Quebre, Hicham Sekkouri Alaoui, François Boudsoq, Manuel Campos, Estelle Crozat, Catherine Guynet, Franck Pasta, Philippe Rousseau, Bao Ton Hoang, Jean-Yves Bouet","doi":"10.1128/ecosalplus.esp-0038-2020","DOIUrl":"10.1128/ecosalplus.esp-0038-2020","url":null,"abstract":"<p><p>DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00382020"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9509599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-01-18DOI: 10.1128/ecosalplus.esp-0019-2022
Sada Raza, Mateusz Wdowiak, Jan Paczesny
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
{"title":"An Overview of Diverse Strategies To Inactivate <i>Enterobacteriaceae</i>-Targeting Bacteriophages.","authors":"Sada Raza, Mateusz Wdowiak, Jan Paczesny","doi":"10.1128/ecosalplus.esp-0019-2022","DOIUrl":"10.1128/ecosalplus.esp-0019-2022","url":null,"abstract":"<p><p>Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the <i>Enterobacteriaceae</i> family, as its representative, <i>Escherichia coli</i>, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00192022"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9493773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-05-11DOI: 10.1128/ecosalplus.esp-0002-2023
Peter D Karp, Suzanne Paley, Ron Caspi, Anamika Kothari, Markus Krummenacker, Peter E Midford, Lisa R Moore, Pallavi Subhraveti, Socorro Gama-Castro, Victor H Tierrafria, Paloma Lara, Luis Muñiz-Rascado, César Bonavides-Martinez, Alberto Santos-Zavaleta, Amanda Mackie, Gwanggyu Sun, Travis A Ahn-Horst, Heejo Choi, Markus W Covert, Julio Collado-Vides, Ian Paulsen
EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.
{"title":"The EcoCyc Database (2023).","authors":"Peter D Karp, Suzanne Paley, Ron Caspi, Anamika Kothari, Markus Krummenacker, Peter E Midford, Lisa R Moore, Pallavi Subhraveti, Socorro Gama-Castro, Victor H Tierrafria, Paloma Lara, Luis Muñiz-Rascado, César Bonavides-Martinez, Alberto Santos-Zavaleta, Amanda Mackie, Gwanggyu Sun, Travis A Ahn-Horst, Heejo Choi, Markus W Covert, Julio Collado-Vides, Ian Paulsen","doi":"10.1128/ecosalplus.esp-0002-2023","DOIUrl":"10.1128/ecosalplus.esp-0002-2023","url":null,"abstract":"<p><p>EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of <i>Escherichia coli</i> K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the <i>E. coli</i> cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of <i>E. coli</i>. EcoCyc is an electronic reference source for <i>E. coli</i> biologists and for biologists who work with related microorganisms. The database includes information pages on each <i>E. coli</i> gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, <i>E. coli</i> gene essentiality, and nutrient conditions that do or do not support the growth of <i>E. coli</i>. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00022023"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10054128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-05-17DOI: 10.1128/ecosalplus.esp-0018-2022
Megan T Zangara, Lena Darwish, Brian K Coombes
The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of Enterobacteriaceae species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new Escherichia coli subtype called adherent-invasive E. coli (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original in vitro phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.
{"title":"Characterizing the Pathogenic Potential of Crohn's Disease-Associated Adherent-Invasive <i>Escherichia coli</i>.","authors":"Megan T Zangara, Lena Darwish, Brian K Coombes","doi":"10.1128/ecosalplus.esp-0018-2022","DOIUrl":"10.1128/ecosalplus.esp-0018-2022","url":null,"abstract":"<p><p>The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of <i>Enterobacteriaceae</i> species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new <i>Escherichia coli</i> subtype called adherent-invasive <i>E. coli</i> (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original <i>in vitro</i> phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00182022"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9509596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-05-11DOI: 10.1128/ecosalplus.esp-0002-2023
Peter D Karp, Suzanne Paley, Ron Caspi, Anamika Kothari, Markus Krummenacker, Peter E Midford, Lisa R Moore, Pallavi Subhraveti, Socorro Gama-Castro, Victor H Tierrafria, Paloma Lara, Luis Muñiz-Rascado, César Bonavides-Martinez, Alberto Santos-Zavaleta, Amanda Mackie, Gwanggyu Sun, Travis A Ahn-Horst, Heejo Choi, Markus W Covert, Julio Collado-Vides, Ian Paulsen
EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.
{"title":"The EcoCyc Database (2023).","authors":"Peter D Karp, Suzanne Paley, Ron Caspi, Anamika Kothari, Markus Krummenacker, Peter E Midford, Lisa R Moore, Pallavi Subhraveti, Socorro Gama-Castro, Victor H Tierrafria, Paloma Lara, Luis Muñiz-Rascado, César Bonavides-Martinez, Alberto Santos-Zavaleta, Amanda Mackie, Gwanggyu Sun, Travis A Ahn-Horst, Heejo Choi, Markus W Covert, Julio Collado-Vides, Ian Paulsen","doi":"10.1128/ecosalplus.esp-0002-2023","DOIUrl":"10.1128/ecosalplus.esp-0002-2023","url":null,"abstract":"<p><p>EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of <i>Escherichia coli</i> K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the <i>E. coli</i> cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of <i>E. coli</i>. EcoCyc is an electronic reference source for <i>E. coli</i> biologists and for biologists who work with related microorganisms. The database includes information pages on each <i>E. coli</i> gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, <i>E. coli</i> gene essentiality, and nutrient conditions that do or do not support the growth of <i>E. coli</i>. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"1 1","pages":"eesp00022023"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47779970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}