Pub Date : 2023-12-12Epub Date: 2023-01-18DOI: 10.1128/ecosalplus.esp-0019-2022
Sada Raza, Mateusz Wdowiak, Jan Paczesny
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
{"title":"An Overview of Diverse Strategies To Inactivate <i>Enterobacteriaceae</i>-Targeting Bacteriophages.","authors":"Sada Raza, Mateusz Wdowiak, Jan Paczesny","doi":"10.1128/ecosalplus.esp-0019-2022","DOIUrl":"10.1128/ecosalplus.esp-0019-2022","url":null,"abstract":"<p><p>Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the <i>Enterobacteriaceae</i> family, as its representative, <i>Escherichia coli</i>, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00192022"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729933/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9493773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-05-11DOI: 10.1128/ecosalplus.esp-0002-2023
Peter D Karp, Suzanne Paley, Ron Caspi, Anamika Kothari, Markus Krummenacker, Peter E Midford, Lisa R Moore, Pallavi Subhraveti, Socorro Gama-Castro, Victor H Tierrafria, Paloma Lara, Luis Muñiz-Rascado, César Bonavides-Martinez, Alberto Santos-Zavaleta, Amanda Mackie, Gwanggyu Sun, Travis A Ahn-Horst, Heejo Choi, Markus W Covert, Julio Collado-Vides, Ian Paulsen
EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.
{"title":"The EcoCyc Database (2023).","authors":"Peter D Karp, Suzanne Paley, Ron Caspi, Anamika Kothari, Markus Krummenacker, Peter E Midford, Lisa R Moore, Pallavi Subhraveti, Socorro Gama-Castro, Victor H Tierrafria, Paloma Lara, Luis Muñiz-Rascado, César Bonavides-Martinez, Alberto Santos-Zavaleta, Amanda Mackie, Gwanggyu Sun, Travis A Ahn-Horst, Heejo Choi, Markus W Covert, Julio Collado-Vides, Ian Paulsen","doi":"10.1128/ecosalplus.esp-0002-2023","DOIUrl":"10.1128/ecosalplus.esp-0002-2023","url":null,"abstract":"<p><p>EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of <i>Escherichia coli</i> K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the <i>E. coli</i> cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of <i>E. coli</i>. EcoCyc is an electronic reference source for <i>E. coli</i> biologists and for biologists who work with related microorganisms. The database includes information pages on each <i>E. coli</i> gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, <i>E. coli</i> gene essentiality, and nutrient conditions that do or do not support the growth of <i>E. coli</i>. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00022023"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10054128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-05-17DOI: 10.1128/ecosalplus.esp-0018-2022
Megan T Zangara, Lena Darwish, Brian K Coombes
The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of Enterobacteriaceae species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new Escherichia coli subtype called adherent-invasive E. coli (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original in vitro phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.
{"title":"Characterizing the Pathogenic Potential of Crohn's Disease-Associated Adherent-Invasive <i>Escherichia coli</i>.","authors":"Megan T Zangara, Lena Darwish, Brian K Coombes","doi":"10.1128/ecosalplus.esp-0018-2022","DOIUrl":"10.1128/ecosalplus.esp-0018-2022","url":null,"abstract":"<p><p>The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of <i>Enterobacteriaceae</i> species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new <i>Escherichia coli</i> subtype called adherent-invasive <i>E. coli</i> (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original <i>in vitro</i> phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00182022"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729932/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9509596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-12Epub Date: 2023-05-11DOI: 10.1128/ecosalplus.esp-0002-2023
Peter D Karp, Suzanne Paley, Ron Caspi, Anamika Kothari, Markus Krummenacker, Peter E Midford, Lisa R Moore, Pallavi Subhraveti, Socorro Gama-Castro, Victor H Tierrafria, Paloma Lara, Luis Muñiz-Rascado, César Bonavides-Martinez, Alberto Santos-Zavaleta, Amanda Mackie, Gwanggyu Sun, Travis A Ahn-Horst, Heejo Choi, Markus W Covert, Julio Collado-Vides, Ian Paulsen
EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.
{"title":"The EcoCyc Database (2023).","authors":"Peter D Karp, Suzanne Paley, Ron Caspi, Anamika Kothari, Markus Krummenacker, Peter E Midford, Lisa R Moore, Pallavi Subhraveti, Socorro Gama-Castro, Victor H Tierrafria, Paloma Lara, Luis Muñiz-Rascado, César Bonavides-Martinez, Alberto Santos-Zavaleta, Amanda Mackie, Gwanggyu Sun, Travis A Ahn-Horst, Heejo Choi, Markus W Covert, Julio Collado-Vides, Ian Paulsen","doi":"10.1128/ecosalplus.esp-0002-2023","DOIUrl":"10.1128/ecosalplus.esp-0002-2023","url":null,"abstract":"<p><p>EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of <i>Escherichia coli</i> K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the <i>E. coli</i> cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of <i>E. coli</i>. EcoCyc is an electronic reference source for <i>E. coli</i> biologists and for biologists who work with related microorganisms. The database includes information pages on each <i>E. coli</i> gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, <i>E. coli</i> gene essentiality, and nutrient conditions that do or do not support the growth of <i>E. coli</i>. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"1 1","pages":"eesp00022023"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47779970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1128/ecosalplus.esp-0008-2022
Théophile Niault, Jakub Czarnecki, Morgan Lambérioux, D. Mazel, Marie-Eve Val
ABSTRACT To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.
{"title":"Cell cycle-coordinated maintenance of the Vibrio bipartite genome","authors":"Théophile Niault, Jakub Czarnecki, Morgan Lambérioux, D. Mazel, Marie-Eve Val","doi":"10.1128/ecosalplus.esp-0008-2022","DOIUrl":"https://doi.org/10.1128/ecosalplus.esp-0008-2022","url":null,"abstract":"ABSTRACT To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139250160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-15Epub Date: 2022-04-04DOI: 10.1128/ecosalplus.esp-0028-2021
Donald R Helinski
In the late 1950s, a number of laboratories took up the study of plasmids once the discovery was made that extrachromosomal antibiotic resistance (R) factors are the responsible agents for the transmissibility of multiple antibiotic resistance among the enterobacteria. The use of incompatibility for the classification of plasmids is now widespread. It seems clear now on the basis of the limited studies to date that the number of incompatibility groups of plasmids will likely be extremely large when one includes plasmids obtained from bacteria that are normal inhabitants of poorly studied natural environments. The presence of both linear chromosomes and linear plasmids is now established for several Streptomyces species. One of the more fascinating developments in plasmid biology was the discovery of linear plasmids in the 1980s. A remarkable feature of the Ti plasmids of Agrobacterium tumefaciens is the presence of two DNA transfer systems. A definitive demonstration that plasmids consisted of duplex DNA came from interspecies conjugal transfer of plasmids followed by separation of plasmid DNA from chromosomal DNA by equilibrium buoyant density centrifugation. The formation of channels for DNA movement and the actual steps involved in DNA transport offer many opportunities for the discovery of proteins with novel activities and for establishing fundamentally new concepts of macromolecular interactions between DNA and specific proteins, membranes, and the peptidoglycan matrix.
20 世纪 50 年代末,人们发现染色体外抗生素耐药性(R)因子是肠道细菌间多种抗生素耐药性传播的罪魁祸首,于是许多实验室开始研究质粒。使用不相容性对质粒进行分类的做法现已十分普遍。根据迄今为止的有限研究,如果把从自然环境中研究较少的正常细菌中获得的质粒也包括在内,那么质粒不相容群的数量可能会非常大。目前已确定几个链霉菌种同时存在线性染色体和线性质粒。质粒生物学最引人入胜的发展之一是在 20 世纪 80 年代发现了线性质粒。农杆菌(Agrobacterium tumefaciens)Ti 质粒的一个显著特点是存在两种 DNA 转移系统。质粒由双链DNA组成的确切证据来自质粒的种间共轭转移,然后通过平衡浮力密度离心将质粒DNA从染色体DNA中分离出来。DNA 运输通道的形成和 DNA 运输的实际步骤为发现具有新活性的蛋白质和建立 DNA 与特定蛋白质、膜和肽聚糖基质之间大分子相互作用的全新概念提供了许多机会。
{"title":"A Brief History of Plasmids.","authors":"Donald R Helinski","doi":"10.1128/ecosalplus.esp-0028-2021","DOIUrl":"10.1128/ecosalplus.esp-0028-2021","url":null,"abstract":"<p><p>In the late 1950s, a number of laboratories took up the study of plasmids once the discovery was made that extrachromosomal antibiotic resistance (R) factors are the responsible agents for the transmissibility of multiple antibiotic resistance among the enterobacteria. The use of incompatibility for the classification of plasmids is now widespread. It seems clear now on the basis of the limited studies to date that the number of incompatibility groups of plasmids will likely be extremely large when one includes plasmids obtained from bacteria that are normal inhabitants of poorly studied natural environments. The presence of both linear chromosomes and linear plasmids is now established for several <i>Streptomyces</i> species. One of the more fascinating developments in plasmid biology was the discovery of linear plasmids in the 1980s. A remarkable feature of the Ti plasmids of Agrobacterium tumefaciens is the presence of two DNA transfer systems. A definitive demonstration that plasmids consisted of duplex DNA came from interspecies conjugal transfer of plasmids followed by separation of plasmid DNA from chromosomal DNA by equilibrium buoyant density centrifugation. The formation of channels for DNA movement and the actual steps involved in DNA transport offer many opportunities for the discovery of proteins with novel activities and for establishing fundamentally new concepts of macromolecular interactions between DNA and specific proteins, membranes, and the peptidoglycan matrix.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"10 1","pages":"eESP00282021"},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729939/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10394341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-15Epub Date: 2022-02-04DOI: 10.1128/ecosalplus.ESP-0018-2021
Rocío Fernández-Fernández, David R Olivenza, María Antonia Sánchez-Romero
Advances in technologies that permit high-resolution analysis of events in single cells have revealed that phenotypic heterogeneity is a widespread phenomenon in bacteria. Flow cytometry has the potential to describe the distribution of cellular properties within a population of bacterial cells and has yielded invaluable information about the ability of isogenic cells to diversify into phenotypic subpopulations. This review will discuss several single-cell approaches that have recently been applied to define phenotypic heterogeneity in populations of Salmonella enterica.
{"title":"Identifying Bacterial Lineages in Salmonella by Flow Cytometry.","authors":"Rocío Fernández-Fernández, David R Olivenza, María Antonia Sánchez-Romero","doi":"10.1128/ecosalplus.ESP-0018-2021","DOIUrl":"10.1128/ecosalplus.ESP-0018-2021","url":null,"abstract":"<p><p>Advances in technologies that permit high-resolution analysis of events in single cells have revealed that phenotypic heterogeneity is a widespread phenomenon in bacteria. Flow cytometry has the potential to describe the distribution of cellular properties within a population of bacterial cells and has yielded invaluable information about the ability of isogenic cells to diversify into phenotypic subpopulations. This review will discuss several single-cell approaches that have recently been applied to define phenotypic heterogeneity in populations of Salmonella enterica.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"10 1","pages":"eESP00182021"},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10393072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-15Epub Date: 2021-08-18DOI: 10.1128/ecosalplus.ESP-0012-2021
Robert Schleif
Very few labs have had the good fortune to have been able to focus for more than 50 years on a relatively narrow research topic and to be in a field in which both basic knowledge and the research technology and methods have progressed as rapidly as they have in molecular biology. My research group, first at Brandeis University and then at Johns Hopkins University, has had this opportunity. In this review, therefore, I will describe largely the work from my laboratory that has spanned this period and which was carried out by 40 plus graduate students, several postdoctoral associates, my technician, and me. In addition to presenting the scientific findings or results, I will place many of the topics in scientific context and, because we needed to develop a good many of the experimental methods behind our findings, I will also describe some of these methods and their importance. Also included will be occasional comments on how the research community or my research group functioned. Because a wide variety of approaches were used throughout our work, no ideal organization of this review is apparent. Therefore, I have chosen to use a hybrid structure in which there are six sections. Within each of the sections, experiments and findings will be described roughly in chronological order. Frequent cross references between parts and sections will be made because some findings and experimental approaches could logically have been described in more than one place.
{"title":"A Career's Work, the l-Arabinose Operon: How It Functions and How We Learned It.","authors":"Robert Schleif","doi":"10.1128/ecosalplus.ESP-0012-2021","DOIUrl":"10.1128/ecosalplus.ESP-0012-2021","url":null,"abstract":"<p><p>Very few labs have had the good fortune to have been able to focus for more than 50 years on a relatively narrow research topic and to be in a field in which both basic knowledge and the research technology and methods have progressed as rapidly as they have in molecular biology. My research group, first at Brandeis University and then at Johns Hopkins University, has had this opportunity. In this review, therefore, I will describe largely the work from my laboratory that has spanned this period and which was carried out by 40 plus graduate students, several postdoctoral associates, my technician, and me. In addition to presenting the scientific findings or results, I will place many of the topics in scientific context and, because we needed to develop a good many of the experimental methods behind our findings, I will also describe some of these methods and their importance. Also included will be occasional comments on how the research community or my research group functioned. Because a wide variety of approaches were used throughout our work, no ideal organization of this review is apparent. Therefore, I have chosen to use a hybrid structure in which there are six sections. Within each of the sections, experiments and findings will be described roughly in chronological order. Frequent cross references between parts and sections will be made because some findings and experimental approaches could logically have been described in more than one place.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"10 1","pages":"eESP00122021"},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10458589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-15Epub Date: 2022-05-09DOI: 10.1128/ecosalplus.esp-0007-2022
Caitlin Sande, Chris Whitfield
{"title":"Correction for Sande and Whitfield, \"Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella\".","authors":"Caitlin Sande, Chris Whitfield","doi":"10.1128/ecosalplus.esp-0007-2022","DOIUrl":"10.1128/ecosalplus.esp-0007-2022","url":null,"abstract":"","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"10 1","pages":"eESP00072022"},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10345986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-15Epub Date: 2021-09-28DOI: 10.1128/ecosalplus.ESP-0028-2019
Geoffrey Hutinet, Yan-Jiun Lee, Valérie de Crécy-Lagard, Peter R Weigele
The DNA in bacterial viruses collectively contains a rich, yet relatively underexplored, chemical diversity of nucleobases beyond the canonical adenine, guanine, cytosine, and thymine. Herein, we review what is known about the genetic and biochemical basis for the biosynthesis of complex DNA modifications, also called DNA hypermodifications, in the DNA of tailed bacteriophages infecting Escherichia coli and Salmonella enterica. These modifications, and their diversification, likely arose out of the evolutionary arms race between bacteriophages and their cellular hosts. Despite their apparent diversity in chemical structure, the syntheses of various hypermodified bases share some common themes. Hypermodifications form through virus-directed synthesis of noncanonical deoxyribonucleotide triphosphates, direct modification DNA, or a combination of both. Hypermodification enzymes are often encoded in modular operons reminiscent of biosynthetic gene clusters observed in natural product biosynthesis. The study of phage-hypermodified DNA provides an exciting opportunity to expand what is known about the enzyme-catalyzed chemistry of nucleic acids and will yield new tools for the manipulation and interrogation of DNA.
{"title":"Hypermodified DNA in Viruses of E. coli and Salmonella.","authors":"Geoffrey Hutinet, Yan-Jiun Lee, Valérie de Crécy-Lagard, Peter R Weigele","doi":"10.1128/ecosalplus.ESP-0028-2019","DOIUrl":"10.1128/ecosalplus.ESP-0028-2019","url":null,"abstract":"<p><p>The DNA in bacterial viruses collectively contains a rich, yet relatively underexplored, chemical diversity of nucleobases beyond the canonical adenine, guanine, cytosine, and thymine. Herein, we review what is known about the genetic and biochemical basis for the biosynthesis of complex DNA modifications, also called DNA hypermodifications, in the DNA of tailed bacteriophages infecting Escherichia coli and Salmonella enterica. These modifications, and their diversification, likely arose out of the evolutionary arms race between bacteriophages and their cellular hosts. Despite their apparent diversity in chemical structure, the syntheses of various hypermodified bases share some common themes. Hypermodifications form through virus-directed synthesis of noncanonical deoxyribonucleotide triphosphates, direct modification DNA, or a combination of both. Hypermodification enzymes are often encoded in modular operons reminiscent of biosynthetic gene clusters observed in natural product biosynthesis. The study of phage-hypermodified DNA provides an exciting opportunity to expand what is known about the enzyme-catalyzed chemistry of nucleic acids and will yield new tools for the manipulation and interrogation of DNA.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eESP00282019"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39728487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}