首页 > 最新文献

EcoSal Plus最新文献

英文 中文
Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. 将 CRISPR-Cas 系统重新用作肠杆菌的遗传工具。
Q1 Medicine Pub Date : 2021-12-15 Epub Date: 2021-06-14 DOI: 10.1128/ecosalplus.ESP-0006-2020
Nicholas Backes, Gregory J Phillips

Over the last decade, the study of CRISPR-Cas systems has progressed from a newly discovered bacterial defense mechanism to a diverse suite of genetic tools that have been applied across all domains of life. While the initial applications of CRISPR-Cas technology fulfilled a need to more precisely edit eukaryotic genomes, creative "repurposing" of this adaptive immune system has led to new approaches for genetic analysis of microorganisms, including improved gene editing, conditional gene regulation, plasmid curing and manipulation, and other novel uses. The main objective of this review is to describe the development and current state-of-the-art use of CRISPR-Cas techniques specifically as it is applied to members of the Enterobacteriales. While many of the applications covered have been initially developed in Escherichia coli, we also highlight the potential, along with the limitations, of this technology for expanding the availability of genetic tools in less-well-characterized non-model species, including bacterial pathogens.

在过去的十年中,CRISPR-Cas 系统的研究已经从一种新发现的细菌防御机制发展成为一套多样化的遗传工具,应用于生命的各个领域。虽然 CRISPR-Cas 技术的最初应用是为了满足更精确地编辑真核生物基因组的需要,但这种适应性免疫系统的创造性 "再利用 "已经为微生物的遗传分析带来了新方法,包括改进的基因编辑、条件基因调控、质粒固化和操纵以及其他新用途。本综述的主要目的是介绍 CRISPR-Cas 技术的发展和当前的最新应用,特别是在肠杆菌成员中的应用。虽然所涉及的许多应用最初都是在大肠杆菌中开发的,但我们也强调了这项技术的潜力和局限性,以扩大遗传工具在特征不太明显的非模式物种(包括细菌病原体)中的可用性。
{"title":"Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales.","authors":"Nicholas Backes, Gregory J Phillips","doi":"10.1128/ecosalplus.ESP-0006-2020","DOIUrl":"10.1128/ecosalplus.ESP-0006-2020","url":null,"abstract":"<p><p>Over the last decade, the study of CRISPR-Cas systems has progressed from a newly discovered bacterial defense mechanism to a diverse suite of genetic tools that have been applied across all domains of life. While the initial applications of CRISPR-Cas technology fulfilled a need to more precisely edit eukaryotic genomes, creative \"repurposing\" of this adaptive immune system has led to new approaches for genetic analysis of microorganisms, including improved gene editing, conditional gene regulation, plasmid curing and manipulation, and other novel uses. The main objective of this review is to describe the development and current state-of-the-art use of CRISPR-Cas techniques specifically as it is applied to members of the <i>Enterobacteriales</i>. While many of the applications covered have been initially developed in Escherichia coli, we also highlight the potential, along with the limitations, of this technology for expanding the availability of genetic tools in less-well-characterized non-model species, including bacterial pathogens.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eESP00062020"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39091202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressor Mutants: History and Today's Applications. 抑制突变体:历史与当今应用
Q1 Medicine Pub Date : 2021-12-15 DOI: 10.1128/ecosalplus.ESP-0037-2020
David E Bautista, Joseph F Carr, Angela M Mitchell

For decades, biologist have exploited the near boundless advantages that molecular and genetic tools and analysis provide for our ability to understand biological systems. One of these genetic tools, suppressor analysis, has proven invaluable in furthering our understanding of biological processes and pathways and in discovering unknown interactions between genes and gene products. The power of suppressor analysis lies in its ability to discover genetic interactions in an unbiased manner, often leading to surprising discoveries. With advancements in technology, high-throughput approaches have aided in large-scale identification of suppressors and have helped provide insight into the core functional mechanisms through which suppressors act. In this review, we examine some of the fundamental discoveries that have been made possible through analysis of suppressor mutations. In addition, we cover the different types of suppressor mutants that can be isolated and the biological insights afforded by each type. Moreover, we provide considerations for the design of experiments to isolate suppressor mutants and for strategies to identify intergenic suppressor mutations. Finally, we provide guidance and example protocols for the isolation and mapping of suppressor mutants.

几十年来,生物学家一直在利用分子和遗传工具及分析为我们了解生物系统提供的近乎无限的优势。抑制因子分析是这些遗传工具中的一种,在进一步了解生物过程和途径以及发现基因和基因产物之间未知的相互作用方面,抑制因子分析已被证明是无价之宝。抑制因子分析的强大之处在于它能够以无偏见的方式发现基因之间的相互作用,往往能带来惊人的发现。随着技术的进步,高通量方法有助于大规模鉴定抑制因子,并有助于深入了解抑制因子发挥作用的核心功能机制。在这篇综述中,我们将探讨通过分析抑制因子突变而获得的一些基本发现。此外,我们还介绍了可以分离出的不同类型的抑制突变体,以及每种类型的抑制突变体所带来的生物学启示。此外,我们还提供了设计实验以分离抑制突变体的注意事项以及鉴定基因间抑制突变的策略。最后,我们还提供了分离和绘制抑制突变体的指导和示例方案。
{"title":"Suppressor Mutants: History and Today's Applications.","authors":"David E Bautista, Joseph F Carr, Angela M Mitchell","doi":"10.1128/ecosalplus.ESP-0037-2020","DOIUrl":"10.1128/ecosalplus.ESP-0037-2020","url":null,"abstract":"<p><p>For decades, biologist have exploited the near boundless advantages that molecular and genetic tools and analysis provide for our ability to understand biological systems. One of these genetic tools, suppressor analysis, has proven invaluable in furthering our understanding of biological processes and pathways and in discovering unknown interactions between genes and gene products. The power of suppressor analysis lies in its ability to discover genetic interactions in an unbiased manner, often leading to surprising discoveries. With advancements in technology, high-throughput approaches have aided in large-scale identification of suppressors and have helped provide insight into the core functional mechanisms through which suppressors act. In this review, we examine some of the fundamental discoveries that have been made possible through analysis of suppressor mutations. In addition, we cover the different types of suppressor mutants that can be isolated and the biological insights afforded by each type. Moreover, we provide considerations for the design of experiments to isolate suppressor mutants and for strategies to identify intergenic suppressor mutations. Finally, we provide guidance and example protocols for the isolation and mapping of suppressor mutants.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"9 2","pages":"eESP00372020"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9008745/pdf/nihms-1794026.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10351347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella. 大肠杆菌和沙门氏菌的胶囊和细胞外多糖。
Q1 Medicine Pub Date : 2021-12-15 Epub Date: 2021-12-01 DOI: 10.1128/ecosalplus.ESP-0033-2020
Caitlin Sande, Chris Whitfield

Escherichia coli and Salmonella isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in Salmonella, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-N-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-N-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.

大肠杆菌和沙门氏菌分离物产生一系列不同的多糖结构,在其生物学中发挥着重要作用。大肠杆菌分离物通常具有胶囊多糖(K 抗原),形成表面结构层。这些多糖具有多种重复单位结构。相比之下,沙门氏菌只有一种荚膜聚合物(Vi 抗原),而且仅限于伤寒型血清型。在这两个菌属中,荚膜都是重要的毒力决定因素,与躲避宿主的免疫防御有关。这些菌属的一些分离物还会产生一种名为 "大肠酸 "的分泌型外多糖,作为其复杂的 Rcs 调节表型的一部分,但这种多糖在微生物细胞生物学中的确切功能尚未完全明了。大肠杆菌分离物还会产生另外两种分泌型多糖,即细菌纤维素和聚 N-乙酰葡糖胺,它们在生物膜形成过程中发挥着重要作用。沙门氏菌分离株也会产生纤维素,但合成聚-N-乙酰葡糖胺的基因似乎在其向增强毒力进化的过程中丢失了。在这里,我们将讨论这些重要生物聚合物的结构、功能、关系和复杂的组装机制。
{"title":"Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella.","authors":"Caitlin Sande, Chris Whitfield","doi":"10.1128/ecosalplus.ESP-0033-2020","DOIUrl":"10.1128/ecosalplus.ESP-0033-2020","url":null,"abstract":"<p><p>Escherichia coli and <i>Salmonella</i> isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in <i>Salmonella</i>, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-<i>N</i>-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-<i>N</i>-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"9 2","pages":"eESP00332020"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10344430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes. 假结核耶尔森菌毒力质粒在肠系膜淋巴结病原体-吞噬细胞相互作用中的作用。
Q1 Medicine Pub Date : 2021-12-15 DOI: 10.1128/ecosalplus.ESP-0014-2021
James B Bliska, Igor E Brodsky, Joan Mecsas

Yersinia pseudotuberculosis is an Enterobacteriaceae family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.

假结核耶尔森菌是肠杆菌科的一种成员,通常通过粪-口途径传播,引起感染。从小肠开始,假结核杆菌可通过Peyer’s patches和淋巴管侵入肠系膜淋巴结(MLNs)。假结核耶氏杆菌感染mln导致肠系膜淋巴结炎的临床表现。除了与假结核杆菌感染的临床相关性外,mln对肠道病原体和微生物群的免疫反应也很重要。mln中假结核耶氏菌感染的一个特征是形成肉芽肿。脓肉芽肿由中性粒细胞、炎性单核细胞和淋巴细胞围绕假结核杆菌的细胞外微菌落组成。利用小鼠感染模型确定了MLNs中复杂病原体-宿主相互作用的关键因素。假结核杆菌需要毒力质粒pYV诱导mln中脓肉芽肿的形成。YadA黏附素和Ysc-Yop III型分泌系统(T3SS)编码在pYV上。YadA介导细菌与宿主受体的结合,使T3SS优先将7种Yop效应物转运到吞噬细胞中。这些效应物通过阻断先天免疫防御,如超氧化物的产生、脱颗粒和炎性体的激活,促进发病机制,导致假结核杆菌的存活和生长。另一方面,某些效应器可以触发吞噬细胞的免疫防御。例如,YopJ在脓肉芽肿内的单核细胞中触发caspase-8的激活和凋亡细胞死亡反应,从而限制假结核杆菌从mln向血液的传播。YopE可以作为抗原被mln中的吞噬细胞加工,导致T细胞和B细胞对假结核耶氏菌产生应答。在mln中对假结核耶氏菌的免疫反应也可能以慢性淋巴结病的形式对宿主有害。本文综述了假结核杆菌与pYV介导的吞噬细胞之间的相互作用,这些相互作用同时促进mln的发病和宿主防御。我们认为,MLN脓肉芽肿是免疫领域,其中反对pyv驱动的力量决定了有利于病原体或宿主的感染结果。
{"title":"Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes.","authors":"James B Bliska,&nbsp;Igor E Brodsky,&nbsp;Joan Mecsas","doi":"10.1128/ecosalplus.ESP-0014-2021","DOIUrl":"https://doi.org/10.1128/ecosalplus.ESP-0014-2021","url":null,"abstract":"<p><p>Yersinia pseudotuberculosis is an <i>Enterobacteriaceae</i> family member that is commonly transmitted by the fecal-oral route to cause infections. From the small intestine, Y. pseudotuberculosis can invade through Peyer's patches and lymph vessels to infect the mesenteric lymph nodes (MLNs). Infection of MLNs by Y. pseudotuberculosis results in the clinical presentation of mesenteric lymphadenitis. MLNs are important for immune responses to intestinal pathogens and microbiota in addition to their clinical relevance to Y. pseudotuberculosis infections. A characteristic of Y. pseudotuberculosis infection in MLNs is the formation of pyogranulomas. Pyogranulomas are composed of neutrophils, inflammatory monocytes, and lymphocytes surrounding extracellular microcolonies of Y. pseudotuberculosis. Key elements of the complex pathogen-host interaction in MLNs have been identified using mouse infection models. Y. pseudotuberculosis requires the virulence plasmid pYV to induce the formation of pyogranulomas in MLNs. The YadA adhesin and the Ysc-Yop type III secretion system (T3SS) are encoded on pYV. YadA mediates bacterial binding to host receptors, which engages the T3SS to preferentially translocate seven Yop effectors into phagocytes. The effectors promote pathogenesis by blocking innate immune defenses such as superoxide production, degranulation, and inflammasome activation, resulting in survival and growth of Y. pseudotuberculosis. On the other hand, certain effectors can trigger immune defenses in phagocytes. For example, YopJ triggers activation of caspase-8 and an apoptotic cell death response in monocytes within pyogranulomas that limits dissemination of Y. pseudotuberculosis from MLNs to the bloodstream. YopE can be processed as an antigen by phagocytes in MLNs, resulting in T and B cell responses to Y. pseudotuberculosis. Immune responses to Y. pseudotuberculosis in MLNs can also be detrimental to the host in the form of chronic lymphadenopathy. This review focuses on interactions between Y. pseudotuberculosis and phagocytes mediated by pYV that concurrently promote pathogenesis and host defense in MLNs. We propose that MLN pyogranulomas are immunological arenas in which opposing pYV-driven forces determine the outcome of infection in favor of the pathogen or host.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"9 2","pages":"eESP00142021"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257136/pdf/nihms-1906441.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9655878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. 铜稳态机制及其在大肠杆菌和肠炎沙门氏菌毒力中的作用。
Q1 Medicine Pub Date : 2021-12-15 Epub Date: 2021-06-14 DOI: 10.1128/ecosalplus.ESP-0014-2020
Amanda Hyre, Kaitlin Casanova-Hampton, Sargurunathan Subashchandrabose

Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.

铜是一种必需的微量营养素,浓度高时也会产生毒性作用。本文综述了目前有关大肠杆菌和肠炎沙门氏菌对铜的处理和体内平衡系统的研究进展。我们描述了转录调节剂、外排泵、解毒酶、金属伴侣和辅助铜反应系统协调细胞对铜胁迫的反应的机制。大肠杆菌和肠球菌是人类和动物的重要病原体。我们讨论了铜在巨噬细胞杀死这些病原体和细菌-病原体-宿主界面的营养免疫中的关键作用。最后,我们确定了机会,以推进我们对铜在这些模型肠道细菌病原体中的生物学作用的理解。
{"title":"Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica.","authors":"Amanda Hyre,&nbsp;Kaitlin Casanova-Hampton,&nbsp;Sargurunathan Subashchandrabose","doi":"10.1128/ecosalplus.ESP-0014-2020","DOIUrl":"https://doi.org/10.1128/ecosalplus.ESP-0014-2020","url":null,"abstract":"<p><p>Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eESP00142020"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8669021/pdf/nihms-1735535.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39091203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Iron Transport and Metabolism in Escherichia, Shigella, and Salmonella. 埃希氏菌、志贺氏菌和沙门氏菌中的铁转运和代谢。
Q1 Medicine Pub Date : 2021-12-15 DOI: 10.1128/ecosalplus.ESP-0034-2020
Alexandra R Mey, Camilo Gómez-Garzón, Shelley M Payne

Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.

铁是大肠杆菌、沙门氏菌和志贺氏菌必不可少的元素。在许多环境中,包括这些细菌通常居住的肠道,获取足量的铁是困难的。这些属的成员有多个铁运输系统来运输亚铁和铁。这些转运体包括游离亚铁转运体、与螯合剂结合的三铁转运体和血红素转运体。任何物种的运输系统的数量和类型都反映了它所能栖息的生态位的多样性。许多铁转运基因是在可移动的遗传元件或致病性岛屿上发现的,并且有证据表明这些基因在不同的物种和病型之间传播。这在通过水平基因转移获得的铁转运系统允许细菌克服宿主限制铁对病原体可用性的先天防御的属的致病性成员中是值得注意的。对铁的需求通过避免铁超载来平衡,因为过量的铁对细胞是有毒的。铁转运和代谢的基因受到严格调控,并对环境因素做出反应,包括铁的可用性、氧气和温度。主调控因子,铁传感器Fur和Fur调控的小RNA (sRNA) RyhB,协调铁转运和细胞代谢基因的表达,以响应铁的可用性。
{"title":"Iron Transport and Metabolism in Escherichia, Shigella, and Salmonella.","authors":"Alexandra R Mey,&nbsp;Camilo Gómez-Garzón,&nbsp;Shelley M Payne","doi":"10.1128/ecosalplus.ESP-0034-2020","DOIUrl":"https://doi.org/10.1128/ecosalplus.ESP-0034-2020","url":null,"abstract":"<p><p>Iron is an essential element for Escherichia, Salmonella, and <i>Shigella</i> species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":"9 2","pages":"eESP00342020"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865473/pdf/nihms-1780222.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10462647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Dynamics of Proteins and Macromolecular Machines in Escherichia coli. 大肠杆菌中蛋白质和大分子机器的动力学。
Q1 Medicine Pub Date : 2021-12-15 Epub Date: 2021-06-01 DOI: 10.1128/ecosalplus.ESP-0011-2020
Maxime Leroux, Nicolas Soubry, Rodrigo Reyes-Lamothe

Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them in vitro, the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.

蛋白质是细胞组成和功能的主要成分。它们通常组装成较大的结构,即大分子机器,以执行复杂的基本功能。虽然通过体外重构大分子机器,人们在了解大分子机器如何发挥作用方面取得了巨大进步,但细胞内环境的作用仍在不断显现。过去二十年来,荧光显微镜技术的发展使我们得以进一步了解细胞内的蛋白质和大分子机器。在这里,我们描述了蛋白质如何通过扩散移动、如何寻找目标以及如何受到细胞内环境的影响。我们还描述了蛋白质如何组装成大分子机器,并举例说明它们如何通过频繁的亚基更替来发挥功能和应对细胞内环境的变化。这篇综述强调了细胞中分子的不断运动、反应的随机性以及大分子机器的动态性。
{"title":"Dynamics of Proteins and Macromolecular Machines in Escherichia coli.","authors":"Maxime Leroux, Nicolas Soubry, Rodrigo Reyes-Lamothe","doi":"10.1128/ecosalplus.ESP-0011-2020","DOIUrl":"10.1128/ecosalplus.ESP-0011-2020","url":null,"abstract":"<p><p>Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them <i>in vitro</i>, the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eESP00112020"},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39038720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knowns and Unknowns of Vitamin B6 Metabolism in Escherichia coli. 大肠杆菌中维生素B6代谢的已知和未知。
Q1 Medicine Pub Date : 2021-04-01 DOI: 10.1128/ecosalplus.ESP-0004-2021
Angela Tramonti, Caterina Nardella, Martino L di Salvo, Anna Barile, Federico D'Alessio, Valérie de Crécy-Lagard, Roberto Contestabile

Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.

维生素B6是六种可转换维生素的集合:吡哆醇(PN)、吡哆胺(PM)、吡哆醛(PL)及其5'-磷酸衍生物PNP、PMP和PLP。吡哆醛5'-磷酸是一种辅酶,在各种酶反应中涉及到氨基酸和氨基酸化合物的转化。本文综述了在大肠杆菌MG1655蛋白组中发现的所有已知和推测的plp结合蛋白。PLP具有毒性作用,因为它在4'位置含有一个非常活泼的醛基团,很容易与伯胺和仲胺形成醛胺,并与硫醇反应。大多数PLP要么与使用它作为辅助因子的酶结合,要么与PLP载体蛋白结合,不受细胞环境的影响,但同时也很容易转移到PLP依赖的载脂蛋白上。大肠杆菌及其近缘菌通过7步DXP依赖性途径合成PLP。其他细菌通过所谓的不依赖于dxp的途径,一步合成PLP。虽然dxp依赖性途径是第一个被发现的,但广泛的dxp非依赖性途径的发现决定了大肠杆菌维生素B6代谢的兴趣下降。与大多数生物一样,在大肠杆菌中,PLP也可以从PL、PN和PM中获得,通过回收途径从环境中输入或从蛋白质周转中回收。我们的综述涉及大肠杆菌中维生素B6代谢的各个方面,从转录到翻译后调节。提出了对结果的关键解释,特别是关于PLP稳态和向PLP依赖性酶的传递的最模糊的方面。
{"title":"Knowns and Unknowns of Vitamin B<sub>6</sub> Metabolism in <i>Escherichia coli</i>.","authors":"Angela Tramonti,&nbsp;Caterina Nardella,&nbsp;Martino L di Salvo,&nbsp;Anna Barile,&nbsp;Federico D'Alessio,&nbsp;Valérie de Crécy-Lagard,&nbsp;Roberto Contestabile","doi":"10.1128/ecosalplus.ESP-0004-2021","DOIUrl":"https://doi.org/10.1128/ecosalplus.ESP-0004-2021","url":null,"abstract":"<p><p>Vitamin B<sub>6</sub> is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the <i>Escherichia coli</i> MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. <i>E. coli</i> and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in <i>E. coli</i> vitamin B<sub>6</sub> metabolism. In <i>E. coli</i>, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B<sub>6</sub> metabolism in <i>E. coli</i>, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8995791/pdf/nihms-1780781.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25533630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Ancient Antibiotics, Ancient Resistance. 古老的抗生素,古老的抵抗力。
Q1 Medicine Pub Date : 2021-03-01 DOI: 10.1128/ecosalplus.ESP-0027-2020
Nicholas Waglechner, Elizabeth J Culp, Gerard D Wright

As the spread of antibiotic resistance threatens our ability to treat infections, avoiding the return of a preantibiotic era requires the discovery of new drugs. While therapeutic use of antibiotics followed by the inevitable selection of resistance is a modern phenomenon, these molecules and the genetic determinants of resistance were in use by environmental microbes long before humans discovered them. In this review, we discuss evidence that antibiotics and resistance were present in the environment before anthropogenic use, describing techniques including direct sampling of ancient DNA and phylogenetic analyses that are used to reconstruct the past. We also pay special attention to the ecological and evolutionary forces that have shaped the natural history of antibiotic biosynthesis, including a discussion of competitive versus signaling roles for antibiotics, proto-resistance, and substrate promiscuity of biosynthetic and resistance enzymes. Finally, by applying an evolutionary lens, we describe concepts governing the origins and evolution of biosynthetic gene clusters and cluster-associated resistance determinants. These insights into microbes' use of antibiotics in nature, a game they have been playing for millennia, can provide inspiration for discovery technologies and management strategies to combat the growing resistance crisis.

抗生素耐药性的蔓延威胁着我们治疗感染的能力,要避免前抗生素时代的重现,就必须发现新的药物。虽然治疗性使用抗生素并不可避免地产生抗药性是一种现代现象,但早在人类发现抗生素之前,环境微生物就已经在使用这些分子和产生抗药性的基因决定因素。在这篇综述中,我们讨论了抗生素和抗药性在人类使用之前就存在于环境中的证据,介绍了包括古 DNA 直接取样和用于重建过去的系统发育分析在内的各种技术。我们还特别关注塑造抗生素生物合成自然历史的生态和进化力量,包括讨论抗生素的竞争作用与信号作用、原抗药性以及生物合成酶和抗药性酶的底物混杂性。最后,我们从进化的角度阐述了生物合成基因簇和与基因簇相关的抗性决定因子的起源和进化概念。这些关于微生物在自然界中使用抗生素的洞察--它们已经玩了几千年的游戏--可以为探索技术和管理策略提供灵感,以应对日益严重的抗药性危机。
{"title":"Ancient Antibiotics, Ancient Resistance.","authors":"Nicholas Waglechner, Elizabeth J Culp, Gerard D Wright","doi":"10.1128/ecosalplus.ESP-0027-2020","DOIUrl":"10.1128/ecosalplus.ESP-0027-2020","url":null,"abstract":"<p><p>As the spread of antibiotic resistance threatens our ability to treat infections, avoiding the return of a preantibiotic era requires the discovery of new drugs. While therapeutic use of antibiotics followed by the inevitable selection of resistance is a modern phenomenon, these molecules and the genetic determinants of resistance were in use by environmental microbes long before humans discovered them. In this review, we discuss evidence that antibiotics and resistance were present in the environment before anthropogenic use, describing techniques including direct sampling of ancient DNA and phylogenetic analyses that are used to reconstruct the past. We also pay special attention to the ecological and evolutionary forces that have shaped the natural history of antibiotic biosynthesis, including a discussion of competitive versus signaling roles for antibiotics, proto-resistance, and substrate promiscuity of biosynthetic and resistance enzymes. Finally, by applying an evolutionary lens, we describe concepts governing the origins and evolution of biosynthetic gene clusters and cluster-associated resistance determinants. These insights into microbes' use of antibiotics in nature, a game they have been playing for millennia, can provide inspiration for discovery technologies and management strategies to combat the growing resistance crisis.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25501260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Plasmids in the Ecology and Evolution of "High-Risk" Extraintestinal Pathogenic Escherichia coli Clones. 质粒在 "高风险 "肠道外致病性大肠杆菌克隆的生态学和进化中的作用。
Q1 Medicine Pub Date : 2021-02-01 DOI: 10.1128/ecosalplus.ESP-0013-2020
Timothy J Johnson

Bacterial plasmids have been linked to virulence in Escherichia coli and Salmonella since their initial discovery. Though the plasmid repertoire of these bacterial species is extremely diverse, virulence-associated attributes tend to be limited to a small subset of plasmid types. This is particularly true for extraintestinal pathogenic E. coli, or ExPEC, where a handful of plasmids have been recognized to confer virulence- and fitness-associated traits. The purpose of this review is to highlight the biological and genomic attributes of ExPEC virulence-associated plasmids, with an emphasis on high-risk dominant ExPEC clones. Two specific plasmid types are highlighted to illustrate the independently evolved commonalities of these clones relative to plasmid content. Furthermore, the dissemination of these plasmids within and between bacterial species is examined. These examples demonstrate the evolution of high-risk clones toward common goals, and they show that rare transfer events can shape the ecological landscape of dominant clones within a pathotype.

细菌质粒自发现之初就与大肠杆菌和沙门氏菌的毒力有关。虽然这些细菌物种的质粒种类极其繁多,但与毒力相关的属性往往仅限于一小部分质粒类型。对于肠道外致病性大肠杆菌(或 ExPEC)来说尤其如此,在这些细菌中,只有少数几种质粒被认为具有毒力和适应性相关特性。本综述旨在强调 ExPEC 毒力相关质粒的生物和基因组属性,重点是高风险的优势 ExPEC 克隆。文章重点介绍了两种特定的质粒类型,以说明这些克隆在质粒含量方面的独立进化共性。此外,还研究了这些质粒在细菌物种内部和之间的传播情况。这些例子展示了高风险克隆向共同目标进化的过程,并表明罕见的转移事件可以塑造病原型中优势克隆的生态景观。
{"title":"Role of Plasmids in the Ecology and Evolution of \"High-Risk\" Extraintestinal Pathogenic <i>Escherichia coli</i> Clones.","authors":"Timothy J Johnson","doi":"10.1128/ecosalplus.ESP-0013-2020","DOIUrl":"10.1128/ecosalplus.ESP-0013-2020","url":null,"abstract":"<p><p>Bacterial plasmids have been linked to virulence in <i>Escherichia coli</i> and <i>Salmonella</i> since their initial discovery. Though the plasmid repertoire of these bacterial species is extremely diverse, virulence-associated attributes tend to be limited to a small subset of plasmid types. This is particularly true for extraintestinal pathogenic <i>E. coli</i>, or ExPEC, where a handful of plasmids have been recognized to confer virulence- and fitness-associated traits. The purpose of this review is to highlight the biological and genomic attributes of ExPEC virulence-associated plasmids, with an emphasis on high-risk dominant ExPEC clones. Two specific plasmid types are highlighted to illustrate the independently evolved commonalities of these clones relative to plasmid content. Furthermore, the dissemination of these plasmids within and between bacterial species is examined. These examples demonstrate the evolution of high-risk clones toward common goals, and they show that rare transfer events can shape the ecological landscape of dominant clones within a pathotype.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25407297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EcoSal Plus
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1