Mohammad Hamdan, E. Abdelhafez, S. Ajib, Mustafa Sukkariyh
Solar thermal energy storage improves the practicality and efficiency of solar systems for space heating by addressing the intermittent nature of solar radiation, leading to enhanced energy utilization, cost reduction, and a more sustainable and environmentally friendly approach to meeting heating needs in residential, commercial, and industrial settings. In this study, an indoor experimental setup was employed to investigate the impact of a water-based Al2O3 nanofluid on the storage capacity of a flat plate solar collector under varying flow rates of the heat transfer fluid. The nanofluid, introduced at specific concentrations, was incorporated into a water-contained storage tank through which the hot heat transfer fluid circulated within a heat exchanger. This process resulted in the storage of thermal energy for future applications. The research identified that the optimal flow rate of the heat transfer fluid, corresponding to the maximum storage temperature, was 15 L per hour, and the ideal nanofluid concentration, associated with the maximum specific heat capacity of the storage medium, was 0.6%. Furthermore, the introduction of nanoparticles into the storage tank led to a significant increase in the specific heat of the water, reaching a maximum of 19% from 4.18 to 5.65 kJ/(kg·°C).
{"title":"Improving Thermal Energy Storage in Solar Collectors: A Study of Aluminum Oxide Nanoparticles and Flow Rate Optimization","authors":"Mohammad Hamdan, E. Abdelhafez, S. Ajib, Mustafa Sukkariyh","doi":"10.3390/en17020276","DOIUrl":"https://doi.org/10.3390/en17020276","url":null,"abstract":"Solar thermal energy storage improves the practicality and efficiency of solar systems for space heating by addressing the intermittent nature of solar radiation, leading to enhanced energy utilization, cost reduction, and a more sustainable and environmentally friendly approach to meeting heating needs in residential, commercial, and industrial settings. In this study, an indoor experimental setup was employed to investigate the impact of a water-based Al2O3 nanofluid on the storage capacity of a flat plate solar collector under varying flow rates of the heat transfer fluid. The nanofluid, introduced at specific concentrations, was incorporated into a water-contained storage tank through which the hot heat transfer fluid circulated within a heat exchanger. This process resulted in the storage of thermal energy for future applications. The research identified that the optimal flow rate of the heat transfer fluid, corresponding to the maximum storage temperature, was 15 L per hour, and the ideal nanofluid concentration, associated with the maximum specific heat capacity of the storage medium, was 0.6%. Furthermore, the introduction of nanoparticles into the storage tank led to a significant increase in the specific heat of the water, reaching a maximum of 19% from 4.18 to 5.65 kJ/(kg·°C).","PeriodicalId":11557,"journal":{"name":"Energies","volume":"14 9","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139383057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santiago Bustamante-Mesa, J. González-Sánchez, Sergio D. Saldarriaga-Zuluaga, J. López-Lezama, N. Muñoz-Galeano
Under-frequency load shedding (UFLS) schemes are the latest safety measures applied for safeguarding the integrity of the grid against abrupt frequency imbalances. The overall inertia of electrical power systems is expected to decrease with an increased penetration of renewable energy as well as elements connected through power electronic interfaces. However, voltage source converter-based high voltage direct current (VSC-HVDC) links can provide virtual inertia through a control loop that allows for a reaction to occur at certain frequency fluctuations. This paper evaluates a UFLS scheme that considers the injection of virtual inertia through a VSC-HVDC link. A genetic algorithm (GA) is used to determine the location of the UFLS relays, the activation threshold of each stage, the delay time and the percentage of load shedding at each stage. It was found that the virtual inertia causes the nadir to delay and sometimes reach a greater depth. Furthermore, the implemented GA approximates the frequency response to the limits set with the constraints, reducing the load shedding but achieving a steeper nadir and a lower steady-state frequency level than traditional UFLS. The simulations were performed using the IEEE 39-bus test system.
欠频甩负荷(UFLS)方案是一种最新的安全措施,用于保护电网的完整性,防止突然出现频率失衡。随着可再生能源以及通过电力电子接口连接的元件渗透率的提高,电力系统的整体惯性有望降低。然而,基于电压源转换器的高压直流(VSC-HVDC)链路可通过控制环路提供虚拟惯性,从而在某些频率波动时做出反应。本文评估了一种考虑通过 VSC-HVDC 链路注入虚拟惯性的 UFLS 方案。采用遗传算法 (GA) 来确定 UFLS 继电器的位置、每个阶段的启动阈值、延迟时间和每个阶段的甩负荷百分比。研究发现,虚拟惯性会导致低谷延迟,有时会达到更大的深度。此外,与传统的 UFLS 相比,所实施的 GA 使频率响应近似于约束条件所设定的限制,减少了甩负荷,但实现了更陡峭的 nadir 值和更低的稳态频率水平。模拟使用 IEEE 39 总线测试系统进行。
{"title":"Optimal Estimation of Under-Frequency Load Shedding Scheme Parameters by Considering Virtual Inertia Injection","authors":"Santiago Bustamante-Mesa, J. González-Sánchez, Sergio D. Saldarriaga-Zuluaga, J. López-Lezama, N. Muñoz-Galeano","doi":"10.3390/en17020279","DOIUrl":"https://doi.org/10.3390/en17020279","url":null,"abstract":"Under-frequency load shedding (UFLS) schemes are the latest safety measures applied for safeguarding the integrity of the grid against abrupt frequency imbalances. The overall inertia of electrical power systems is expected to decrease with an increased penetration of renewable energy as well as elements connected through power electronic interfaces. However, voltage source converter-based high voltage direct current (VSC-HVDC) links can provide virtual inertia through a control loop that allows for a reaction to occur at certain frequency fluctuations. This paper evaluates a UFLS scheme that considers the injection of virtual inertia through a VSC-HVDC link. A genetic algorithm (GA) is used to determine the location of the UFLS relays, the activation threshold of each stage, the delay time and the percentage of load shedding at each stage. It was found that the virtual inertia causes the nadir to delay and sometimes reach a greater depth. Furthermore, the implemented GA approximates the frequency response to the limits set with the constraints, reducing the load shedding but achieving a steeper nadir and a lower steady-state frequency level than traditional UFLS. The simulations were performed using the IEEE 39-bus test system.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"54 17","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139382170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The modern world is moving towards a zero-emission economy; therefore, various actions are being taken to reduce the share of fossil fuels in energy production. The article examines the potential for the continued expansion of photovoltaic farms, with a special emphasis on farms utilising east–west panel orientation. The east–west orientation is an innovative solution with many advantages over the traditional north–south arrangement. The paper also makes a detailed assessment of the photovoltaic farm environment by applying two analyses based on the following factors: Political, Economic, Social, and Technological (PEST) and Demographic, Economic, Environmental, Political, Legal, Informational, Social, and Technological (DEEPLIST) factors. This is followed by an insightful, comprehensive review of the most important factors that contribute to the efficiency of photovoltaic installations, namely site conditions, existing infrastructure, and ability to connect to the electricity grid. The paper also devotes space to an analysis of daily energy price changes that affect the economic efficiency of the installation and discusses the potential for energy storage in the context of photovoltaic farms. The development of photovoltaics also requires investing in energy storage. All discussed issues fall within the scope of photovoltaic farm development and optimal use of energy resources.
{"title":"Innovation Solution in Photovoltaic Sector","authors":"Filip Czepło, P. Borowski","doi":"10.3390/en17010265","DOIUrl":"https://doi.org/10.3390/en17010265","url":null,"abstract":"The modern world is moving towards a zero-emission economy; therefore, various actions are being taken to reduce the share of fossil fuels in energy production. The article examines the potential for the continued expansion of photovoltaic farms, with a special emphasis on farms utilising east–west panel orientation. The east–west orientation is an innovative solution with many advantages over the traditional north–south arrangement. The paper also makes a detailed assessment of the photovoltaic farm environment by applying two analyses based on the following factors: Political, Economic, Social, and Technological (PEST) and Demographic, Economic, Environmental, Political, Legal, Informational, Social, and Technological (DEEPLIST) factors. This is followed by an insightful, comprehensive review of the most important factors that contribute to the efficiency of photovoltaic installations, namely site conditions, existing infrastructure, and ability to connect to the electricity grid. The paper also devotes space to an analysis of daily energy price changes that affect the economic efficiency of the installation and discusses the potential for energy storage in the context of photovoltaic farms. The development of photovoltaics also requires investing in energy storage. All discussed issues fall within the scope of photovoltaic farm development and optimal use of energy resources.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"49 15","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, an improved adaptive robust unscented Kalman Filter (ARUKF) is proposed for an accurate state-of-charge (SOC) estimation of battery management system (BMS) in electric vehicles (EV). The extended Kalman Filter (EKF) algorithm is first used to achieve online identification of the model parameters. Subsequently, the identified parameters obtained from the EKF are processed to obtain the SOC of the batteries using a multi-innovation adaptive robust unscented Kalman filter (MIARUKF), developed by the ARUKF based on the principle of multi-innovation. Co-estimation of parameters and SOC is ultimately achieved. The co-estimation algorithm EKF-MIARUKF uses a multi-timescale framework with model parameters estimated on a slow timescale and the SOC estimated on a fast timescale. The EKF-MIARUKF integrates the advantages of multiple Kalman filters and eliminates the disadvantages of a single Kalman filter. The proposed algorithm outperforms other algorithms in terms of accuracy because the average root mean square error (RMSE) and the mean absolute error (MAE) of the SOC estimation were the smallest under three dynamic conditions.
{"title":"Improved State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Parameter Estimation and Multi-Innovation Adaptive Robust Unscented Kalman Filter","authors":"Cheng Li, Gi-Woo Kim","doi":"10.3390/en17010272","DOIUrl":"https://doi.org/10.3390/en17010272","url":null,"abstract":"In this study, an improved adaptive robust unscented Kalman Filter (ARUKF) is proposed for an accurate state-of-charge (SOC) estimation of battery management system (BMS) in electric vehicles (EV). The extended Kalman Filter (EKF) algorithm is first used to achieve online identification of the model parameters. Subsequently, the identified parameters obtained from the EKF are processed to obtain the SOC of the batteries using a multi-innovation adaptive robust unscented Kalman filter (MIARUKF), developed by the ARUKF based on the principle of multi-innovation. Co-estimation of parameters and SOC is ultimately achieved. The co-estimation algorithm EKF-MIARUKF uses a multi-timescale framework with model parameters estimated on a slow timescale and the SOC estimated on a fast timescale. The EKF-MIARUKF integrates the advantages of multiple Kalman filters and eliminates the disadvantages of a single Kalman filter. The proposed algorithm outperforms other algorithms in terms of accuracy because the average root mean square error (RMSE) and the mean absolute error (MAE) of the SOC estimation were the smallest under three dynamic conditions.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"57 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, hydrothermal liquefaction (HTL) has gained attention as a means of enhancing and increasing the production of biofuels from biomass. Co-HTL involves the simultaneous processing of two or more feedstocks, with the potential for interactions that can affect the overall yield and quality of the resulting biofuels. This study investigates the bio-crude yield, chemical composition, and energy content of bio-crudes obtained through formic acid-assisted hydrothermal liquefaction of combined digested sewage sludge (DSS) and lignocellulose (LC). The bio-crude yields are in the range of 26.8–58.9 wt%, with a higher heating value (HHV) of approximately 32 MJ/kg. The best experiment shows that mixtures with more DSS and high levels of process condition variables (350 °C, formic acid present, and 50 wt% EtOH) give high bio-crude yields with a maximum value of 58.9 wt%. For comparison, pure DSS and LC run at these process conditions resulted in a bio-crude yield of 52.5 wt% and 48.3 wt%, respectively. Partial least squares (PLS) regression reveals a synergistic effect from mixing the feedstocks, as the quadratic term of the regression equation for mixture ratio shows a negative coefficient. GC–MS data show that combining feedstocks results in the formation of new compounds, mostly phenols, that are not present in the bio-crudes from the separate feedstocks. Thus, combining feedstocks will not only increase the resource availability for hydrothermal liquefaction and streamline the process but will also increase the overall production of bio-crude with its synergistic effect.
{"title":"Optimizing Formic Acid-Assisted Co-HTL of Digested Sewage Sludge and Lignocellulosic Waste for Enhanced Bio-Crude Yield and Energy Recovery","authors":"Kristoffer Mega Herdlevær, Tanja Barth","doi":"10.3390/en17010258","DOIUrl":"https://doi.org/10.3390/en17010258","url":null,"abstract":"In recent years, hydrothermal liquefaction (HTL) has gained attention as a means of enhancing and increasing the production of biofuels from biomass. Co-HTL involves the simultaneous processing of two or more feedstocks, with the potential for interactions that can affect the overall yield and quality of the resulting biofuels. This study investigates the bio-crude yield, chemical composition, and energy content of bio-crudes obtained through formic acid-assisted hydrothermal liquefaction of combined digested sewage sludge (DSS) and lignocellulose (LC). The bio-crude yields are in the range of 26.8–58.9 wt%, with a higher heating value (HHV) of approximately 32 MJ/kg. The best experiment shows that mixtures with more DSS and high levels of process condition variables (350 °C, formic acid present, and 50 wt% EtOH) give high bio-crude yields with a maximum value of 58.9 wt%. For comparison, pure DSS and LC run at these process conditions resulted in a bio-crude yield of 52.5 wt% and 48.3 wt%, respectively. Partial least squares (PLS) regression reveals a synergistic effect from mixing the feedstocks, as the quadratic term of the regression equation for mixture ratio shows a negative coefficient. GC–MS data show that combining feedstocks results in the formation of new compounds, mostly phenols, that are not present in the bio-crudes from the separate feedstocks. Thus, combining feedstocks will not only increase the resource availability for hydrothermal liquefaction and streamline the process but will also increase the overall production of bio-crude with its synergistic effect.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"64 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benedito Franciano Ferreira Rodrigues, Anderson Rocha Amaral, F. P. C. Assunção, Lucas Pinto Bernar, Marcelo Costa Santos, Neyson Mendonça, José Almir Rodrigues Pereira, Douglas Alberto Rocha de Castro, S. Duvoisin, Pablo Henrique Ataide Oliveira, Luiz Eduardo Pizarro Borges, N. Machado
The objective of this study is to analyze the economic viability of municipal household solid waste (organic matter + paper) for the production of gas, coke and biofuel through the pyrolysis and distillation process. The waste was collected in the city of Belém do Pará-Brazil and pretreated at the Federal University of Pará. The analyzed fraction (organic matter + paper) was subjected to the pretreatment of drying, crushing, and sieving and was subsequently subjected to proximate characterization and, finally, pyrolysis of the organic fraction (organic matter + paper) in a fixed bed reactor. Initially, it was necessary to review the literature, and with the yields obtained by pyrolysis of the fraction, economic feasibility analyses were carried out. The economic indicators for evaluating the most viable pyrolysis process were basic payback, discounted payback, net present value, internal rate of return, and profitability index, which are all financial metrics commonly used in investment analysis and decision making. These metrics provide valuable insights into the financial viability and attractiveness of investment projects. They are essential tools for assessing the feasibility and profitability of various ventures, helping decision-makers make informed choices in allocating resources. The analysis of the indicators showed the economic viability considering an analysis horizon of 10 years of materials based on organic material and paper. The breakeven point obtained was USD 0.96/dm3 and the minimum biofuel sales price found in this project was USD 1.30/dm3. The sensitivity research found that material costs (organic matter + paper), bio-oil yield, total project investment and electricity, respectively, are the variables that most affect the minimum biofuel sales price.
{"title":"Economic Feasibility Study of the Production of Biogas, Coke and Biofuels from the Organic Fraction of Municipal Waste Using Pyrolysis","authors":"Benedito Franciano Ferreira Rodrigues, Anderson Rocha Amaral, F. P. C. Assunção, Lucas Pinto Bernar, Marcelo Costa Santos, Neyson Mendonça, José Almir Rodrigues Pereira, Douglas Alberto Rocha de Castro, S. Duvoisin, Pablo Henrique Ataide Oliveira, Luiz Eduardo Pizarro Borges, N. Machado","doi":"10.3390/en17010269","DOIUrl":"https://doi.org/10.3390/en17010269","url":null,"abstract":"The objective of this study is to analyze the economic viability of municipal household solid waste (organic matter + paper) for the production of gas, coke and biofuel through the pyrolysis and distillation process. The waste was collected in the city of Belém do Pará-Brazil and pretreated at the Federal University of Pará. The analyzed fraction (organic matter + paper) was subjected to the pretreatment of drying, crushing, and sieving and was subsequently subjected to proximate characterization and, finally, pyrolysis of the organic fraction (organic matter + paper) in a fixed bed reactor. Initially, it was necessary to review the literature, and with the yields obtained by pyrolysis of the fraction, economic feasibility analyses were carried out. The economic indicators for evaluating the most viable pyrolysis process were basic payback, discounted payback, net present value, internal rate of return, and profitability index, which are all financial metrics commonly used in investment analysis and decision making. These metrics provide valuable insights into the financial viability and attractiveness of investment projects. They are essential tools for assessing the feasibility and profitability of various ventures, helping decision-makers make informed choices in allocating resources. The analysis of the indicators showed the economic viability considering an analysis horizon of 10 years of materials based on organic material and paper. The breakeven point obtained was USD 0.96/dm3 and the minimum biofuel sales price found in this project was USD 1.30/dm3. The sensitivity research found that material costs (organic matter + paper), bio-oil yield, total project investment and electricity, respectively, are the variables that most affect the minimum biofuel sales price.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"70 6","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Short-term wind power forecasting has difficult problems due to the very large variety of speeds of the wind, which is a key factor in producing energy. From the point of view of the whole country, an important problem is predicting the total impact of wind power’s contribution to the country’s energy demands for succeeding days. Accordingly, efficient planning of classical power sources may be made for the next day. This paper will investigate this direction of research. Based on historical data, a few neural network predictors will be combined into an ensemble that is responsible for the next day’s wind power generation. The problem is difficult since wind farms are distributed in large regions of the country, where different wind conditions exist. Moreover, the information on wind speed is not available. This paper proposes and compares different structures of an ensemble combined from three neural networks. The best accuracy has been obtained with the application of an MLP combiner. The results of numerical experiments have shown a significant reduction in prediction errors compared to the naïve approach. The improvement in results with this naïve solution is close to two in the one-day-ahead prediction task.
{"title":"Wind Power Short-Term Time-Series Prediction Using an Ensemble of Neural Networks","authors":"T. Ciechulski, Stanisław Osowski","doi":"10.3390/en17010264","DOIUrl":"https://doi.org/10.3390/en17010264","url":null,"abstract":"Short-term wind power forecasting has difficult problems due to the very large variety of speeds of the wind, which is a key factor in producing energy. From the point of view of the whole country, an important problem is predicting the total impact of wind power’s contribution to the country’s energy demands for succeeding days. Accordingly, efficient planning of classical power sources may be made for the next day. This paper will investigate this direction of research. Based on historical data, a few neural network predictors will be combined into an ensemble that is responsible for the next day’s wind power generation. The problem is difficult since wind farms are distributed in large regions of the country, where different wind conditions exist. Moreover, the information on wind speed is not available. This paper proposes and compares different structures of an ensemble combined from three neural networks. The best accuracy has been obtained with the application of an MLP combiner. The results of numerical experiments have shown a significant reduction in prediction errors compared to the naïve approach. The improvement in results with this naïve solution is close to two in the one-day-ahead prediction task.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"60 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the continuous development of large-scale wind and photovoltaic power worldwide, the net load fluctuation of systems is increasing, thereby imposing higher demands for power supply assurance and new energy consumption capacity within emerging power systems. It is imperative to establish a quantifiable and efficient model for planning new power systems, to propose an analytical approach for determining optimal evolutionary paths, and to advance research on flexible resource planning across wide areas. In this paper, based on the simplified operating characteristics of multi-type flexible resources, a source-grid-load-storage collaborative planning and evolution analysis framework is established. Secondly, the lowest total cost of the whole life cycle of the system is taken as the optimization goal, the multiple flexible resource investment decisions and production operation constraints of various flexible resources on all sides of the system are considered, and the source-grid-load-storage planning model is established. Then, through the investment decision-making strategy setting of the system in different planning level years, the evolutionary path analysis method of the whole life cycle economy and weighted environmental protection benefit of the system is given. Finally, by taking the sending-end power grid in Gansu Province as an example, a case study is carried out. Calculations of new energy, key channels within the province, energy storage capacity, and load-side response capacity requirements for 2025, 2030, and 2060 are optimized. Based on the above analysis, the optimal evolution path of the power grid is proposed. When considering the weighted benefits of economy and environmental protection, the greater the weight of environmental protection benefits, the greater the possibility of choosing a radical scheme. The model and method proposed in this paper can provide technical reference for the future development planning and evolution analysis of new power systems.
{"title":"New Power System Planning and Evolution Path with Multi-Flexibility Resource Coordination","authors":"Xuejun Li, Jiaxin Qian, Changhai Yang, Boyang Chen, Xiang Wang, Zongnan Jiang","doi":"10.3390/en17010273","DOIUrl":"https://doi.org/10.3390/en17010273","url":null,"abstract":"With the continuous development of large-scale wind and photovoltaic power worldwide, the net load fluctuation of systems is increasing, thereby imposing higher demands for power supply assurance and new energy consumption capacity within emerging power systems. It is imperative to establish a quantifiable and efficient model for planning new power systems, to propose an analytical approach for determining optimal evolutionary paths, and to advance research on flexible resource planning across wide areas. In this paper, based on the simplified operating characteristics of multi-type flexible resources, a source-grid-load-storage collaborative planning and evolution analysis framework is established. Secondly, the lowest total cost of the whole life cycle of the system is taken as the optimization goal, the multiple flexible resource investment decisions and production operation constraints of various flexible resources on all sides of the system are considered, and the source-grid-load-storage planning model is established. Then, through the investment decision-making strategy setting of the system in different planning level years, the evolutionary path analysis method of the whole life cycle economy and weighted environmental protection benefit of the system is given. Finally, by taking the sending-end power grid in Gansu Province as an example, a case study is carried out. Calculations of new energy, key channels within the province, energy storage capacity, and load-side response capacity requirements for 2025, 2030, and 2060 are optimized. Based on the above analysis, the optimal evolution path of the power grid is proposed. When considering the weighted benefits of economy and environmental protection, the greater the weight of environmental protection benefits, the greater the possibility of choosing a radical scheme. The model and method proposed in this paper can provide technical reference for the future development planning and evolution analysis of new power systems.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"52 19","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Klyus, Marcin Szczepanek, Grzegorz Kidacki, Paweł Krause, Sławomir Olszowski, Leszek Chybowski
This article presents the results of research on the impact of changing the cross-section of an atomizer’s flow channel, which is caused by changing the flow geometry of the passive part of the needle on the drop diameter distribution of the fuel spray. A three-hole type H1LMK, 148/1 atomizer with hole diameters, dN, equal to 0.34 mm, is analyzed. A nozzle with a standard (i.e., unmodified) needle and three nozzles using needles with a modified profile in the flow part of the needle, marked by the code signatures 1L, 2L, and 3L, are tested. An increasing level of fuel turbulence characterizes the needles during the flow along their flow part due to the use of one (1L), two (2L), and three (3L) de Laval toroidal nozzles, respectively, obtained by mechanically shaping the outer surface of the flow part of the spray needle. The spray produced is tested using the Malvern Spraytec STP 500 device cooperating with the dedicated Malvern version 4.0. During the tests, measurements and an analysis of the spray droplet size distribution over the entire injection duration, equal to 7 ± 2 ms, are made for each nozzle. The experiment makes it possible to determine the effect of the nozzle needles’ profiles on the time distribution of the actual droplet diameters; the time distribution of the Sauter mean droplet diameters, D[3,2]; the percentile shares of the droplet diameters Dv (10), Dv (50), and Dv (90); the distribution span during the development of the spray stream; and the time distribution of the shares of the droplets with diameters belonging to selected diameter classes D[x1−x2] in the spray. The results of the measurements of the drop diameter distribution indicate that using atomizers with a modification to the flow channel allows for an increase in the share of droplets with smaller diameters compared to the standard atomizer.
本文介绍了有关改变雾化器流道横截面的影响的研究成果,这种影响是通过改变针的被动部分的流动几何形状引起的,它对燃油喷雾的液滴直径分布产生了影响。分析了孔径 dN 等于 0.34 毫米的三孔 H1LMK、148/1 型雾化器。测试了一个使用标准(即未修改)喷针的喷嘴和三个使用喷针流动部分轮廓经过修改的喷针的喷嘴(分别用 1L、2L 和 3L 表示)。由于分别使用了一个 (1L)、两个 (2L) 和三个 (3L) de Laval 环形喷嘴,通过机械方法对喷针流动部分的外表面进行整形,喷针在沿其流动部分流动时的燃料湍流程度不断增加。使用马尔文 Spraytec STP 500 设备和专用的马尔文 4.0 版对产生的喷雾进行测试。在测试过程中,对每个喷嘴在整个喷射持续时间(等于 7 ± 2 毫秒)内的喷雾液滴大小分布进行了测量和分析。通过实验,可以确定喷嘴针的轮廓对实际液滴直径时间分布的影响;索特平均液滴直径 D[3,2] 的时间分布;液滴直径 Dv (10)、Dv (50) 和 Dv (90) 的百分位数份额;喷雾流发展过程中的分布跨度;以及喷雾中直径属于选定直径等级 D[x1-x2] 的液滴份额的时间分布。液滴直径分布的测量结果表明,与标准雾化器相比,使用对流道进行改装的雾化器可以增加直径较小的液滴的比例。
{"title":"The Effect of Internal Combustion Engine Nozzle Needle Profile on Fuel Atomization Quality","authors":"O. Klyus, Marcin Szczepanek, Grzegorz Kidacki, Paweł Krause, Sławomir Olszowski, Leszek Chybowski","doi":"10.3390/en17010266","DOIUrl":"https://doi.org/10.3390/en17010266","url":null,"abstract":"This article presents the results of research on the impact of changing the cross-section of an atomizer’s flow channel, which is caused by changing the flow geometry of the passive part of the needle on the drop diameter distribution of the fuel spray. A three-hole type H1LMK, 148/1 atomizer with hole diameters, dN, equal to 0.34 mm, is analyzed. A nozzle with a standard (i.e., unmodified) needle and three nozzles using needles with a modified profile in the flow part of the needle, marked by the code signatures 1L, 2L, and 3L, are tested. An increasing level of fuel turbulence characterizes the needles during the flow along their flow part due to the use of one (1L), two (2L), and three (3L) de Laval toroidal nozzles, respectively, obtained by mechanically shaping the outer surface of the flow part of the spray needle. The spray produced is tested using the Malvern Spraytec STP 500 device cooperating with the dedicated Malvern version 4.0. During the tests, measurements and an analysis of the spray droplet size distribution over the entire injection duration, equal to 7 ± 2 ms, are made for each nozzle. The experiment makes it possible to determine the effect of the nozzle needles’ profiles on the time distribution of the actual droplet diameters; the time distribution of the Sauter mean droplet diameters, D[3,2]; the percentile shares of the droplet diameters Dv (10), Dv (50), and Dv (90); the distribution span during the development of the spray stream; and the time distribution of the shares of the droplets with diameters belonging to selected diameter classes D[x1−x2] in the spray. The results of the measurements of the drop diameter distribution indicate that using atomizers with a modification to the flow channel allows for an increase in the share of droplets with smaller diameters compared to the standard atomizer.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"50 18","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The integration of a renewable energy and hybrid energy storage system (HESS) into electrified railways to build an electric railway smart microgrid system (ERSMS) is beneficial for reducing fossil fuel consumption and minimizing energy waste. However, the fluctuations of renewable energy generation and traction load challenge the effectiveness of the energy management for such a complex system. In this work, an energy management strategy is proposed which firstly decomposes the renewable energy into low-frequency and high-frequency components by an integrated empirical mode decomposition (IEMD). Then, a two-stage energy distribution approach is utilized to appropriately distribute the energy flow in the ERSMS. Finally, the feasibility and effectiveness of the proposed solution are validated through case study.
{"title":"An Energy Management Strategy for an Electrified Railway Smart Microgrid System Based on Integrated Empirical Mode Decomposition","authors":"Jingjing Ye, Minghao Sun, Kejian Song","doi":"10.3390/en17010268","DOIUrl":"https://doi.org/10.3390/en17010268","url":null,"abstract":"The integration of a renewable energy and hybrid energy storage system (HESS) into electrified railways to build an electric railway smart microgrid system (ERSMS) is beneficial for reducing fossil fuel consumption and minimizing energy waste. However, the fluctuations of renewable energy generation and traction load challenge the effectiveness of the energy management for such a complex system. In this work, an energy management strategy is proposed which firstly decomposes the renewable energy into low-frequency and high-frequency components by an integrated empirical mode decomposition (IEMD). Then, a two-stage energy distribution approach is utilized to appropriately distribute the energy flow in the ERSMS. Finally, the feasibility and effectiveness of the proposed solution are validated through case study.","PeriodicalId":11557,"journal":{"name":"Energies","volume":"52 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}