This text mining study delves into the multifaceted contributions of the energy sector to Sustainable Development Goals (SDGs). By analyzing 363 papers, we uncover key themes, trends, and challenges shaping the intersection of energy and sustainability. The findings reveal that the energy sector plays a pivotal role in achieving SDGs such as affordable and clean energy (SDG 7) and climate action (SDG 13). Critical issues encompass governance, policy frameworks, and technological innovations. This research underscores the need for interdisciplinary collaboration and holistic approaches in addressing complex energy-related sustainability challenges. The insights derived here provide guidance to policymakers, researchers, and stakeholders seeking to harness the energy sector’s potential for a more sustainable and equitable future.
{"title":"The Role of the Energy Sector in Contributing to Sustainability Development Goals: A Text Mining Analysis of Literature","authors":"L. Carvalho, Márcia R. C. Santos","doi":"10.3390/en17010208","DOIUrl":"https://doi.org/10.3390/en17010208","url":null,"abstract":"This text mining study delves into the multifaceted contributions of the energy sector to Sustainable Development Goals (SDGs). By analyzing 363 papers, we uncover key themes, trends, and challenges shaping the intersection of energy and sustainability. The findings reveal that the energy sector plays a pivotal role in achieving SDGs such as affordable and clean energy (SDG 7) and climate action (SDG 13). Critical issues encompass governance, policy frameworks, and technological innovations. This research underscores the need for interdisciplinary collaboration and holistic approaches in addressing complex energy-related sustainability challenges. The insights derived here provide guidance to policymakers, researchers, and stakeholders seeking to harness the energy sector’s potential for a more sustainable and equitable future.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139137286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Muhsen, Mohammed Al-Mahmodi, Rashed Tarawneh, Asma Alkhraibat, A. Al-Halhouli
Green hydrogen and power-to-X technologies hold significant potential in the global energy transition towards net-zero emissions. This is attributed to the premise that these technologies can decarbonize numerous sectors worldwide by providing versatile and sustainable energy carriers and industrial feedstocks to replace fossil-based fuels and chemicals. To this end, the qualitative benefits of green hydrogen and power-to-X technologies have been thoroughly examined for various applications in past years. In contrast, quantifying the potential penetration of such technologies on national and global levels still requires extensive research. Therefore, this paper investigates the prospective integration of green hydrogen and power-to-X technologies within Jordanian industries, considering their quantitative utilization potential for current and future capacities. The findings showed that the Jordanian food processing and heavy industries emerged as major sectors with substantial potential for incorporating green hydrogen and power-to-X products as alternative fuels or chemical feedstocks. In detail, the total potential utilization capacity for these sectors stood at around 57 thousand tons per year. Specifically, fertilizers production, cement industry, steel reforming, and oil refinery possess an annual potential capacity of around 6.8, 11.8, 12.7, and 25.8 thousand tons, respectively. It is also worth mentioning that the current utilization capacity of hydrogen in Jordanian industries was found to be around 8.9 thousand tons per annum, which is completely covered by fossil-based hydrogen to date. These results imply that there will be a promising market for green hydrogen and power-to-X utilization in Jordanian industries, which will play a significant role in integrated energy transition efforts in the future.
在全球能源向净零排放过渡的过程中,绿色氢能和电力转化 X 技术具有巨大的潜力。其前提是,这些技术可以提供多功能、可持续的能源载体和工业原料,取代化石燃料和化学品,从而使全球众多行业实现脱碳。为此,在过去几年中,绿色氢能和电力转化 X 技术的质量效益已在各种应用中得到了深入研究。相比之下,量化此类技术在国家和全球层面的潜在渗透率仍需要广泛的研究。因此,本文研究了绿色氢能和电力转换 X 技术在约旦工业中的整合前景,并考虑了其对当前和未来产能的量化利用潜力。研究结果表明,约旦的食品加工业和重工业是具有巨大潜力的主要行业,可将绿色氢能和 "电转X "产品作为替代燃料或化学原料。具体而言,这些行业的总潜在利用能力约为每年 5.7 万吨。具体而言,化肥生产、水泥工业、钢铁重整和炼油厂的潜在年产能分别约为 6.8 吨、11.8 吨、12.7 吨和 25.8 吨。值得一提的是,约旦工业目前的氢气利用能力约为每年 890 万吨,迄今为止完全由化石氢气覆盖。这些结果表明,在约旦工业中利用绿色氢气和电转氢将会有一个前景广阔的市场,这将在未来的综合能源转型工作中发挥重要作用。
{"title":"The Potential of Green Hydrogen and Power-to-X Utilization in Jordanian Industries: Opportunities and Future Prospects","authors":"H. Muhsen, Mohammed Al-Mahmodi, Rashed Tarawneh, Asma Alkhraibat, A. Al-Halhouli","doi":"10.3390/en17010213","DOIUrl":"https://doi.org/10.3390/en17010213","url":null,"abstract":"Green hydrogen and power-to-X technologies hold significant potential in the global energy transition towards net-zero emissions. This is attributed to the premise that these technologies can decarbonize numerous sectors worldwide by providing versatile and sustainable energy carriers and industrial feedstocks to replace fossil-based fuels and chemicals. To this end, the qualitative benefits of green hydrogen and power-to-X technologies have been thoroughly examined for various applications in past years. In contrast, quantifying the potential penetration of such technologies on national and global levels still requires extensive research. Therefore, this paper investigates the prospective integration of green hydrogen and power-to-X technologies within Jordanian industries, considering their quantitative utilization potential for current and future capacities. The findings showed that the Jordanian food processing and heavy industries emerged as major sectors with substantial potential for incorporating green hydrogen and power-to-X products as alternative fuels or chemical feedstocks. In detail, the total potential utilization capacity for these sectors stood at around 57 thousand tons per year. Specifically, fertilizers production, cement industry, steel reforming, and oil refinery possess an annual potential capacity of around 6.8, 11.8, 12.7, and 25.8 thousand tons, respectively. It is also worth mentioning that the current utilization capacity of hydrogen in Jordanian industries was found to be around 8.9 thousand tons per annum, which is completely covered by fossil-based hydrogen to date. These results imply that there will be a promising market for green hydrogen and power-to-X utilization in Jordanian industries, which will play a significant role in integrated energy transition efforts in the future.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139139721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao-yan Zhang, Ziyi Han, Lang Liu, Xiang Xia, Qingjiang Liu, Yiran Duan, Xuan Wang
Based on phase-change heat storage backfill, paraffin microcapsules were selected as the phase change material and were directly mixed with backfill materials for preparing backfill specimens. The mechanical and thermal properties of specimens with different paraffin percentages and slurry concentrations were tested and analyzed. The results show that compressive strength gradually decreases with an increasing paraffin percentage while it significantly increases with increasing slurry concentration, thermal conductivity decreases with increasing paraffin percentage and specific heat capacity increases with an increasing paraffin percentage and slurry concentration. For a paraffin percentage from 0% to 10%, compressive strength decreases by an average of 22.5%, thermal conductivity decreases by an average of 43.8% and specific heat capacity increases by an average of 8.7% at a phase-change temperature of 30 °C. For a slurry concentration from 68% to 72%, compressive strength increases by an average of 4.12 times, and specific heat capacity increases by an average of 3.5% at a phase-change temperature of 30 °C. The weakening effect of phase-change materials on compressive strength can be effectively improved by the increase of slurry concentration, and the increases of paraffin percentage and slurry concentration can both improve the sensible heat storage capacity of backfill materials.
在相变蓄热回填的基础上,选择石蜡微胶囊作为相变材料,并直接与回填材料混合,制备回填试件。测试并分析了不同石蜡比例和浆液浓度下试样的力学性能和热性能。结果表明,随着石蜡比例的增加,抗压强度逐渐降低,而随着泥浆浓度的增加,抗压强度显著增加;随着石蜡比例的增加,导热系数降低,而随着石蜡比例和泥浆浓度的增加,比热容增加。在相变温度为 30 °C 时,石蜡比例从 0% 到 10%,抗压强度平均降低 22.5%,导热系数平均降低 43.8%,比热容平均增加 8.7%。浆料浓度从 68% 增加到 72% 时,抗压强度平均增加 4.12 倍,比热容在相变温度 30 °C 时平均增加 3.5%。浆液浓度的增加可有效改善相变材料对抗压强度的削弱作用,而石蜡比例和浆液浓度的增加均可提高回填材料的显热储存能力。
{"title":"Experimental Study on Mechanical and Thermal Properties of Backfill Body with Paraffin Added","authors":"Xiao-yan Zhang, Ziyi Han, Lang Liu, Xiang Xia, Qingjiang Liu, Yiran Duan, Xuan Wang","doi":"10.3390/en17010217","DOIUrl":"https://doi.org/10.3390/en17010217","url":null,"abstract":"Based on phase-change heat storage backfill, paraffin microcapsules were selected as the phase change material and were directly mixed with backfill materials for preparing backfill specimens. The mechanical and thermal properties of specimens with different paraffin percentages and slurry concentrations were tested and analyzed. The results show that compressive strength gradually decreases with an increasing paraffin percentage while it significantly increases with increasing slurry concentration, thermal conductivity decreases with increasing paraffin percentage and specific heat capacity increases with an increasing paraffin percentage and slurry concentration. For a paraffin percentage from 0% to 10%, compressive strength decreases by an average of 22.5%, thermal conductivity decreases by an average of 43.8% and specific heat capacity increases by an average of 8.7% at a phase-change temperature of 30 °C. For a slurry concentration from 68% to 72%, compressive strength increases by an average of 4.12 times, and specific heat capacity increases by an average of 3.5% at a phase-change temperature of 30 °C. The weakening effect of phase-change materials on compressive strength can be effectively improved by the increase of slurry concentration, and the increases of paraffin percentage and slurry concentration can both improve the sensible heat storage capacity of backfill materials.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139140954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inese Mavlutova, D. Atstāja, Sandra Gusta, J. Hermanis
This study aims to investigate to what extent the construction and demolition waste generated by households is managed by the principles of circularity and to identify the main influencing factors in the behavior of households regarding the circularity-based management of construction waste in Latvia. The current research presents principles of circularity of household-generated waste based on a systematic literature review, and the data obtained from a survey were analyzed using both descriptive and inferential statistics. This study clarifies the circular economy rationale for construction and demolition waste (CDW) management in Latvia and proposes further development to promote the achievement of sustainable development goals and increased energy efficiency. The results reveal that the observance of circular economy principles in construction and demolition waste management among Latvian households does not correspond to good circular economy practices due to attitudes toward environmental issues, expenses, and logistics; thus, compliance with these principles and legislation as well as closer cooperation between municipalities and households can promote significant economic benefits.
{"title":"Management of Household-Generated Construction and Demolition Waste: Circularity Principles and the Attitude of Latvian Residents","authors":"Inese Mavlutova, D. Atstāja, Sandra Gusta, J. Hermanis","doi":"10.3390/en17010205","DOIUrl":"https://doi.org/10.3390/en17010205","url":null,"abstract":"This study aims to investigate to what extent the construction and demolition waste generated by households is managed by the principles of circularity and to identify the main influencing factors in the behavior of households regarding the circularity-based management of construction waste in Latvia. The current research presents principles of circularity of household-generated waste based on a systematic literature review, and the data obtained from a survey were analyzed using both descriptive and inferential statistics. This study clarifies the circular economy rationale for construction and demolition waste (CDW) management in Latvia and proposes further development to promote the achievement of sustainable development goals and increased energy efficiency. The results reveal that the observance of circular economy principles in construction and demolition waste management among Latvian households does not correspond to good circular economy practices due to attitudes toward environmental issues, expenses, and logistics; thus, compliance with these principles and legislation as well as closer cooperation between municipalities and households can promote significant economic benefits.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 81","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139137866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper reviews and evaluates work on the structural complexity of the potential carbon dioxide storage sites in the North Sea, including the nature of the reservoir structures, the reservoir rocks, the presence of inter-layers, faults, and fractures, and how these factors influence carbon dioxide capacity. In particular, the review emphasises the significance of studying caprocks in detail, not just the reservoir rock’s carbon dioxide storage capacity. This work also particularly considers reservoir simulation work on North Sea sites and illustrates the importance of using fully coupled flow–geomechanical–geochemical modelling to ensure that complex feedback and synergistic effects are not missed. It includes comparisons with other sites where relevant. It also discusses recent challenges and controversies that have arisen from simulations of sequestration in North Sea reservoirs and the need for comprehensive field data to resolve these issues.
{"title":"Storage Sites for Carbon Dioxide in the North Sea and Their Particular Characteristics","authors":"Sean P. Rigby, Ali Alsayah","doi":"10.3390/en17010211","DOIUrl":"https://doi.org/10.3390/en17010211","url":null,"abstract":"This paper reviews and evaluates work on the structural complexity of the potential carbon dioxide storage sites in the North Sea, including the nature of the reservoir structures, the reservoir rocks, the presence of inter-layers, faults, and fractures, and how these factors influence carbon dioxide capacity. In particular, the review emphasises the significance of studying caprocks in detail, not just the reservoir rock’s carbon dioxide storage capacity. This work also particularly considers reservoir simulation work on North Sea sites and illustrates the importance of using fully coupled flow–geomechanical–geochemical modelling to ensure that complex feedback and synergistic effects are not missed. It includes comparisons with other sites where relevant. It also discusses recent challenges and controversies that have arisen from simulations of sequestration in North Sea reservoirs and the need for comprehensive field data to resolve these issues.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 28","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139141212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hasan Hamdan, S. Dol, Abdelrahman Hosny Gomaa, Aghyad B. Al Tahhan, Ahmad Al Ramahi, Haya Fares Turkmani, M. Alkhedher, R. Ajaj
This study combines experimental and numerical evaluations of Vortex Bladeless Wind Turbines (VBWTs) to understand their potential in renewable energy generation. The methodology employs Two-Way Fluid–Solid Interface (FSI) simulations, alongside real-world data, providing important insights into the turbine’s vibration dynamics and flow interactions during operation. Key findings include identifying optimal vibration frequencies and amplitudes that enhance energy harvesting and a clear advantage in power-generation estimations shown by one of the models used. The study reveals possible applications of VBWT in various settings like airport runways, highways, and buildings, indicating a promising avenue for incorporating such renewable-energy solutions. Discussions on the economic feasibility and environmental benefits of VBWT deployment are also presented, suggesting a need for further research and optimization in this area. A conceptual generator design and business model are introduced as part of a broader discussion on technology integration and energy storage. The research in this study encompasses experimental and numerical analysis, to achieve a broader understanding of the workings of a VBWT, realizing the feasibility of using such systems in lower-wind-speed conditions and upscaling to higher-wind-speed cases.
{"title":"Experimental and Numerical Study of Novel Vortex Bladeless Wind Turbine with an Economic Feasibility Analysis and Investigation of Environmental Benefits","authors":"Hasan Hamdan, S. Dol, Abdelrahman Hosny Gomaa, Aghyad B. Al Tahhan, Ahmad Al Ramahi, Haya Fares Turkmani, M. Alkhedher, R. Ajaj","doi":"10.3390/en17010214","DOIUrl":"https://doi.org/10.3390/en17010214","url":null,"abstract":"This study combines experimental and numerical evaluations of Vortex Bladeless Wind Turbines (VBWTs) to understand their potential in renewable energy generation. The methodology employs Two-Way Fluid–Solid Interface (FSI) simulations, alongside real-world data, providing important insights into the turbine’s vibration dynamics and flow interactions during operation. Key findings include identifying optimal vibration frequencies and amplitudes that enhance energy harvesting and a clear advantage in power-generation estimations shown by one of the models used. The study reveals possible applications of VBWT in various settings like airport runways, highways, and buildings, indicating a promising avenue for incorporating such renewable-energy solutions. Discussions on the economic feasibility and environmental benefits of VBWT deployment are also presented, suggesting a need for further research and optimization in this area. A conceptual generator design and business model are introduced as part of a broader discussion on technology integration and energy storage. The research in this study encompasses experimental and numerical analysis, to achieve a broader understanding of the workings of a VBWT, realizing the feasibility of using such systems in lower-wind-speed conditions and upscaling to higher-wind-speed cases.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 17","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139138790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Warmiński, Klaudia Anna Jankowska, A. Bęś, M. Stolarski
As living standards improve worldwide, the demand for energy increases. However, climate changes and decreasing fossil fuel deposits have increased interest in renewable energy sources, including pellets produced from forest residues. This study aimed to compare changes in concentration of gases (CO, CO2, O2, volatile organic compounds—VOCs) in enclosed headspaces above pellets produced from deciduous (oak OA, birch BI) and coniferous (pine PI, spruce SP) dendromass and selected types of commercial pellets during their storage. The experiment measured the concentration of gas released from the pellets in storage daily for 14 days. The highest mean CO concentration was found for PI pellets (1194 ppm), and the lowest was for OA (63.3 ppm). Likewise, the highest CO2 concentration was noted for PI pellets (4650 ppm), and the lowest was for BI (1279 ppm). The largest VOC amount was released in the headspace above PI (88.8 ppm), and the smallest was above BI (4.6 ppm). The oxygen concentration was the lowest as measured for PI (minimum 16.1% v/v) and for SP (19.3% v/v). The threshold limit value (8 h) for CO was exceeded for all the pellets under analysis and, in the case of CO2, only for PI after day 10 of incubation. The study findings are extremely important from a scientific (but mainly from a practical) perspective because of the safety of storing and transporting wood pellets. The knowledge of autooxidation processes in those biofuels can help organize their logistics and storage and result in proper warehouse ventilation and monitoring of noxious gases.
{"title":"Off-Gassing and Oxygen Depletion in Headspaces of Solid Biofuels Produced from Forest Residue Biomass","authors":"K. Warmiński, Klaudia Anna Jankowska, A. Bęś, M. Stolarski","doi":"10.3390/en17010216","DOIUrl":"https://doi.org/10.3390/en17010216","url":null,"abstract":"As living standards improve worldwide, the demand for energy increases. However, climate changes and decreasing fossil fuel deposits have increased interest in renewable energy sources, including pellets produced from forest residues. This study aimed to compare changes in concentration of gases (CO, CO2, O2, volatile organic compounds—VOCs) in enclosed headspaces above pellets produced from deciduous (oak OA, birch BI) and coniferous (pine PI, spruce SP) dendromass and selected types of commercial pellets during their storage. The experiment measured the concentration of gas released from the pellets in storage daily for 14 days. The highest mean CO concentration was found for PI pellets (1194 ppm), and the lowest was for OA (63.3 ppm). Likewise, the highest CO2 concentration was noted for PI pellets (4650 ppm), and the lowest was for BI (1279 ppm). The largest VOC amount was released in the headspace above PI (88.8 ppm), and the smallest was above BI (4.6 ppm). The oxygen concentration was the lowest as measured for PI (minimum 16.1% v/v) and for SP (19.3% v/v). The threshold limit value (8 h) for CO was exceeded for all the pellets under analysis and, in the case of CO2, only for PI after day 10 of incubation. The study findings are extremely important from a scientific (but mainly from a practical) perspective because of the safety of storing and transporting wood pellets. The knowledge of autooxidation processes in those biofuels can help organize their logistics and storage and result in proper warehouse ventilation and monitoring of noxious gases.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 42","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139137510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Marchiori, Maria Vitoria Morais, André Studart, António Albuquerque, Luis Andrade Pais, Luis Ferreira Gomes, V. Cavaleiro
Geoenvironmental engineering involves defining solutions for complex problems, such as containment systems management, contaminant transport control, wastewater management, remediation of contaminated sites and valorization of geomaterials and wastes. In the last years, energy harvesting (EH)—or energy scavenging—methods and technologies have been developed to reduce the dependence on traditional energy sources, namely fossil fuels, and nuclear power, also responding to the increase in energy demands for human activities and to fulfill sustainable development goals. EH in geoenvironmental works and the surrounding soil and water environment includes a set of processes for capturing and accumulating energy from several sources considered wasted or unusable associated with soil dynamics; the stress and strain of geomaterials, hydraulic, vibrations, biochemical, light, heating and wind sources can be potential EH systems. Therefore, this work presents a review of the literature and critical analysis on the main opportunities for EH capturing, accumulating and use in geoenvironmental works, among basic electric concepts and mechanisms, analyzing these works in complex conditions involving biological-, chemical-, mechanical-, hydraulic- and thermal-coupled actions, concluding with the main investigation and challenges within geoenvironmental aspects for EH purposes.
{"title":"Energy Harvesting Opportunities in Geoenvironmental Engineering","authors":"L. Marchiori, Maria Vitoria Morais, André Studart, António Albuquerque, Luis Andrade Pais, Luis Ferreira Gomes, V. Cavaleiro","doi":"10.3390/en17010215","DOIUrl":"https://doi.org/10.3390/en17010215","url":null,"abstract":"Geoenvironmental engineering involves defining solutions for complex problems, such as containment systems management, contaminant transport control, wastewater management, remediation of contaminated sites and valorization of geomaterials and wastes. In the last years, energy harvesting (EH)—or energy scavenging—methods and technologies have been developed to reduce the dependence on traditional energy sources, namely fossil fuels, and nuclear power, also responding to the increase in energy demands for human activities and to fulfill sustainable development goals. EH in geoenvironmental works and the surrounding soil and water environment includes a set of processes for capturing and accumulating energy from several sources considered wasted or unusable associated with soil dynamics; the stress and strain of geomaterials, hydraulic, vibrations, biochemical, light, heating and wind sources can be potential EH systems. Therefore, this work presents a review of the literature and critical analysis on the main opportunities for EH capturing, accumulating and use in geoenvironmental works, among basic electric concepts and mechanisms, analyzing these works in complex conditions involving biological-, chemical-, mechanical-, hydraulic- and thermal-coupled actions, concluding with the main investigation and challenges within geoenvironmental aspects for EH purposes.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 54","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139137959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier E. Santos-Ramos, Sergio D. Saldarriaga-Zuluaga, J. López-Lezama, N. Muñoz-Galeano, W. M. Villa-Acevedo
This paper addresses the protection coordination problem of microgrids combining unsupervised learning techniques, metaheuristic optimization and non-standard characteristics of directional over-current relays (DOCRs). Microgrids may operate under different topologies or operative scenarios. In this case, clustering techniques such as K-means, balanced iterative reducing and clustering using hierarchies (BIRCH), Gaussian mixture, and hierarchical clustering were implemented to classify the operational scenarios of the microgrid. Such scenarios were previously defined according to the type of generation in operation and the topology of the network. Then, four metaheuristic techniques, namely, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Invasive Weed Optimization (IWO), and Artificial Bee Colony (ABC) were used to solve the coordination problem of every cluster of operative scenarios. Furthermore, non-standard characteristics of DOCRs were also used. The number of clusters was limited to the maximum number of setting setting groups within commercial DOCRs. In the optimization model, each relay is evaluated based on three optimization variables, namely: time multiplier setting (TMS), the upper limit of the plug setting multiplier (PSM), and the standard characteristic curve (SCC). The effectiveness of the proposed approach is demonstrated through various tests conducted on a benchmark test microgrid.
本文结合无监督学习技术、元搜索优化和定向过流继电器(DOCR)的非标准特性,探讨了微电网的保护协调问题。微电网可能在不同的拓扑结构或运行场景下运行。在这种情况下,采用 K 均值、平衡迭代还原和分层聚类(BIRCH)、高斯混合和分层聚类等聚类技术来对微电网的运行场景进行分类。这些情景是根据运行中的发电类型和网络拓扑结构预先确定的。然后,使用四种元启发式技术,即遗传算法(GA)、粒子群优化(PSO)、入侵杂草优化(IWO)和人工蜂群(ABC)来解决每个运行场景聚类的协调问题。此外,还使用了 DOCR 的非标准特征。群组的数量被限制在商用 DOCR 设置组的最大数量。在优化模型中,每个继电器都根据三个优化变量进行评估,即:时间乘数设置(TMS)、插头设置乘数上限(PSM)和标准特性曲线(SCC)。通过在基准测试微电网上进行的各种测试,证明了所提方法的有效性。
{"title":"Microgrid Protection Coordination Considering Clustering and Metaheuristic Optimization","authors":"Javier E. Santos-Ramos, Sergio D. Saldarriaga-Zuluaga, J. López-Lezama, N. Muñoz-Galeano, W. M. Villa-Acevedo","doi":"10.3390/en17010210","DOIUrl":"https://doi.org/10.3390/en17010210","url":null,"abstract":"This paper addresses the protection coordination problem of microgrids combining unsupervised learning techniques, metaheuristic optimization and non-standard characteristics of directional over-current relays (DOCRs). Microgrids may operate under different topologies or operative scenarios. In this case, clustering techniques such as K-means, balanced iterative reducing and clustering using hierarchies (BIRCH), Gaussian mixture, and hierarchical clustering were implemented to classify the operational scenarios of the microgrid. Such scenarios were previously defined according to the type of generation in operation and the topology of the network. Then, four metaheuristic techniques, namely, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Invasive Weed Optimization (IWO), and Artificial Bee Colony (ABC) were used to solve the coordination problem of every cluster of operative scenarios. Furthermore, non-standard characteristics of DOCRs were also used. The number of clusters was limited to the maximum number of setting setting groups within commercial DOCRs. In the optimization model, each relay is evaluated based on three optimization variables, namely: time multiplier setting (TMS), the upper limit of the plug setting multiplier (PSM), and the standard characteristic curve (SCC). The effectiveness of the proposed approach is demonstrated through various tests conducted on a benchmark test microgrid.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 39","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139141640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The capability of the standard SST k-ω turbulence model for the prediction of jet impingement cooling characteristics using a coarse mesh is investigated. The discussion is based on a sensitivity study with five computational grids, differing from each other in topology and resolution. The analysis considers a hexagonal configuration of turbulent jets at the inlet Reynolds number equal to 20,000, with the distance between the nozzle and target plates equal to four nozzle diameters. The results of steady RANS simulations are validated against the time-averaged LES results and data from experiments. The mean heat transfer characteristics of turbulent impinging jets have been successfully reproduced with all tested grids, which indicates that for a rather accurate mean heat transfer prediction, it is not necessary to resolve all the small-scale flow features of impinging jets above the target plate.
研究了标准 SST k-ω 湍流模型使用粗网格预测射流撞击冷却特性的能力。讨论基于对拓扑结构和分辨率各不相同的五个计算网格的敏感性研究。分析考虑了入口雷诺数等于 20,000 时湍流射流的六边形配置,喷嘴和靶板之间的距离等于四个喷嘴直径。稳定 RANS 模拟结果与时间平均 LES 结果和实验数据进行了验证。所有测试网格都成功地再现了湍流撞击射流的平均传热特性,这表明要获得相当精确的平均传热预测,并不需要解决靶板上方撞击射流的所有小尺度流动特征。
{"title":"Prediction of Mean Heat Transfer Characteristics of Multiple Impinging Jets with Steady RANS Simulation Using a Coarse Mesh","authors":"M. Draksler, M. Tekavčič","doi":"10.3390/en17010196","DOIUrl":"https://doi.org/10.3390/en17010196","url":null,"abstract":"The capability of the standard SST k-ω turbulence model for the prediction of jet impingement cooling characteristics using a coarse mesh is investigated. The discussion is based on a sensitivity study with five computational grids, differing from each other in topology and resolution. The analysis considers a hexagonal configuration of turbulent jets at the inlet Reynolds number equal to 20,000, with the distance between the nozzle and target plates equal to four nozzle diameters. The results of steady RANS simulations are validated against the time-averaged LES results and data from experiments. The mean heat transfer characteristics of turbulent impinging jets have been successfully reproduced with all tested grids, which indicates that for a rather accurate mean heat transfer prediction, it is not necessary to resolve all the small-scale flow features of impinging jets above the target plate.","PeriodicalId":11557,"journal":{"name":"Energies","volume":" 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139143604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}