Purpose: This study aims to evaluate the accuracy of four kidney depth measurement methods-nuclear medicine tomography, nuclear medicine lateral scanning, ultrasound, and Tonnesen's formula-based estimation-using CT measurements as the reference standard. Additionally, it investigates the feasibility of utilizing nuclear medicine tomography and lateral scanning for measuring kidney depth in 99mTc-DTPA renal dynamic imaging.
Methods: Hollow kidney phantoms mimicking the shape and volume of adult kidneys were 3D printed and filled with 99mTcO4- solution. These phantoms were then subjected to lateral scanning and nuclear medicine tomography using CZT (cadmium-zinc-telluride) SPECT/CT to determine the optimal post-processing method. Forty patients who underwent renal dynamic imaging were recruited for the study. Renal depths were derived from ultrasound, lateral imaging, nuclear medicine tomography, formula-based estimation, and CT measurements. The renal depths obtained through these four methods were for correlation with CT-measured renal depths. Additionally, the absolute differences between renal depths obtained by each method and the CT standard were analyzed and compared across groups.
Results: Using kidney phantoms, nuclear medicine tomography images were processed with a Butterworth filter (cutoff frequency = 0.6), and renal outlines in lateral images was manually delineated. In the clinical validation phase, correlation coefficients indicated strong associations between renal depths measured by nuclear medicine tomography (left kidney: R = 0.885, P < 0.05; right kidney: R = 0.927, P < 0.05) and lateral scanning (left kidney: R = 0.933, P < 0.05; right kidney: R = 0.956, P < 0.05) compared to CT measurements. The difference in kidney depth between nuclear medicine tomography and CT measurements were the smallest and statistically significant (left kidney: 0.69 ± 0.51; right kidney: 0.58 ± 0.41, P < 0.05).
Conclusion: Using ordered subset expectation maximization (OSEM) in conjunction with a Butterworth filter (fc = 0.6) as the post-processing method, nuclear medicine tomography enables more accurate renal depth measurements without increasing the radiation dose to patients.
{"title":"Optimization and application of renal depth measurement method in the cadmium-zinc-telluride‑based SPECT/CT renal dynamic imaging.","authors":"Hongyuan Zheng, Xiangxiang Li, Shen Wang, Shasha Hou, Chunling Shi, Xue Li, Qiang Jia, Wei Zheng","doi":"10.1186/s40658-024-00702-7","DOIUrl":"10.1186/s40658-024-00702-7","url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to evaluate the accuracy of four kidney depth measurement methods-nuclear medicine tomography, nuclear medicine lateral scanning, ultrasound, and Tonnesen's formula-based estimation-using CT measurements as the reference standard. Additionally, it investigates the feasibility of utilizing nuclear medicine tomography and lateral scanning for measuring kidney depth in <sup>99m</sup>Tc-DTPA renal dynamic imaging.</p><p><strong>Methods: </strong>Hollow kidney phantoms mimicking the shape and volume of adult kidneys were 3D printed and filled with <sup>99m</sup>TcO<sub>4</sub><sup>-</sup> solution. These phantoms were then subjected to lateral scanning and nuclear medicine tomography using CZT (cadmium-zinc-telluride) SPECT/CT to determine the optimal post-processing method. Forty patients who underwent renal dynamic imaging were recruited for the study. Renal depths were derived from ultrasound, lateral imaging, nuclear medicine tomography, formula-based estimation, and CT measurements. The renal depths obtained through these four methods were for correlation with CT-measured renal depths. Additionally, the absolute differences between renal depths obtained by each method and the CT standard were analyzed and compared across groups.</p><p><strong>Results: </strong>Using kidney phantoms, nuclear medicine tomography images were processed with a Butterworth filter (cutoff frequency = 0.6), and renal outlines in lateral images was manually delineated. In the clinical validation phase, correlation coefficients indicated strong associations between renal depths measured by nuclear medicine tomography (left kidney: R = 0.885, P < 0.05; right kidney: R = 0.927, P < 0.05) and lateral scanning (left kidney: R = 0.933, P < 0.05; right kidney: R = 0.956, P < 0.05) compared to CT measurements. The difference in kidney depth between nuclear medicine tomography and CT measurements were the smallest and statistically significant (left kidney: 0.69 ± 0.51; right kidney: 0.58 ± 0.41, P < 0.05).</p><p><strong>Conclusion: </strong>Using ordered subset expectation maximization (OSEM) in conjunction with a Butterworth filter (fc = 0.6) as the post-processing method, nuclear medicine tomography enables more accurate renal depth measurements without increasing the radiation dose to patients.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"96"},"PeriodicalIF":3.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1186/s40658-024-00695-3
L Struelens, E Aalbersberg, L Beels, N Cherbuin, Y D'Asseler, F De Monte, A Lopez Medina, M Del Carmen Riveira Martin, W Schoonjans, C Terwinghe, S Van den Block, F Vanhavere, H Zaidi, V Schelfhout
Background: The radiation exposure of nuclear medicine personnel, especially concerning extremity doses, has been a significant focus over the past two decades. This study addresses the evolving practice of NM, particularly with the rise of radionuclide therapy and theranostic procedures, which involve a variety of radionuclides such as 68Ga, 177Lu, and 131I. Traditional studies have concentrated on common radioisotopes like 99mTc, 18F, and 90Y, but there is limited data on these radionuclides, which are more and more frequently used. This study, part of the European SINFONIA project, aims to fill this gap by providing new dosimetry data through a multicenter approach. The research monitors extremity doses to hands, eye lens doses, and whole-body doses in nuclear medicine staff handling 68Ga, 177Lu, and 131I. It examines the type of activities performed and the protective measures used. The study extrapolates measured doses to annual doses, comparing them with annual dose limits, and assesses the contribution of these specific procedures to the overall occupational dose of nuclear medicine personnel.
Results: Measurements were conducted from November 2020 to August 2023 across nine hospitals. The highest whole-body, eye lens and extremity doses were observed for 68Ga. Average maximum extremity doses, normalized per manipulated activity, were found of 6200 µSv/GBq, 30 µSv/GBq and 260 µSV/GBq for 68Ga, 177Lu and 131I, respectively. Average whole-body doses stayed below 60 µSv/GBq for all 3 isotopes and below 200 µSv/GBq for the eye lens dose. The variation in doses also depends on the task performed. For 68Ga there is a risk of reaching the annual dose limit for skin dose during synthesis and dispensing.
Conclusions: This study's measurement campaigns across various European countries have provided new and extensive occupational dosimetry data for nuclear medicine staff handling 68Ga, 177Lu and 131I radiopharmaceuticals. The results indicate that 68Ga contributes significantly to the global occupational dose, despite its relatively low usage compared to other isotopes. Staff working in radiopharmacy hot labs, labeling and dispensing 177Lu contribute less to the finger dose compared to other isotopes.
{"title":"How much do <sup>68</sup>Ga-, <sup>177</sup>Lu- and <sup>131</sup>I-based radiopharmaceuticals contribute to the global radiation exposure of nuclear medicine staff?","authors":"L Struelens, E Aalbersberg, L Beels, N Cherbuin, Y D'Asseler, F De Monte, A Lopez Medina, M Del Carmen Riveira Martin, W Schoonjans, C Terwinghe, S Van den Block, F Vanhavere, H Zaidi, V Schelfhout","doi":"10.1186/s40658-024-00695-3","DOIUrl":"10.1186/s40658-024-00695-3","url":null,"abstract":"<p><strong>Background: </strong>The radiation exposure of nuclear medicine personnel, especially concerning extremity doses, has been a significant focus over the past two decades. This study addresses the evolving practice of NM, particularly with the rise of radionuclide therapy and theranostic procedures, which involve a variety of radionuclides such as <sup>68</sup>Ga, <sup>177</sup>Lu, and <sup>131</sup>I. Traditional studies have concentrated on common radioisotopes like <sup>99m</sup>Tc, <sup>18</sup>F, and <sup>90</sup>Y, but there is limited data on these radionuclides, which are more and more frequently used. This study, part of the European SINFONIA project, aims to fill this gap by providing new dosimetry data through a multicenter approach. The research monitors extremity doses to hands, eye lens doses, and whole-body doses in nuclear medicine staff handling <sup>68</sup>Ga, <sup>177</sup>Lu, and <sup>131</sup>I. It examines the type of activities performed and the protective measures used. The study extrapolates measured doses to annual doses, comparing them with annual dose limits, and assesses the contribution of these specific procedures to the overall occupational dose of nuclear medicine personnel.</p><p><strong>Results: </strong>Measurements were conducted from November 2020 to August 2023 across nine hospitals. The highest whole-body, eye lens and extremity doses were observed for <sup>68</sup>Ga. Average maximum extremity doses, normalized per manipulated activity, were found of 6200 µSv/GBq, 30 µSv/GBq and 260 µSV/GBq for <sup>68</sup>Ga, <sup>177</sup>Lu and <sup>131</sup>I, respectively. Average whole-body doses stayed below 60 µSv/GBq for all 3 isotopes and below 200 µSv/GBq for the eye lens dose. The variation in doses also depends on the task performed. For <sup>68</sup>Ga there is a risk of reaching the annual dose limit for skin dose during synthesis and dispensing.</p><p><strong>Conclusions: </strong>This study's measurement campaigns across various European countries have provided new and extensive occupational dosimetry data for nuclear medicine staff handling <sup>68</sup>Ga, <sup>177</sup>Lu and <sup>131</sup>I radiopharmaceuticals. The results indicate that <sup>68</sup>Ga contributes significantly to the global occupational dose, despite its relatively low usage compared to other isotopes. Staff working in radiopharmacy hot labs, labeling and dispensing <sup>177</sup>Lu contribute less to the finger dose compared to other isotopes.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"95"},"PeriodicalIF":3.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1186/s40658-024-00696-2
Laura De Nardo, Sara Santi, Anna Dalla Pietà, Guillermina Ferro-Flores, Erika Azorín-Vega, Emma Nascimbene, Vito Barbieri, Alessandra Zorz, Antonio Rosato, Laura Meléndez-Alafort
Background: 177Lu-based radiopharmaceuticals (RPs) are the most used for targeted radionuclide therapy (TRT) due to their good response rates. However, the worldwide availability of 177Lu is limited. 161Tb represents a potential alternative for TRT, as it emits photons for SPECT imaging, β--particles for therapy, and also releases a significant yield of internal conversion (IE) and Auger electrons (AE). This research aimed to evaluate cell dosimetry with the MIRDcell code considering a realistic localization of three 161Tb- and 177Lu-somatostatin (SST) analogs in different subcellular regions as reported in the literature, various cell cluster sizes (25-1000 µm of radius) and percentage of labeled cells. Experimental values of the α- and β-survival coefficients determined by external beam photon irradiation were used to estimate the survival fraction (SF) of AR42J pancreatic cell clusters and micrometastases.
Results: The different localization of RPs labeled with the same radionuclide within the cells, resulted in only slight variations in the dose absorbed by the nuclei (ADN) of the labeled cells with no differences observed in either the unlabeled cells or the SF. ADN of labeled cells (MDLC) produced by 161Tb-RPs were from 2.8-3.7 times higher than those delivered by 177Lu-RPs in cell clusters with a radius lower than 0.1 mm and 10% of labeled cells, due to the higher amount of energy emitted by 161Tb-disintegration in form of IE and AE. However, the 161Tb-RPs/177Lu-RPs MDLC ratio decreased below 1.6 in larger cell clusters (0.5-1 mm) with > 40% labeled cells, due to the significantly higher 177Lu-RPs cross-irradiation contribution. Using a fixed number of disintegrations, SFs of 161Tb-RPs in clusters with > 40% labeled cells were lower than those of 177Lu-RPs, but when the same amount of emitted energy was used no significant differences in SF were observed between 177Lu- and 161Tb-RPs, except for the smallest cluster sizes.
Conclusions: Despite the emissions of IE and AE from 161Tb-RPs, their localization within different subcellular regions exerted a negligible influence on the ADN. The same cell damage produced by 177Lu-RPs could be achieved using smaller quantities of 161Tb-RPs, thus making 161Tb a suitable alternative for TRT.
{"title":"Comparison of the dosimetry and cell survival effect of <sup>177</sup>Lu and <sup>161</sup>Tb somatostatin analog radiopharmaceuticals in cancer cell clusters and micrometastases.","authors":"Laura De Nardo, Sara Santi, Anna Dalla Pietà, Guillermina Ferro-Flores, Erika Azorín-Vega, Emma Nascimbene, Vito Barbieri, Alessandra Zorz, Antonio Rosato, Laura Meléndez-Alafort","doi":"10.1186/s40658-024-00696-2","DOIUrl":"10.1186/s40658-024-00696-2","url":null,"abstract":"<p><strong>Background: </strong><sup>177</sup>Lu-based radiopharmaceuticals (RPs) are the most used for targeted radionuclide therapy (TRT) due to their good response rates. However, the worldwide availability of <sup>177</sup>Lu is limited. <sup>161</sup>Tb represents a potential alternative for TRT, as it emits photons for SPECT imaging, β<sup>-</sup>-particles for therapy, and also releases a significant yield of internal conversion (IE) and Auger electrons (AE). This research aimed to evaluate cell dosimetry with the MIRDcell code considering a realistic localization of three <sup>161</sup>Tb- and <sup>177</sup>Lu-somatostatin (SST) analogs in different subcellular regions as reported in the literature, various cell cluster sizes (25-1000 µm of radius) and percentage of labeled cells. Experimental values of the α- and β-survival coefficients determined by external beam photon irradiation were used to estimate the survival fraction (SF) of AR42J pancreatic cell clusters and micrometastases.</p><p><strong>Results: </strong>The different localization of RPs labeled with the same radionuclide within the cells, resulted in only slight variations in the dose absorbed by the nuclei (AD<sub>N</sub>) of the labeled cells with no differences observed in either the unlabeled cells or the SF. AD<sub>N</sub> of labeled cells (MDLC) produced by <sup>161</sup>Tb-RPs were from 2.8-3.7 times higher than those delivered by <sup>177</sup>Lu-RPs in cell clusters with a radius lower than 0.1 mm and 10% of labeled cells, due to the higher amount of energy emitted by <sup>161</sup>Tb-disintegration in form of IE and AE. However, the <sup>161</sup>Tb-RPs/<sup>177</sup>Lu-RPs MDLC ratio decreased below 1.6 in larger cell clusters (0.5-1 mm) with > 40% labeled cells, due to the significantly higher <sup>177</sup>Lu-RPs cross-irradiation contribution. Using a fixed number of disintegrations, SFs of <sup>161</sup>Tb-RPs in clusters with > 40% labeled cells were lower than those of <sup>177</sup>Lu-RPs, but when the same amount of emitted energy was used no significant differences in SF were observed between <sup>177</sup>Lu- and <sup>161</sup>Tb-RPs, except for the smallest cluster sizes.</p><p><strong>Conclusions: </strong>Despite the emissions of IE and AE from <sup>161</sup>Tb-RPs, their localization within different subcellular regions exerted a negligible influence on the AD<sub>N</sub>. The same cell damage produced by <sup>177</sup>Lu-RPs could be achieved using smaller quantities of <sup>161</sup>Tb-RPs, thus making <sup>161</sup>Tb a suitable alternative for TRT.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"94"},"PeriodicalIF":3.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1186/s40658-024-00697-1
Yibin Liu, Zhonglin Lu, Gefei Chen, Kuangyu Shi, Greta S P Mok
Background: The limited spatial resolution in SPECT images leads to partial volume effect (PVE), degrading the subsequent dosimetric accuracy. We aim to quantitatively evaluate PVE and partial volume corrections (PVC), i.e., recovery coefficient (RC)-PVC (RC-PVC), reblurred Van-Cittert (RVC) and iterative Yang (IY), in 177Lu-PSMA-617 SPECT images.
Methods: We employed a geometrical cylindrical phantom containing five spheres (diameters ranging from 20 to 40 mm) and 40 XCAT phantoms with various anatomical variations and activity distributions. SIMIND Monte Carlo code was used to generate realistic noisy projections. In the clinical study, sequential quantitative SPECT/CT imaging at 4 time-points post 177Lu-PSMA-617 injections were analyzed for 10 patients. Iterative statistical reconstruction methods were used for reconstruction with attenuation, scatter and geometrical collimator detector response corrections, followed by post-filters. The RC-curves were fit based on the geometrical phantom study and applied for XCAT phantom and clinical study in RC-PVC. Matched and 0.5-2.0 voxels (2.54-10.16 mm) mismatched sphere masks were deployed in IY. The coefficient of variation (CoV) was measured on a uniform background on the geometrical phantom. RCs of spheres and mean absolute activity error (MAE) of kidneys and tumors were evaluated in simulation data, while the activity difference was evaluated in clinical data before and after PVC.
Results: In the simulation study, the spheres experienced significant PVE, i.e., 0.26 RC and 0.70 RC for the 20 mm and 40 mm spheres, respectively. RVC and IY improved the RC of the 20 mm sphere to 0.37 and 0.75 and RC of the 40 mm sphere to 0.96 and 1.04. Mismatch in mask increased the activity error for all spheres in IY. RVC increased noise and caused Gibbs ringing artifacts. For XCAT phantoms, both RVC and IY performed comparably and were superior to RC-PVC in reducing the MAE of the kidneys. However, IY and RC-PVC outperformed RVC for tumors. The XCAT phantom study and clinical study showed a similar trend in the kidney and tumor activity differences between non-PVC and PVC.
Conclusions: PVE greatly impacts activity quantification, especially for small objects. All PVC methods improve the quantification accuracy in 177Lu-PSMA SPECT.
{"title":"Partial volume correction for Lu-177-PSMA SPECT.","authors":"Yibin Liu, Zhonglin Lu, Gefei Chen, Kuangyu Shi, Greta S P Mok","doi":"10.1186/s40658-024-00697-1","DOIUrl":"10.1186/s40658-024-00697-1","url":null,"abstract":"<p><strong>Background: </strong>The limited spatial resolution in SPECT images leads to partial volume effect (PVE), degrading the subsequent dosimetric accuracy. We aim to quantitatively evaluate PVE and partial volume corrections (PVC), i.e., recovery coefficient (RC)-PVC (RC-PVC), reblurred Van-Cittert (RVC) and iterative Yang (IY), in <sup>177</sup>Lu-PSMA-617 SPECT images.</p><p><strong>Methods: </strong>We employed a geometrical cylindrical phantom containing five spheres (diameters ranging from 20 to 40 mm) and 40 XCAT phantoms with various anatomical variations and activity distributions. SIMIND Monte Carlo code was used to generate realistic noisy projections. In the clinical study, sequential quantitative SPECT/CT imaging at 4 time-points post <sup>177</sup>Lu-PSMA-617 injections were analyzed for 10 patients. Iterative statistical reconstruction methods were used for reconstruction with attenuation, scatter and geometrical collimator detector response corrections, followed by post-filters. The RC-curves were fit based on the geometrical phantom study and applied for XCAT phantom and clinical study in RC-PVC. Matched and 0.5-2.0 voxels (2.54-10.16 mm) mismatched sphere masks were deployed in IY. The coefficient of variation (CoV) was measured on a uniform background on the geometrical phantom. RCs of spheres and mean absolute activity error (MAE) of kidneys and tumors were evaluated in simulation data, while the activity difference was evaluated in clinical data before and after PVC.</p><p><strong>Results: </strong>In the simulation study, the spheres experienced significant PVE, i.e., 0.26 RC and 0.70 RC for the 20 mm and 40 mm spheres, respectively. RVC and IY improved the RC of the 20 mm sphere to 0.37 and 0.75 and RC of the 40 mm sphere to 0.96 and 1.04. Mismatch in mask increased the activity error for all spheres in IY. RVC increased noise and caused Gibbs ringing artifacts. For XCAT phantoms, both RVC and IY performed comparably and were superior to RC-PVC in reducing the MAE of the kidneys. However, IY and RC-PVC outperformed RVC for tumors. The XCAT phantom study and clinical study showed a similar trend in the kidney and tumor activity differences between non-PVC and PVC.</p><p><strong>Conclusions: </strong>PVE greatly impacts activity quantification, especially for small objects. All PVC methods improve the quantification accuracy in <sup>177</sup>Lu-PSMA SPECT.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"93"},"PeriodicalIF":3.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Total-body dynamic positron emission tomography (PET) imaging with total-body coverage and ultrahigh sensitivity has played an important role in accurate tracer kinetic analyses in physiology, biochemistry, and pharmacology. However, dynamic PET scans typically entail prolonged durations ([Formula: see text]60 minutes), potentially causing patient discomfort and resulting in artifacts in the final images. Therefore, we propose a dynamic frame prediction method for total-body PET imaging via deep learning technology to reduce the required scanning time.
Methods: On the basis of total-body dynamic PET data acquired from 13 subjects who received [68Ga]Ga-FAPI-04 (68Ga-FAPI) and 24 subjects who received [68Ga]Ga-PSMA-11 (68Ga-PSMA), we propose a bidirectional dynamic frame prediction network that uses the initial and final 10 min of PET imaging data (frames 1-6 and frames 25-30, respectively) as inputs. The peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were employed as evaluation metrics for an image quality assessment. Moreover, we calculated parametric images (68Ga-FAPI: [Formula: see text], 68Ga-PSMA: [Formula: see text]) based on the supplemented sequence data to observe the quantitative accuracy of our approach. Regions of interest (ROIs) and statistical analyses were utilized to evaluate the performance of the model.
Results: Both the visual and quantitative results illustrate the effectiveness of our approach. The generated dynamic PET images yielded PSNRs of 36.056 ± 0.709 dB for the 68Ga-PSMA group and 33.779 ± 0.760 dB for the 68Ga-FAPI group. Additionally, the SSIM reached 0.935 ± 0.006 for the 68Ga-FAPI group and 0.922 ± 0.009 for the 68Ga-PSMA group. By conducting a quantitative analysis on the parametric images, we obtained PSNRs of 36.155 ± 4.813 dB (68Ga-PSMA, [Formula: see text]) and 43.150 ± 4.102 dB (68Ga-FAPI, [Formula: see text]). The obtained SSIM values were 0.932 ± 0.041 (68Ga-PSMA) and 0.980 ± 0.011 (68Ga-FAPI). The ROI analysis conducted on our generated dynamic PET sequences also revealed that our method can accurately predict temporal voxel intensity changes, maintaining overall visual consistency with the ground truth.
Conclusion: In this work, we propose a bidirectional dynamic frame prediction network for total-body 68Ga-PSMA and 68Ga-FAPI PET imaging with a reduced scan duration. Visual and quantitative analyses demonstrated that our approach performed well when it was used to predict one-hour dynamic PET images. https://github.com/OPMZZZ/BDF-NET .
目的:全身动态正电子发射断层扫描(PET)成像具有全身覆盖和超高灵敏度,在生理学、生物化学和药理学的精确示踪剂动力学分析中发挥了重要作用。然而,动态 PET 扫描通常需要较长的持续时间([公式:见正文]60 分钟),可能会引起患者不适,并导致最终图像出现伪影。因此,我们提出了一种通过深度学习技术进行全身 PET 成像的动态帧预测方法,以减少所需的扫描时间:方法:以 13 名接受[68Ga]Ga-FAPI-04(68Ga-FAPI)治疗的受试者和 24 名接受[68Ga]Ga-PSMA-11(68Ga-PSMA)治疗的受试者获得的全身动态 PET 数据为基础,我们提出了一种双向动态帧预测网络,该网络以最初和最后 10 分钟的 PET 成像数据(分别为第 1-6 帧和第 25-30 帧)为输入。峰值信噪比(PSNR)和结构相似性指数(SSIM)被用作图像质量评估的评价指标。此外,我们还根据补充序列数据计算了参数图像(68Ga-FAPI:[公式:见正文],68Ga-PSMA:[公式:见正文]),以观察我们方法的定量准确性。利用感兴趣区(ROI)和统计分析来评估模型的性能:结果:视觉和定量结果都说明了我们方法的有效性。生成的动态 PET 图像中,68Ga-PSMA 组的 PSNR 为 36.056 ± 0.709 dB,68Ga-FAPI 组的 PSNR 为 33.779 ± 0.760 dB。此外,68Ga-FAPI 组的 SSIM 达到 0.935 ± 0.006,68Ga-PSMA 组的 SSIM 达到 0.922 ± 0.009。通过对参数图像进行定量分析,我们得到的 PSNR 为 36.155 ± 4.813 dB(68Ga-PSMA,[计算公式:见正文])和 43.150 ± 4.102 dB(68Ga-FAPI,[计算公式:见正文])。获得的 SSIM 值为 0.932 ± 0.041(68Ga-PSMA)和 0.980 ± 0.011(68Ga-FAPI)。对我们生成的动态 PET 序列进行的 ROI 分析也显示,我们的方法可以准确预测时间体素强度变化,并与地面实况保持总体视觉一致性:在这项工作中,我们提出了一种用于全身 68Ga-PSMA 和 68Ga-FAPI PET 成像的双向动态帧预测网络,并缩短了扫描持续时间。视觉和定量分析表明,我们的方法在用于预测一小时动态 PET 图像时表现良好。https://github.com/OPMZZZ/BDF-NET 。
{"title":"Bidirectional dynamic frame prediction network for total-body [<sup>68</sup>Ga]Ga-PSMA-11 and [<sup>68</sup>Ga]Ga-FAPI-04 PET images.","authors":"Qianyi Yang, Wenbo Li, Zhenxing Huang, Zixiang Chen, Wenjie Zhao, Yunlong Gao, Xinlan Yang, Yongfeng Yang, Hairong Zheng, Dong Liang, Jianjun Liu, Ruohua Chen, Zhanli Hu","doi":"10.1186/s40658-024-00698-0","DOIUrl":"10.1186/s40658-024-00698-0","url":null,"abstract":"<p><strong>Purpose: </strong>Total-body dynamic positron emission tomography (PET) imaging with total-body coverage and ultrahigh sensitivity has played an important role in accurate tracer kinetic analyses in physiology, biochemistry, and pharmacology. However, dynamic PET scans typically entail prolonged durations ([Formula: see text]60 minutes), potentially causing patient discomfort and resulting in artifacts in the final images. Therefore, we propose a dynamic frame prediction method for total-body PET imaging via deep learning technology to reduce the required scanning time.</p><p><strong>Methods: </strong>On the basis of total-body dynamic PET data acquired from 13 subjects who received [<sup>68</sup>Ga]Ga-FAPI-04 (<sup>68</sup>Ga-FAPI) and 24 subjects who received [<sup>68</sup>Ga]Ga-PSMA-11 (<sup>68</sup>Ga-PSMA), we propose a bidirectional dynamic frame prediction network that uses the initial and final 10 min of PET imaging data (frames 1-6 and frames 25-30, respectively) as inputs. The peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were employed as evaluation metrics for an image quality assessment. Moreover, we calculated parametric images (<sup>68</sup>Ga-FAPI: [Formula: see text], <sup>68</sup>Ga-PSMA: [Formula: see text]) based on the supplemented sequence data to observe the quantitative accuracy of our approach. Regions of interest (ROIs) and statistical analyses were utilized to evaluate the performance of the model.</p><p><strong>Results: </strong>Both the visual and quantitative results illustrate the effectiveness of our approach. The generated dynamic PET images yielded PSNRs of 36.056 ± 0.709 dB for the <sup>68</sup>Ga-PSMA group and 33.779 ± 0.760 dB for the <sup>68</sup>Ga-FAPI group. Additionally, the SSIM reached 0.935 ± 0.006 for the <sup>68</sup>Ga-FAPI group and 0.922 ± 0.009 for the <sup>68</sup>Ga-PSMA group. By conducting a quantitative analysis on the parametric images, we obtained PSNRs of 36.155 ± 4.813 dB (<sup>68</sup>Ga-PSMA, [Formula: see text]) and 43.150 ± 4.102 dB (<sup>68</sup>Ga-FAPI, [Formula: see text]). The obtained SSIM values were 0.932 ± 0.041 (<sup>68</sup>Ga-PSMA) and 0.980 ± 0.011 (<sup>68</sup>Ga-FAPI). The ROI analysis conducted on our generated dynamic PET sequences also revealed that our method can accurately predict temporal voxel intensity changes, maintaining overall visual consistency with the ground truth.</p><p><strong>Conclusion: </strong>In this work, we propose a bidirectional dynamic frame prediction network for total-body <sup>68</sup>Ga-PSMA and <sup>68</sup>Ga-FAPI PET imaging with a reduced scan duration. Visual and quantitative analyses demonstrated that our approach performed well when it was used to predict one-hour dynamic PET images. https://github.com/OPMZZZ/BDF-NET .</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"92"},"PeriodicalIF":3.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s40658-024-00694-4
Zacharias Chalampalakis, Markus Ortner, Masar Almuttairi, Martin Bauer, Ernesto Gomez Tamm, Albrecht Ingo Schmidt, Barbara Katharina Geist, Marcus Hacker, Oliver Langer, Roberta Frass-Kriegl, Ivo Rausch
Background: Accurate pharmacokinetic modelling in PET necessitates measurements of an input function, which ideally is acquired non-invasively from image data. For hepatic pharmacokinetic modelling two input functions need to be considered, to account for the blood supply from the hepatic artery and portal vein. Image-derived measurements at the portal vein are challenging due to its small size and image artifacts caused by respiratory motion. In this work we seek to demonstrate, using phantom experiments, how a dedicated PET/MR protocol can tackle these challenges and potentially provide input function measurements of the portal vein in a clinical setup.
Methods: A custom 3D printed PET/MR phantom was constructed to mimic the liver and portal vein. PET/MR acquisitions were made with emulated respiratory motion. The PET/MR imaging protocol consisted of high-resolution anatomical MR imaging of the portal vein, followed by a PET acquisition in parallel to a dedicated motion-tracking MR sequence. Motion tracking and deformation information were extracted from PET data and subsequently used in PET reconstruction to produce dynamic series of motion-free PET images. Anatomical MR images were used post PET reconstruction for partial volume correction of the input function measurements.
Results: Reconstruction of dynamic PET data with motion-compensation provided nearly motion-free series of PET frame data, suitable for image derived input function measurements of the portal vein. After partial volume correction, the individual input function measurements were within a 16.1% error range from the true activity in the portal vein compartment at the time of PET acquisition.
Conclusion: The proposed protocol demonstrates clinically feasible PET/MR imaging of the liver for pharmacokinetic studies with accurate quantification of the portal vein input function, including correction for respiratory motion and partial volume effects.
背景:PET 药物动力学模型的准确建立需要对输入函数进行测量,而输入函数最好是从图像数据中非侵入性获取的。肝药代动力学建模需要考虑两个输入函数,以考虑肝动脉和门静脉的血液供应。由于门静脉较小,且呼吸运动会造成图像伪影,因此门静脉的图像衍生测量具有挑战性。在这项工作中,我们试图利用模型实验来证明专用 PET/MR 方案如何应对这些挑战,并有可能在临床设置中提供门静脉的输入功能测量:方法:定制三维打印 PET/MR 模型,模拟肝脏和门静脉。PET/MR 采集是在模拟呼吸运动的情况下进行的。PET/MR 成像方案包括门静脉的高分辨率解剖 MR 成像,然后在专用运动跟踪 MR 序列的同时进行 PET 采集。从 PET 数据中提取运动跟踪和变形信息,然后用于 PET 重建,以生成无运动的动态系列 PET 图像。PET 重建后的解剖 MR 图像用于输入功能测量的部分容积校正:结果:利用运动补偿重建动态 PET 数据可提供几乎无运动的 PET 帧数据系列,适用于门静脉的图像导出输入功能测量。经过部分容积校正后,单个输入功能测量值与 PET 采集时门静脉区真实活动的误差范围在 16.1% 以内:结论:所提出的方案证明了用于药物动力学研究的肝脏 PET/MR 成像在临床上是可行的,能准确量化门静脉输入功能,包括校正呼吸运动和部分容积效应。
{"title":"Development of quantitative PET/MR imaging for measurements of hepatic portal vein input function: a phantom study.","authors":"Zacharias Chalampalakis, Markus Ortner, Masar Almuttairi, Martin Bauer, Ernesto Gomez Tamm, Albrecht Ingo Schmidt, Barbara Katharina Geist, Marcus Hacker, Oliver Langer, Roberta Frass-Kriegl, Ivo Rausch","doi":"10.1186/s40658-024-00694-4","DOIUrl":"10.1186/s40658-024-00694-4","url":null,"abstract":"<p><strong>Background: </strong>Accurate pharmacokinetic modelling in PET necessitates measurements of an input function, which ideally is acquired non-invasively from image data. For hepatic pharmacokinetic modelling two input functions need to be considered, to account for the blood supply from the hepatic artery and portal vein. Image-derived measurements at the portal vein are challenging due to its small size and image artifacts caused by respiratory motion. In this work we seek to demonstrate, using phantom experiments, how a dedicated PET/MR protocol can tackle these challenges and potentially provide input function measurements of the portal vein in a clinical setup.</p><p><strong>Methods: </strong>A custom 3D printed PET/MR phantom was constructed to mimic the liver and portal vein. PET/MR acquisitions were made with emulated respiratory motion. The PET/MR imaging protocol consisted of high-resolution anatomical MR imaging of the portal vein, followed by a PET acquisition in parallel to a dedicated motion-tracking MR sequence. Motion tracking and deformation information were extracted from PET data and subsequently used in PET reconstruction to produce dynamic series of motion-free PET images. Anatomical MR images were used post PET reconstruction for partial volume correction of the input function measurements.</p><p><strong>Results: </strong>Reconstruction of dynamic PET data with motion-compensation provided nearly motion-free series of PET frame data, suitable for image derived input function measurements of the portal vein. After partial volume correction, the individual input function measurements were within a 16.1% error range from the true activity in the portal vein compartment at the time of PET acquisition.</p><p><strong>Conclusion: </strong>The proposed protocol demonstrates clinically feasible PET/MR imaging of the liver for pharmacokinetic studies with accurate quantification of the portal vein input function, including correction for respiratory motion and partial volume effects.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"90"},"PeriodicalIF":3.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s40658-024-00693-5
Anna Stenvall, Irma Ceric Andelius, Elias Nilsson, Albin Lindvall, Erik Larsson, Johan Gustafsson
Background: The aim was to compare bias and precision for 177Lu-SPECT activity-concentration estimation using a dual-headed Anger SPECT system and a ring-configured CZT SPECT system. This was investigated for imaging at 208 keV and 113 keV, respectively.
Methods: Phantom experiments were performed on a GE Discovery 670 system with 5/8'' NaI(Tl) crystal (dual-headed Anger system) and a GE StarGuide (ring-configured CZT system). Six spheres (1.2 mL to 113 mL) in a NEMA PET body phantom were filled with 99mTc and 177Lu, separately. Mean relative errors and coefficients of variation (CV) in estimated sphere activity concentration were studied over six timeframes of 10 min each for the two systems. For 177Lu, similar acquisitions were also performed for an anthropomorphic phantom with two spheres (10 mL and 25 mL) in a liver with non-radioactive background and a sphere-to-background ratio of 15:1. Tomographic reconstruction was performed using OS-EM with 10 subsets with compensation for attenuation, scatter, and distance-dependent spatial resolution. For the Anger system, up to 40 iterations were used and for the ring-configured CZT system up to 30 iterations were used.
Results: The two systems showed similar mean relative errors and CVs for 177Lu when using an energy window around 208 keV, while the ring-configured system demonstrated a lower bias for a similar CV compared to the Anger system for 99mTc and for 177Lu when using an energy window around 113 keV. However, total activity in the phantom tended to be overestimated in both systems for these cases.
Conclusions: The ring-configured CZT system is a viable alternative to the dual-headed Anger system equipped with medium-energy collimators for 177Lu-SPECT and shows a potential advantage for activity-concentration estimation when operated at 113 keV. However, further consideration of the preservation of total activity is warranted.
{"title":"Bias and precision of SPECT-based <sup>177</sup>Lu activity-concentration estimation using a ring-configured solid-state versus a dual-headed anger system.","authors":"Anna Stenvall, Irma Ceric Andelius, Elias Nilsson, Albin Lindvall, Erik Larsson, Johan Gustafsson","doi":"10.1186/s40658-024-00693-5","DOIUrl":"10.1186/s40658-024-00693-5","url":null,"abstract":"<p><strong>Background: </strong>The aim was to compare bias and precision for <sup>177</sup>Lu-SPECT activity-concentration estimation using a dual-headed Anger SPECT system and a ring-configured CZT SPECT system. This was investigated for imaging at 208 keV and 113 keV, respectively.</p><p><strong>Methods: </strong>Phantom experiments were performed on a GE Discovery 670 system with 5/8'' NaI(Tl) crystal (dual-headed Anger system) and a GE StarGuide (ring-configured CZT system). Six spheres (1.2 mL to 113 mL) in a NEMA PET body phantom were filled with <sup>99m</sup>Tc and <sup>177</sup>Lu, separately. Mean relative errors and coefficients of variation (CV) in estimated sphere activity concentration were studied over six timeframes of 10 min each for the two systems. For <sup>177</sup>Lu, similar acquisitions were also performed for an anthropomorphic phantom with two spheres (10 mL and 25 mL) in a liver with non-radioactive background and a sphere-to-background ratio of 15:1. Tomographic reconstruction was performed using OS-EM with 10 subsets with compensation for attenuation, scatter, and distance-dependent spatial resolution. For the Anger system, up to 40 iterations were used and for the ring-configured CZT system up to 30 iterations were used.</p><p><strong>Results: </strong>The two systems showed similar mean relative errors and CVs for <sup>177</sup>Lu when using an energy window around 208 keV, while the ring-configured system demonstrated a lower bias for a similar CV compared to the Anger system for <sup>99m</sup>Tc and for <sup>177</sup>Lu when using an energy window around 113 keV. However, total activity in the phantom tended to be overestimated in both systems for these cases.</p><p><strong>Conclusions: </strong>The ring-configured CZT system is a viable alternative to the dual-headed Anger system equipped with medium-energy collimators for <sup>177</sup>Lu-SPECT and shows a potential advantage for activity-concentration estimation when operated at 113 keV. However, further consideration of the preservation of total activity is warranted.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"91"},"PeriodicalIF":3.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1186/s40658-024-00684-6
Christopher Hoog, Pierre-Malick Koulibaly, Nicolas Sas, Laetitia Imbert, Gilles Le Rouzic, Romain Popoff, Jean-Noël Badel, Ludovic Ferrer
<p><strong>Purpose: </strong>For the first time, three currently available 360° CZT-SPECT/CT cameras were compared under clinical conditions using phantom-based measurements.</p><p><strong>Methods: </strong>A <sup>99m</sup>Tc- and a <sup>177</sup>Lu-customized NEMA IEC body phantom were imaged with three different cameras, StarGuide (GE Healthcare), VERITON-CT versions 200 (V200) and 400 (V400) (Spectrum Dynamics Medical) under the same clinical conditions. Energy resolution and volumetric sensitivity were evaluated from energy spectra. Vendors provided the best reconstruction parameters dedicated to visualization and/or quantification, based on their respective software developments. For both <sup>99m</sup>Tc- and <sup>177</sup>Lu-phantoms, noise level, quantification accuracy, and recovery coefficient (RC) were performed with 3DSlicer. Image quality metrics from an approach called "task-based" were computed with iQMetrix-CT on <sup>99m</sup>Tc visual reconstructions to assess, through spatial frequencies, noise texture in the background (NPS) and contrast restitution of a hot insert (TTF). Spatial resolution indices were calculated from frequencies corresponding to TTF<sub>10%</sub> and TTF<sub>50%</sub>.</p><p><strong>Results: </strong>Despite the higher sensitivity of VERITON cameras and the enhanced energy resolution of the V400 (3.2% at 140 keV, 5.2% at 113 keV, and 3.6% at 208 keV), StarGuide presents comparable image quality. This highlights the need to differentiate sensitivity from count quality, which is influenced by hardware design (collimator, detector block) and conditions image quality as well as the reconstruction process (algorithms, scatter correction, noise regulation). For <sup>99m</sup>Tc imaging, the quantitative image optimization approach based on RC<sub>mean</sub> for StarGuide versus RC<sub>max</sub> for V200 and V400 systems (RC<sub>mean</sub>/RC<sub>max</sub>: 0.9/1.8; 0.5/0.9; 0.5/0.9 respectively-Ø37 mm). SR<sub>TB10/50</sub> showed nearly equivalent spatial resolution performances across the different reconstructed images. For <sup>177</sup>Lu imaging, the 113 keV imaging of the V200 and V400 systems demonstrated strong performances in both image quality and quantification, while StarGuide and V400 systems offer even better potential due to their ability to exploit signals from both the 113 and 208 keV peaks. <sup>177</sup>Lu quantification was optimized according to RC<sub>max</sub> for all cameras and reconstructions (1.07 ± 0.09-Ø37 mm).</p><p><strong>Conclusions: </strong>The three cameras have equivalent potential for <sup>99m</sup>Tc imaging, while StarGuide and V400 have demonstrated higher potential for <sup>177</sup>Lu. Dedicated visual or quantitative reconstructions offer better specific performances compared to the unified visual/quantitative reconstruction. The task-based approach appears to be promising for in-depth comparison of images in the context of system characterization/comparison and protocol
{"title":"360° CZT-SPECT/CT cameras: <sup>99m</sup>Tc- and <sup>177</sup>Lu-phantom-based evaluation under clinical conditions.","authors":"Christopher Hoog, Pierre-Malick Koulibaly, Nicolas Sas, Laetitia Imbert, Gilles Le Rouzic, Romain Popoff, Jean-Noël Badel, Ludovic Ferrer","doi":"10.1186/s40658-024-00684-6","DOIUrl":"https://doi.org/10.1186/s40658-024-00684-6","url":null,"abstract":"<p><strong>Purpose: </strong>For the first time, three currently available 360° CZT-SPECT/CT cameras were compared under clinical conditions using phantom-based measurements.</p><p><strong>Methods: </strong>A <sup>99m</sup>Tc- and a <sup>177</sup>Lu-customized NEMA IEC body phantom were imaged with three different cameras, StarGuide (GE Healthcare), VERITON-CT versions 200 (V200) and 400 (V400) (Spectrum Dynamics Medical) under the same clinical conditions. Energy resolution and volumetric sensitivity were evaluated from energy spectra. Vendors provided the best reconstruction parameters dedicated to visualization and/or quantification, based on their respective software developments. For both <sup>99m</sup>Tc- and <sup>177</sup>Lu-phantoms, noise level, quantification accuracy, and recovery coefficient (RC) were performed with 3DSlicer. Image quality metrics from an approach called \"task-based\" were computed with iQMetrix-CT on <sup>99m</sup>Tc visual reconstructions to assess, through spatial frequencies, noise texture in the background (NPS) and contrast restitution of a hot insert (TTF). Spatial resolution indices were calculated from frequencies corresponding to TTF<sub>10%</sub> and TTF<sub>50%</sub>.</p><p><strong>Results: </strong>Despite the higher sensitivity of VERITON cameras and the enhanced energy resolution of the V400 (3.2% at 140 keV, 5.2% at 113 keV, and 3.6% at 208 keV), StarGuide presents comparable image quality. This highlights the need to differentiate sensitivity from count quality, which is influenced by hardware design (collimator, detector block) and conditions image quality as well as the reconstruction process (algorithms, scatter correction, noise regulation). For <sup>99m</sup>Tc imaging, the quantitative image optimization approach based on RC<sub>mean</sub> for StarGuide versus RC<sub>max</sub> for V200 and V400 systems (RC<sub>mean</sub>/RC<sub>max</sub>: 0.9/1.8; 0.5/0.9; 0.5/0.9 respectively-Ø37 mm). SR<sub>TB10/50</sub> showed nearly equivalent spatial resolution performances across the different reconstructed images. For <sup>177</sup>Lu imaging, the 113 keV imaging of the V200 and V400 systems demonstrated strong performances in both image quality and quantification, while StarGuide and V400 systems offer even better potential due to their ability to exploit signals from both the 113 and 208 keV peaks. <sup>177</sup>Lu quantification was optimized according to RC<sub>max</sub> for all cameras and reconstructions (1.07 ± 0.09-Ø37 mm).</p><p><strong>Conclusions: </strong>The three cameras have equivalent potential for <sup>99m</sup>Tc imaging, while StarGuide and V400 have demonstrated higher potential for <sup>177</sup>Lu. Dedicated visual or quantitative reconstructions offer better specific performances compared to the unified visual/quantitative reconstruction. The task-based approach appears to be promising for in-depth comparison of images in the context of system characterization/comparison and protocol","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"89"},"PeriodicalIF":3.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1186/s40658-024-00690-8
Tinsu Pan
Misregistration between CT and PET in PET/CT is mainly caused by respiratory motion or irregular respiration during the CT scan in PET/CT. Other than repeat CT, repeat PET/CT, or data-driven gated (DDG) CT, there is no practical approach to mitigate the misregistration artifacts and subsequent CT attenuation correction (CTAC) of the PET data. DDG PET derives a respiratory motion model based on the multiple phases of PET images without hardware gating and it allows for a potential correction of the misregistration artifacts based on the respiratory motion model. The purpose of this commentary was to compare the recent two publications on matching the random phase of helical CT with one of the PET phases derived from the motion model of DDG PET and warping the misregistered helical CT for CTAC of and registration with PET or DDG PET. The two publications were similar in methodology. However, the data sets used for the comparison were different and could potentially impact their conclusions.
在 PET/CT 中,CT 和 PET 之间的错位主要是由 PET/CT CT 扫描过程中的呼吸运动或不规则呼吸造成的。除了重复 CT、重复 PET/CT 或数据驱动门控(DDG)CT 外,目前还没有切实可行的方法来减少 PET 数据的错配伪影和随后的 CT 衰减校正(CTAC)。DDG PET 根据 PET 图像的多个相位推导出呼吸运动模型,无需硬件选通,并可根据呼吸运动模型对错误定位伪影进行潜在校正。这篇评论的目的是比较最近发表的两篇文章,它们分别涉及将螺旋 CT 的随机相位与根据 DDG PET 运动模型推导出的 PET 相位之一进行匹配,以及将错误注册的螺旋 CT 扭曲,以便与 PET 或 DDG PET 进行 CTAC 和注册。这两份出版物的方法相似。但是,用于比较的数据集不同,可能会影响它们的结论。
{"title":"Comments on the paper \"Data-driven gating (DDG)-based motion match for improved CTAC registration. EJNMMI Physics. 2024;11(1):42.\"","authors":"Tinsu Pan","doi":"10.1186/s40658-024-00690-8","DOIUrl":"10.1186/s40658-024-00690-8","url":null,"abstract":"<p><p>Misregistration between CT and PET in PET/CT is mainly caused by respiratory motion or irregular respiration during the CT scan in PET/CT. Other than repeat CT, repeat PET/CT, or data-driven gated (DDG) CT, there is no practical approach to mitigate the misregistration artifacts and subsequent CT attenuation correction (CTAC) of the PET data. DDG PET derives a respiratory motion model based on the multiple phases of PET images without hardware gating and it allows for a potential correction of the misregistration artifacts based on the respiratory motion model. The purpose of this commentary was to compare the recent two publications on matching the random phase of helical CT with one of the PET phases derived from the motion model of DDG PET and warping the misregistered helical CT for CTAC of and registration with PET or DDG PET. The two publications were similar in methodology. However, the data sets used for the comparison were different and could potentially impact their conclusions.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"88"},"PeriodicalIF":3.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493914/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: This study investigates the integration of Artificial Intelligence (AI) in compensating the lack of time-of-flight (TOF) of the GE Omni Legend PET/CT, which utilizes BGO scintillation crystals.
Methods: The current study evaluates the image quality of the GE Omni Legend PET/CT using a NEMA IQ phantom. It investigates the impact on imaging performance of various deep learning precision levels (low, medium, high) across different data acquisition durations. Quantitative analysis was performed using metrics such as contrast recovery coefficient (CRC), background variability (BV), and contrast to noise Ratio (CNR). Additionally, patient images reconstructed with various deep learning precision levels are presented to illustrate the impact on image quality.
Results: The deep learning approach significantly reduced background variability, particularly for the smallest region of interest. We observed improvements in background variability of 11.8 , 17.2 , and 14.3 for low, medium, and high precision deep learning, respectively. The results also indicate a significant improvement in larger spheres when considering both background variability and contrast recovery coefficient. The high precision deep learning approach proved advantageous for short scans and exhibited potential in improving detectability of small lesions. The exemplary patient study shows that the noise was suppressed for all deep learning cases, but low precision deep learning also reduced the lesion contrast (about -30 ), while high precision deep learning increased the contrast (about 10 ).
Conclusion: This study conducted a thorough evaluation of deep learning algorithms in the GE Omni Legend PET/CT scanner, demonstrating that these methods enhance image quality, with notable improvements in CRC and CNR, thereby optimizing lesion detectability and offering opportunities to reduce image acquisition time.
背景:本研究调查了人工智能(AI)在补偿通用电气Omni Legend PET/CT飞行时间(TOF)不足方面的整合情况,GE Omni Legend PET/CT使用的是BGO闪烁晶体:本研究使用 NEMA IQ 模型评估了 GE Omni Legend PET/CT 的图像质量。它研究了不同深度学习精度水平(低、中、高)在不同数据采集持续时间内对成像性能的影响。使用对比度恢复系数(CRC)、背景变异性(BV)和对比度与噪声比(CNR)等指标进行了定量分析。此外,还展示了使用不同深度学习精度水平重建的患者图像,以说明对图像质量的影响:结果:深度学习方法大大降低了背景变异性,尤其是最小感兴趣区的背景变异性。我们观察到,低、中、高精度深度学习的背景变异性分别提高了 11.8%、17.2% 和 14.3%。结果还表明,同时考虑背景变异性和对比度恢复系数时,较大的球体也有显著改善。事实证明,高精度深度学习方法在短扫描中具有优势,在提高小病灶的可探测性方面具有潜力。典型患者研究表明,所有深度学习案例都抑制了噪声,但低精度深度学习也降低了病变对比度(约-30%),而高精度深度学习则提高了对比度(约10%):本研究对通用电气 Omni Legend PET/CT 扫描仪中的深度学习算法进行了全面评估,结果表明,这些方法可提高图像质量,显著改善 CRC 和 CNR,从而优化病灶可探测性,并提供缩短图像采集时间的机会。
{"title":"Assessing the deep learning based image quality enhancements for the BGO based GE omni legend PET/CT.","authors":"Meysam Dadgar, Amaryllis Verstraete, Jens Maebe, Yves D'Asseler, Stefaan Vandenberghe","doi":"10.1186/s40658-024-00688-2","DOIUrl":"https://doi.org/10.1186/s40658-024-00688-2","url":null,"abstract":"<p><strong>Background: </strong>This study investigates the integration of Artificial Intelligence (AI) in compensating the lack of time-of-flight (TOF) of the GE Omni Legend PET/CT, which utilizes BGO scintillation crystals.</p><p><strong>Methods: </strong>The current study evaluates the image quality of the GE Omni Legend PET/CT using a NEMA IQ phantom. It investigates the impact on imaging performance of various deep learning precision levels (low, medium, high) across different data acquisition durations. Quantitative analysis was performed using metrics such as contrast recovery coefficient (CRC), background variability (BV), and contrast to noise Ratio (CNR). Additionally, patient images reconstructed with various deep learning precision levels are presented to illustrate the impact on image quality.</p><p><strong>Results: </strong>The deep learning approach significantly reduced background variability, particularly for the smallest region of interest. We observed improvements in background variability of 11.8 <math><mo>%</mo></math> , 17.2 <math><mo>%</mo></math> , and 14.3 <math><mo>%</mo></math> for low, medium, and high precision deep learning, respectively. The results also indicate a significant improvement in larger spheres when considering both background variability and contrast recovery coefficient. The high precision deep learning approach proved advantageous for short scans and exhibited potential in improving detectability of small lesions. The exemplary patient study shows that the noise was suppressed for all deep learning cases, but low precision deep learning also reduced the lesion contrast (about -30 <math><mo>%</mo></math> ), while high precision deep learning increased the contrast (about 10 <math><mo>%</mo></math> ).</p><p><strong>Conclusion: </strong>This study conducted a thorough evaluation of deep learning algorithms in the GE Omni Legend PET/CT scanner, demonstrating that these methods enhance image quality, with notable improvements in CRC and CNR, thereby optimizing lesion detectability and offering opportunities to reduce image acquisition time.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"86"},"PeriodicalIF":3.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}