A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species. Capillary electrophoresis (CE) is regarded as a sensitive and faster tool for charged species estimation in biotherapeutics. In this study, we aim to combine the separation power of chromatographic and electrophoretic tools (liquid chromatography [LC]-CE) so as to achieve maximum resolution of mAb charge variants. Hydrophobic interaction chromatography (HIC) has been used as the preferred LC mode with CE for achieving successful separation of both charge and hydrophobic variants for two of the mAbs (trastuzumab and rituximab). The standalone HIC and capillary zone electrophoresis (CZE) methods separated 4 hydrophobic variants and 7 charge variants for each mAb, whereas the 2DLC method separated 10 and 11 variants for mAbs A and B. On the other hand, the HIC-CZE-UV method resolved 29 variants in mAb A and 23 variants in mAb B. The reproducibility of the HIC-CZE-UV method was demonstrated by % change in values of retention time (RT) and peak area as <5% (mAb A), <3% (mAb B), and <12% (for both mAbs), respectively. Thus, the utility of the proposed LC-CE method for characterization of mAb charge variants has been displayed.
全面了解单克隆抗体(mAbs)中的电荷异质性对于确保产品质量合格至关重要。因此,生物制药生产商需要通过先进的分析技术对其产品进行彻底表征。最近,二维液相色谱(2DLC)方法在分辨复杂带电物种方面越来越受欢迎。毛细管电泳(CE)被认为是估算生物治疗药物中带电物种的灵敏而快速的工具。在本研究中,我们旨在结合色谱和电泳工具(液相色谱 [LC]- CE)的分离能力,从而最大限度地分辨 mAb 的电荷变体。疏水相互作用色谱(HIC)已被用作首选的液相色谱模式,并配合 CE 成功分离了两种 mAb(曲妥珠单抗和利妥昔单抗)的电荷变体和疏水变体。独立的 HIC 和毛细管区带电泳 (CZE) 方法分离了每种 mAb 的 4 种疏水变体和 7 种电荷变体,而 2DLC 方法则分离了 mAb A 和 B 的 10 种和 11 种变体。
{"title":"Offline Coupling of Hydrophobic Interaction Chromatography-Capillary Zone Electrophoresis for Monitoring Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies.","authors":"Deepika Sarin, Sunil Kumar, Anurag S Rathore","doi":"10.1002/elps.202400158","DOIUrl":"https://doi.org/10.1002/elps.202400158","url":null,"abstract":"<p><p>A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species. Capillary electrophoresis (CE) is regarded as a sensitive and faster tool for charged species estimation in biotherapeutics. In this study, we aim to combine the separation power of chromatographic and electrophoretic tools (liquid chromatography [LC]-CE) so as to achieve maximum resolution of mAb charge variants. Hydrophobic interaction chromatography (HIC) has been used as the preferred LC mode with CE for achieving successful separation of both charge and hydrophobic variants for two of the mAbs (trastuzumab and rituximab). The standalone HIC and capillary zone electrophoresis (CZE) methods separated 4 hydrophobic variants and 7 charge variants for each mAb, whereas the 2DLC method separated 10 and 11 variants for mAbs A and B. On the other hand, the HIC-CZE-UV method resolved 29 variants in mAb A and 23 variants in mAb B. The reproducibility of the HIC-CZE-UV method was demonstrated by % change in values of retention time (RT) and peak area as <5% (mAb A), <3% (mAb B), and <12% (for both mAbs), respectively. Thus, the utility of the proposed LC-CE method for characterization of mAb charge variants has been displayed.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The analysis of biopharmaceuticals for charge variants occurs from early-stage samples through formulation and process-development optimization. Higher throughput methods allow increased analysis of these samples to facilitate greater understanding of the samples and to better optimize their production and formulation. To enable higher throughput charge variant analysis, a new, rapid platform imaged capillary isoelectric focusing (icIEF) method was optimized to be two to three times faster than standard methods.
{"title":"Development of the SupersonicIEF Method for High-Throughput Charge Variant Analysis.","authors":"Will McElroy, Christopher D Heger","doi":"10.1002/elps.202400117","DOIUrl":"https://doi.org/10.1002/elps.202400117","url":null,"abstract":"<p><p>The analysis of biopharmaceuticals for charge variants occurs from early-stage samples through formulation and process-development optimization. Higher throughput methods allow increased analysis of these samples to facilitate greater understanding of the samples and to better optimize their production and formulation. To enable higher throughput charge variant analysis, a new, rapid platform imaged capillary isoelectric focusing (icIEF) method was optimized to be two to three times faster than standard methods.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteopontin (OPN) in milk plays an important role in intestinal and brain development in early infancy, and great attention has been focused on OPN isolation to add extra OPN in infant formula. However, large-scale OPN isolation is limited by the low efficiency of sample pretreatment. Herein, we utilized preparative reciprocating free-flow isoelectric focusing (RFFIEF) to showcase the enrichment of low-abundance OPN in bovine milk, which contained an extremely high concentration of unwanted proteins. The reciprocating IEF format and the design of the multi-channel collector allowed us to enrich OPN in 1 L milk within 6 h. We removed 97.5% of unwanted proteins and obtained an enrichment factor of 11. Thus, our RFFIEF method can be applied to the preparative pretreatment of the large-scale milk sample and potentially improve the efficiency of downstream OPN purification.
{"title":"Enrichment of low-abundance osteopontin in bovine milk via reciprocating free-flow isoelectric focusing.","authors":"Ke-Er Chen, Youli Tian, Yiren Cao, Zixian Yu, Qiang Zhang, Weiwen Liu, Yishu Xing, Chengxi Cao, Zhishen Mu, Xu Xu","doi":"10.1002/elps.202400071","DOIUrl":"https://doi.org/10.1002/elps.202400071","url":null,"abstract":"<p><p>Osteopontin (OPN) in milk plays an important role in intestinal and brain development in early infancy, and great attention has been focused on OPN isolation to add extra OPN in infant formula. However, large-scale OPN isolation is limited by the low efficiency of sample pretreatment. Herein, we utilized preparative reciprocating free-flow isoelectric focusing (RFFIEF) to showcase the enrichment of low-abundance OPN in bovine milk, which contained an extremely high concentration of unwanted proteins. The reciprocating IEF format and the design of the multi-channel collector allowed us to enrich OPN in 1 L milk within 6 h. We removed 97.5% of unwanted proteins and obtained an enrichment factor of 11. Thus, our RFFIEF method can be applied to the preparative pretreatment of the large-scale milk sample and potentially improve the efficiency of downstream OPN purification.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma O'Sullivan-Carroll, Anna Hogan, N O'Mahoney, S Howlett, C Pyne, P Downing, M Lynch, Eric Moore
Ireland has a successful pharmaceutical industry with over 100 pharmaceutical manufacturing sites across the island. Although this success has many benefits, the irreversible effects emissions from pharmaceutical manufacturing can have on the environment are a major drawback. Although known pollutants are regularly monitored with limits set out by the Environmental Protection Agency, one significant pollutant has been overlooked: pharmaceutical pollution. Detecting these pollutants and ensuring they are at a safe concentration for the environment is of utmost importance. In recent years, capillary electrophoresis is being recognised as a suitable alternative to high-performance liquid chromatography due to its many benefits such as faster analysis, water-based buffers and smaller sample volumes. In this paper, a capillary zone electrophoresis (CZE) method with a preconcentration step of solid-phase extraction was developed for an anti-parasitic active pharmaceutical ingredient (API) called ZB23. The API was successfully detected in a wastewater sample in less than 10 min using the CZE parameters of 25 mM borate buffer with a pH of 10.5, 15% MeOH, 10 kV voltage, 25 mbar for 5 s injection size, an Lt of 40 cm, an Ld of 31.5 cm and a detection wavelength of 214 nm.
{"title":"Determination of an Anti-Parasitic Active Pharmaceutical Ingredient in Wastewater Effluents Using Capillary Zone Electrophoresis.","authors":"Emma O'Sullivan-Carroll, Anna Hogan, N O'Mahoney, S Howlett, C Pyne, P Downing, M Lynch, Eric Moore","doi":"10.1002/elps.202400131","DOIUrl":"https://doi.org/10.1002/elps.202400131","url":null,"abstract":"<p><p>Ireland has a successful pharmaceutical industry with over 100 pharmaceutical manufacturing sites across the island. Although this success has many benefits, the irreversible effects emissions from pharmaceutical manufacturing can have on the environment are a major drawback. Although known pollutants are regularly monitored with limits set out by the Environmental Protection Agency, one significant pollutant has been overlooked: pharmaceutical pollution. Detecting these pollutants and ensuring they are at a safe concentration for the environment is of utmost importance. In recent years, capillary electrophoresis is being recognised as a suitable alternative to high-performance liquid chromatography due to its many benefits such as faster analysis, water-based buffers and smaller sample volumes. In this paper, a capillary zone electrophoresis (CZE) method with a preconcentration step of solid-phase extraction was developed for an anti-parasitic active pharmaceutical ingredient (API) called ZB23. The API was successfully detected in a wastewater sample in less than 10 min using the CZE parameters of 25 mM borate buffer with a pH of 10.5, 15% MeOH, 10 kV voltage, 25 mbar for 5 s injection size, an Lt of 40 cm, an Ld of 31.5 cm and a detection wavelength of 214 nm.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dariya Tukhmetova, Nicole Langhammer, Jochen Vogl, Björn Meermann
Isotope ratio analysis of sulfur in biological samples using inductively coupled plasma-mass spectrometry (ICP-MS) has gained significant interest for applications in quantitative proteomics. Advancements like coupling separation techniques with multicollector ICP-MS (MC-ICP-MS) enhance the throughput of species-specific sulfur isotope ratio measurements, fostering new avenues for studying sulfur metabolism in complex biological matrices. This proof-of-concept study investigates the feasibility of online CE/MC-ICP-MS for directly analyzing sulfur isotope ratios in proteins (albumin). Leveraging our previous work on the applicability of CE/ICP-MS for quantifying sulfur-containing biological molecules, we explore its potential for sulfur isotope analysis. Our results demonstrate that direct analysis of sulfur isotopes in albumin protein using online capillary electrophoresis MC-ICP-MS (CE/MC-ICP-MS) eliminates the need for laborious pretreatment steps, while yielding isotope ratios comparable to the reference values. Although initial precision can be improved through further system optimization and protein injection techniques, this approach paves the way for future analysis of mixtures of various biological compounds in, for example, clinical diagnosis studies.
{"title":"Online Isotope Analysis of Sulfur in Proteins via Capillary Electrophoresis Coupled With Multicollector ICP-MS (CE/MC-ICP-MS): A Proof of Concept Study.","authors":"Dariya Tukhmetova, Nicole Langhammer, Jochen Vogl, Björn Meermann","doi":"10.1002/elps.202400128","DOIUrl":"https://doi.org/10.1002/elps.202400128","url":null,"abstract":"<p><p>Isotope ratio analysis of sulfur in biological samples using inductively coupled plasma-mass spectrometry (ICP-MS) has gained significant interest for applications in quantitative proteomics. Advancements like coupling separation techniques with multicollector ICP-MS (MC-ICP-MS) enhance the throughput of species-specific sulfur isotope ratio measurements, fostering new avenues for studying sulfur metabolism in complex biological matrices. This proof-of-concept study investigates the feasibility of online CE/MC-ICP-MS for directly analyzing sulfur isotope ratios in proteins (albumin). Leveraging our previous work on the applicability of CE/ICP-MS for quantifying sulfur-containing biological molecules, we explore its potential for sulfur isotope analysis. Our results demonstrate that direct analysis of sulfur isotopes in albumin protein using online capillary electrophoresis MC-ICP-MS (CE/MC-ICP-MS) eliminates the need for laborious pretreatment steps, while yielding isotope ratios comparable to the reference values. Although initial precision can be improved through further system optimization and protein injection techniques, this approach paves the way for future analysis of mixtures of various biological compounds in, for example, clinical diagnosis studies.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Li, He Ren, Fan Yang, Man Chen, Weifen Sun, Lei Jiang, Zhixiao Gao, Yacheng Liu, Xiling Liu
A novel supplementary non-CODIS STR multiplex assay designated as the "Microreader 23HS Plex ID System" was developed. The Microreader 23HS Plex ID System enables simultaneous profiling of 23 STR loci and the amelogenin locus. The majority of these loci are non-CODIS STRs (D4S2408, D9S2157, D20S161, D3S2459, D18S1364, D13S305, D1S2142, D19S400, D6S1017, D7S1517, D2S1776, D2S1360, D3S1744, D16S3391, D3S1545, D11S4463, D20S85, D1S549, D10S2325, D21S2055), with the exception of three CODIS STRs (D2S441, D12S391, and D22S1045). Followed the recommendations of Scientific Working Group on DNA Analysis Methods (SWGDAM) and the Chinese validation standards, a comprehensive set of validation studies were conducted, encompassing PCR conditions, stutter ratio and peak height balance, sensitivity, precision and accuracy, reproducibility, species specificity, inhibition, as well as mixture testing. The results demonstrated that the Microreader 23HS Plex ID System is a reliable and robust assay, with well-balanced peak heights, high precision and accuracy, species specificity, and resistance to common inhibitors. The sensitivity of the assay was determined to be 0.125 ng of template DNA. In mixture study, all minor alleles were detected in two-sample mixtures across various ratios (1:19, 1:9, 1:4, 3:7, 2:3, 1:1, 3:2, 4:1, 9:1, and 19:1). In population study, a total of 500 unrelated individuals of Han ethnicity from East China were genotyped. The allele frequencies and forensic population genetic parameters were calculated, with a cumulative random match probability of 7.757 × 10-27, and a total power of discrimination exceeding 0.999,999,999,999,999,999,999,999,99. In conclusion, the Microreader 23HS Plex ID System shows promise as a valuable supplementary tool for forensic applications, particularly in addressing complex kinship testing and challenges posed by STR mutation.
{"title":"Developmental Validation of the Microreader 23HS Plex ID System: A Novel Supplementary Non-CODIS STR Multiplex Assay for Forensic Application.","authors":"Hui Li, He Ren, Fan Yang, Man Chen, Weifen Sun, Lei Jiang, Zhixiao Gao, Yacheng Liu, Xiling Liu","doi":"10.1002/elps.202400106","DOIUrl":"https://doi.org/10.1002/elps.202400106","url":null,"abstract":"<p><p>A novel supplementary non-CODIS STR multiplex assay designated as the \"Microreader 23HS Plex ID System\" was developed. The Microreader 23HS Plex ID System enables simultaneous profiling of 23 STR loci and the amelogenin locus. The majority of these loci are non-CODIS STRs (D4S2408, D9S2157, D20S161, D3S2459, D18S1364, D13S305, D1S2142, D19S400, D6S1017, D7S1517, D2S1776, D2S1360, D3S1744, D16S3391, D3S1545, D11S4463, D20S85, D1S549, D10S2325, D21S2055), with the exception of three CODIS STRs (D2S441, D12S391, and D22S1045). Followed the recommendations of Scientific Working Group on DNA Analysis Methods (SWGDAM) and the Chinese validation standards, a comprehensive set of validation studies were conducted, encompassing PCR conditions, stutter ratio and peak height balance, sensitivity, precision and accuracy, reproducibility, species specificity, inhibition, as well as mixture testing. The results demonstrated that the Microreader 23HS Plex ID System is a reliable and robust assay, with well-balanced peak heights, high precision and accuracy, species specificity, and resistance to common inhibitors. The sensitivity of the assay was determined to be 0.125 ng of template DNA. In mixture study, all minor alleles were detected in two-sample mixtures across various ratios (1:19, 1:9, 1:4, 3:7, 2:3, 1:1, 3:2, 4:1, 9:1, and 19:1). In population study, a total of 500 unrelated individuals of Han ethnicity from East China were genotyped. The allele frequencies and forensic population genetic parameters were calculated, with a cumulative random match probability of 7.757 × 10<sup>-27</sup>, and a total power of discrimination exceeding 0.999,999,999,999,999,999,999,999,99. In conclusion, the Microreader 23HS Plex ID System shows promise as a valuable supplementary tool for forensic applications, particularly in addressing complex kinship testing and challenges posed by STR mutation.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.
毛细管电泳(CE)是一种功能强大的分析技术,具有分离效率高(分辨系数超过 1.5)、样品消耗量少(小于 10 µL)、成本效益高以及环保(减少溶剂使用和降低操作成本)等优点。然而,CE 也面临着一些限制,包括对低浓度样品的检测灵敏度有限以及复杂生物基质的干扰。在进行 CE 分析之前,通常会使用固相微萃取(SPME)和液相微萃取(LPME)等样品制备程序,以提高分析的灵敏度和选择性。最近,新型材料的开发取得了进展,它们有可能大大提高 SPME 和 LPME 的性能。本综述探讨了各种材料及其与 CE 结合后在微萃取中的应用。这些材料包括碳纳米管、共价有机框架、金属有机框架、石墨烯及其衍生物、分子印迹聚合物、层状双氢氧化物、离子液体和深共晶溶剂。目前正在研究如何在萃取方法中使用这些创新材料。利用一系列样品基质的分析物回收率和检测限来评估它们对萃取选择性、灵敏度和效率的影响。探索用于样品制备技术的新材料非常重要,因为它能使研究人员解决目前 CE 的局限性。新型材料的开发有可能大大提高萃取选择性、灵敏度和效率,从而改善 CE 在复杂生物分析中的性能。
{"title":"Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons.","authors":"Alaa Bedair, Mahmoud Hamed, Fotouh R Mansour","doi":"10.1002/elps.202400114","DOIUrl":"https://doi.org/10.1002/elps.202400114","url":null,"abstract":"<p><p>Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yali Sun, Anis H Khimani, Yanhong Tong, Zhi-Xiang Lu
Circular RNAs (circRNAs) have emerged as pivotal players in RNA therapeutics. Unlike linear counterparts, circRNAs possess a closed-loop structure, conferring them with enhanced stability and resistance to degradation. Ribozyme-based strategy stands out as the predominant method for synthetic circRNA production, by precisely cleaving and promoting the formation of a covalent circular structure. However, there is still a lack of analytical methods that can provide high-throughput and quantitative analysis to facilitate the circRNA vector engineering process. In the report, we detail analytical methods to characterize and evaluate ribozyme-based RNA circularization efficiency. Our approach will capture the attention of researchers interested in optimizing RNA circularization efficiency, as well as those focused on exploring key elements for ribozyme catalytic activity.
{"title":"Analytical Methods to Evaluate RNA Circularization Efficiency.","authors":"Yali Sun, Anis H Khimani, Yanhong Tong, Zhi-Xiang Lu","doi":"10.1002/elps.202400067","DOIUrl":"https://doi.org/10.1002/elps.202400067","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) have emerged as pivotal players in RNA therapeutics. Unlike linear counterparts, circRNAs possess a closed-loop structure, conferring them with enhanced stability and resistance to degradation. Ribozyme-based strategy stands out as the predominant method for synthetic circRNA production, by precisely cleaving and promoting the formation of a covalent circular structure. However, there is still a lack of analytical methods that can provide high-throughput and quantitative analysis to facilitate the circRNA vector engineering process. In the report, we detail analytical methods to characterize and evaluate ribozyme-based RNA circularization efficiency. Our approach will capture the attention of researchers interested in optimizing RNA circularization efficiency, as well as those focused on exploring key elements for ribozyme catalytic activity.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxi Zhang, Gang Wu, Min Du, Tao Bo, Tong Chen, Tiemin Huang
Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.
原生质谱(nMS)是一种尖端技术,它利用电喷雾离子化质谱(ESI-MS)来研究溶液中的大型生物分子及其复合物。nMS 的目标是在向气相过渡的过程中保留分析物的原生结构特征和相互作用,从而深入了解它们的天然构象。在生物制药开发过程中,nMS 是分析复杂蛋白质异质性的有力工具,可以在与其自然折叠形态极为相似的状态下检查非共价键结合的集合体。在此,我们介绍了一种成像毛细管等电聚焦-MS(icIEF-MS)工作流程,用于表征原生条件下半胱氨酸连接的抗体-药物共轭物(ADC)。对两种 ADC 进行了分析:最新一代半胱氨酸连接型 ADC polatuzumab vedotin 和首个获得 FDA 批准的半胱氨酸连接型 ADC brentuximab vedotin。该工作流程得益于最近开发的 icIEF 系统,该系统便于 MS 使用,能够直接与高灵敏度 MS 仪器连接。结果表明,icIEF 分离受药物有效载荷和翻译后修饰 (PTM) 的影响,而翻译后修饰可通过 MS 快速鉴定。总之,这种原生 icIEF-MS 方法展示了了解和控制关键质量属性 (CQAs) 的潜力,而关键质量属性对安全有效地使用 ADCs 至关重要。
{"title":"Imaged Capillary Isoelectric Focusing Coupled to High-Resolution Mass Spectrometry (icIEF-MS) for Cysteine-Linked Antibody-Drug Conjugate (ADC) Heterogeneity Characterization Under Native Condition.","authors":"Xiaoxi Zhang, Gang Wu, Min Du, Tao Bo, Tong Chen, Tiemin Huang","doi":"10.1002/elps.202400083","DOIUrl":"https://doi.org/10.1002/elps.202400083","url":null,"abstract":"<p><p>Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}