首页 > 最新文献

ELECTROPHORESIS最新文献

英文 中文
Offline Coupling of Hydrophobic Interaction Chromatography-Capillary Zone Electrophoresis for Monitoring Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies. 离线耦合疏水相互作用色谱-毛细管区电泳,用于监测重组单克隆抗体的电荷异质性。
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-14 DOI: 10.1002/elps.202400158
Deepika Sarin, Sunil Kumar, Anurag S Rathore

A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species. Capillary electrophoresis (CE) is regarded as a sensitive and faster tool for charged species estimation in biotherapeutics. In this study, we aim to combine the separation power of chromatographic and electrophoretic tools (liquid chromatography [LC]-CE) so as to achieve maximum resolution of mAb charge variants. Hydrophobic interaction chromatography (HIC) has been used as the preferred LC mode with CE for achieving successful separation of both charge and hydrophobic variants for two of the mAbs (trastuzumab and rituximab). The standalone HIC and capillary zone electrophoresis (CZE) methods separated 4 hydrophobic variants and 7 charge variants for each mAb, whereas the 2DLC method separated 10 and 11 variants for mAbs A and B. On the other hand, the HIC-CZE-UV method resolved 29 variants in mAb A and 23 variants in mAb B. The reproducibility of the HIC-CZE-UV method was demonstrated by % change in values of retention time (RT) and peak area as <5% (mAb A), <3% (mAb B), and <12% (for both mAbs), respectively. Thus, the utility of the proposed LC-CE method for characterization of mAb charge variants has been displayed.

全面了解单克隆抗体(mAbs)中的电荷异质性对于确保产品质量合格至关重要。因此,生物制药生产商需要通过先进的分析技术对其产品进行彻底表征。最近,二维液相色谱(2DLC)方法在分辨复杂带电物种方面越来越受欢迎。毛细管电泳(CE)被认为是估算生物治疗药物中带电物种的灵敏而快速的工具。在本研究中,我们旨在结合色谱和电泳工具(液相色谱 [LC]- CE)的分离能力,从而最大限度地分辨 mAb 的电荷变体。疏水相互作用色谱(HIC)已被用作首选的液相色谱模式,并配合 CE 成功分离了两种 mAb(曲妥珠单抗和利妥昔单抗)的电荷变体和疏水变体。独立的 HIC 和毛细管区带电泳 (CZE) 方法分离了每种 mAb 的 4 种疏水变体和 7 种电荷变体,而 2DLC 方法则分离了 mAb A 和 B 的 10 种和 11 种变体。
{"title":"Offline Coupling of Hydrophobic Interaction Chromatography-Capillary Zone Electrophoresis for Monitoring Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies.","authors":"Deepika Sarin, Sunil Kumar, Anurag S Rathore","doi":"10.1002/elps.202400158","DOIUrl":"https://doi.org/10.1002/elps.202400158","url":null,"abstract":"<p><p>A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species. Capillary electrophoresis (CE) is regarded as a sensitive and faster tool for charged species estimation in biotherapeutics. In this study, we aim to combine the separation power of chromatographic and electrophoretic tools (liquid chromatography [LC]-CE) so as to achieve maximum resolution of mAb charge variants. Hydrophobic interaction chromatography (HIC) has been used as the preferred LC mode with CE for achieving successful separation of both charge and hydrophobic variants for two of the mAbs (trastuzumab and rituximab). The standalone HIC and capillary zone electrophoresis (CZE) methods separated 4 hydrophobic variants and 7 charge variants for each mAb, whereas the 2DLC method separated 10 and 11 variants for mAbs A and B. On the other hand, the HIC-CZE-UV method resolved 29 variants in mAb A and 23 variants in mAb B. The reproducibility of the HIC-CZE-UV method was demonstrated by % change in values of retention time (RT) and peak area as <5% (mAb A), <3% (mAb B), and <12% (for both mAbs), respectively. Thus, the utility of the proposed LC-CE method for characterization of mAb charge variants has been displayed.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of the SupersonicIEF Method for High-Throughput Charge Variant Analysis. 开发用于高通量电荷变异分析的超音速 IEF 方法。
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-14 DOI: 10.1002/elps.202400117
Will McElroy, Christopher D Heger

The analysis of biopharmaceuticals for charge variants occurs from early-stage samples through formulation and process-development optimization. Higher throughput methods allow increased analysis of these samples to facilitate greater understanding of the samples and to better optimize their production and formulation. To enable higher throughput charge variant analysis, a new, rapid platform imaged capillary isoelectric focusing (icIEF) method was optimized to be two to three times faster than standard methods.

生物制药的电荷变异分析从早期样品到配方和工艺开发优化都会进行。采用高通量方法可以增加对这些样品的分析,从而加深对样品的了解,更好地优化其生产和配方。为了实现更高通量的电荷变异分析,我们对一种新型快速平台成像毛细管等电聚焦(icIEF)方法进行了优化,使其比标准方法快两到三倍。
{"title":"Development of the SupersonicIEF Method for High-Throughput Charge Variant Analysis.","authors":"Will McElroy, Christopher D Heger","doi":"10.1002/elps.202400117","DOIUrl":"https://doi.org/10.1002/elps.202400117","url":null,"abstract":"<p><p>The analysis of biopharmaceuticals for charge variants occurs from early-stage samples through formulation and process-development optimization. Higher throughput methods allow increased analysis of these samples to facilitate greater understanding of the samples and to better optimize their production and formulation. To enable higher throughput charge variant analysis, a new, rapid platform imaged capillary isoelectric focusing (icIEF) method was optimized to be two to three times faster than standard methods.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enrichment of low-abundance osteopontin in bovine milk via reciprocating free-flow isoelectric focusing. 通过往复式自由流等电聚焦富集牛乳中的低丰度补骨脂素
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-07 DOI: 10.1002/elps.202400071
Ke-Er Chen, Youli Tian, Yiren Cao, Zixian Yu, Qiang Zhang, Weiwen Liu, Yishu Xing, Chengxi Cao, Zhishen Mu, Xu Xu

Osteopontin (OPN) in milk plays an important role in intestinal and brain development in early infancy, and great attention has been focused on OPN isolation to add extra OPN in infant formula. However, large-scale OPN isolation is limited by the low efficiency of sample pretreatment. Herein, we utilized preparative reciprocating free-flow isoelectric focusing (RFFIEF) to showcase the enrichment of low-abundance OPN in bovine milk, which contained an extremely high concentration of unwanted proteins. The reciprocating IEF format and the design of the multi-channel collector allowed us to enrich OPN in 1 L milk within 6 h. We removed 97.5% of unwanted proteins and obtained an enrichment factor of 11. Thus, our RFFIEF method can be applied to the preparative pretreatment of the large-scale milk sample and potentially improve the efficiency of downstream OPN purification.

乳汁中的骨营养蛋白(OPN)在婴儿早期的肠道和大脑发育中发挥着重要作用,因此人们非常关注分离 OPN 以在婴儿配方奶粉中添加额外的 OPN。然而,由于样品预处理的效率较低,大规模的 OPN 分离受到了限制。在此,我们利用制备性往复自由流等电聚焦(RFFIEF)展示了在含有极高浓度无用蛋白质的牛乳中富集低丰度 OPN 的方法。因此,我们的 RFFIEF 方法可用于大规模牛奶样品的制备预处理,并有可能提高下游纯化 OPN 的效率。
{"title":"Enrichment of low-abundance osteopontin in bovine milk via reciprocating free-flow isoelectric focusing.","authors":"Ke-Er Chen, Youli Tian, Yiren Cao, Zixian Yu, Qiang Zhang, Weiwen Liu, Yishu Xing, Chengxi Cao, Zhishen Mu, Xu Xu","doi":"10.1002/elps.202400071","DOIUrl":"https://doi.org/10.1002/elps.202400071","url":null,"abstract":"<p><p>Osteopontin (OPN) in milk plays an important role in intestinal and brain development in early infancy, and great attention has been focused on OPN isolation to add extra OPN in infant formula. However, large-scale OPN isolation is limited by the low efficiency of sample pretreatment. Herein, we utilized preparative reciprocating free-flow isoelectric focusing (RFFIEF) to showcase the enrichment of low-abundance OPN in bovine milk, which contained an extremely high concentration of unwanted proteins. The reciprocating IEF format and the design of the multi-channel collector allowed us to enrich OPN in 1 L milk within 6 h. We removed 97.5% of unwanted proteins and obtained an enrichment factor of 11. Thus, our RFFIEF method can be applied to the preparative pretreatment of the large-scale milk sample and potentially improve the efficiency of downstream OPN purification.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of an Anti-Parasitic Active Pharmaceutical Ingredient in Wastewater Effluents Using Capillary Zone Electrophoresis. 利用毛细管区带电泳法测定废水中的抗寄生虫活性药物成分
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-07 DOI: 10.1002/elps.202400131
Emma O'Sullivan-Carroll, Anna Hogan, N O'Mahoney, S Howlett, C Pyne, P Downing, M Lynch, Eric Moore

Ireland has a successful pharmaceutical industry with over 100 pharmaceutical manufacturing sites across the island. Although this success has many benefits, the irreversible effects emissions from pharmaceutical manufacturing can have on the environment are a major drawback. Although known pollutants are regularly monitored with limits set out by the Environmental Protection Agency, one significant pollutant has been overlooked: pharmaceutical pollution. Detecting these pollutants and ensuring they are at a safe concentration for the environment is of utmost importance. In recent years, capillary electrophoresis is being recognised as a suitable alternative to high-performance liquid chromatography due to its many benefits such as faster analysis, water-based buffers and smaller sample volumes. In this paper, a capillary zone electrophoresis (CZE) method with a preconcentration step of solid-phase extraction was developed for an anti-parasitic active pharmaceutical ingredient (API) called ZB23. The API was successfully detected in a wastewater sample in less than 10 min using the CZE parameters of 25 mM borate buffer with a pH of 10.5, 15% MeOH, 10 kV voltage, 25 mbar for 5 s injection size, an Lt of 40 cm, an Ld of 31.5 cm and a detection wavelength of 214 nm.

爱尔兰拥有成功的制药业,全岛有 100 多个制药厂。虽然这种成功有很多好处,但制药业排放的废气可能对环境造成不可逆转的影响,这也是一大弊端。尽管环境保护局定期对已知污染物进行限值监测,但有一种重要的污染物却被忽视了:制药污染。检测这些污染物并确保其在环境中的安全浓度至关重要。近年来,毛细管电泳因其分析速度快、水基缓冲液和样品体积小等诸多优点,被认为是高效液相色谱法的合适替代品。本文针对一种名为 ZB23 的抗寄生虫活性药物成分(API),开发了一种带有固相萃取预浓缩步骤的毛细管区带电泳(CZE)方法。CZE 参数为 25 mM 硼酸盐缓冲液(pH 值为 10.5)、15%MeOH、10 kV 电压、25 mbar 5 秒进样量、Lt 为 40 cm、Ld 为 31.5 cm、检测波长为 214 nm。
{"title":"Determination of an Anti-Parasitic Active Pharmaceutical Ingredient in Wastewater Effluents Using Capillary Zone Electrophoresis.","authors":"Emma O'Sullivan-Carroll, Anna Hogan, N O'Mahoney, S Howlett, C Pyne, P Downing, M Lynch, Eric Moore","doi":"10.1002/elps.202400131","DOIUrl":"https://doi.org/10.1002/elps.202400131","url":null,"abstract":"<p><p>Ireland has a successful pharmaceutical industry with over 100 pharmaceutical manufacturing sites across the island. Although this success has many benefits, the irreversible effects emissions from pharmaceutical manufacturing can have on the environment are a major drawback. Although known pollutants are regularly monitored with limits set out by the Environmental Protection Agency, one significant pollutant has been overlooked: pharmaceutical pollution. Detecting these pollutants and ensuring they are at a safe concentration for the environment is of utmost importance. In recent years, capillary electrophoresis is being recognised as a suitable alternative to high-performance liquid chromatography due to its many benefits such as faster analysis, water-based buffers and smaller sample volumes. In this paper, a capillary zone electrophoresis (CZE) method with a preconcentration step of solid-phase extraction was developed for an anti-parasitic active pharmaceutical ingredient (API) called ZB23. The API was successfully detected in a wastewater sample in less than 10 min using the CZE parameters of 25 mM borate buffer with a pH of 10.5, 15% MeOH, 10 kV voltage, 25 mbar for 5 s injection size, an Lt of 40 cm, an Ld of 31.5 cm and a detection wavelength of 214 nm.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online Isotope Analysis of Sulfur in Proteins via Capillary Electrophoresis Coupled With Multicollector ICP-MS (CE/MC-ICP-MS): A Proof of Concept Study. 通过毛细管电泳与多收集器 ICP-MS (CE/MC-ICP-MS) 联机分析蛋白质中硫的同位素:概念验证研究。
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-30 DOI: 10.1002/elps.202400128
Dariya Tukhmetova, Nicole Langhammer, Jochen Vogl, Björn Meermann

Isotope ratio analysis of sulfur in biological samples using inductively coupled plasma-mass spectrometry (ICP-MS) has gained significant interest for applications in quantitative proteomics. Advancements like coupling separation techniques with multicollector ICP-MS (MC-ICP-MS) enhance the throughput of species-specific sulfur isotope ratio measurements, fostering new avenues for studying sulfur metabolism in complex biological matrices. This proof-of-concept study investigates the feasibility of online CE/MC-ICP-MS for directly analyzing sulfur isotope ratios in proteins (albumin). Leveraging our previous work on the applicability of CE/ICP-MS for quantifying sulfur-containing biological molecules, we explore its potential for sulfur isotope analysis. Our results demonstrate that direct analysis of sulfur isotopes in albumin protein using online capillary electrophoresis MC-ICP-MS (CE/MC-ICP-MS) eliminates the need for laborious pretreatment steps, while yielding isotope ratios comparable to the reference values. Although initial precision can be improved through further system optimization and protein injection techniques, this approach paves the way for future analysis of mixtures of various biological compounds in, for example, clinical diagnosis studies.

利用电感耦合等离子体质谱法(ICP-MS)对生物样本中的硫进行同位素比值分析,在定量蛋白质组学中的应用受到了极大关注。将分离技术与多收集器 ICP-MS (MC-ICP-MS)耦合等先进技术提高了物种特异性硫同位素比测量的通量,为研究复杂生物基质中的硫代谢开辟了新途径。这项概念验证研究调查了在线 CE/MC-ICP-MS 直接分析蛋白质(白蛋白)中硫同位素比值的可行性。利用 CE/ICP-MS 在量化含硫生物分子方面的应用,我们探索了其在硫同位素分析方面的潜力。我们的研究结果表明,利用在线毛细管电泳 MC-ICP-MS (CE/MC-ICP-MS)直接分析白蛋白中的硫同位素无需费力的前处理步骤,同时还能得到与参考值相当的同位素比值。虽然最初的精确度还可以通过进一步的系统优化和蛋白质注射技术来提高,但这种方法为今后分析各种生物化合物混合物(例如临床诊断研究)铺平了道路。
{"title":"Online Isotope Analysis of Sulfur in Proteins via Capillary Electrophoresis Coupled With Multicollector ICP-MS (CE/MC-ICP-MS): A Proof of Concept Study.","authors":"Dariya Tukhmetova, Nicole Langhammer, Jochen Vogl, Björn Meermann","doi":"10.1002/elps.202400128","DOIUrl":"https://doi.org/10.1002/elps.202400128","url":null,"abstract":"<p><p>Isotope ratio analysis of sulfur in biological samples using inductively coupled plasma-mass spectrometry (ICP-MS) has gained significant interest for applications in quantitative proteomics. Advancements like coupling separation techniques with multicollector ICP-MS (MC-ICP-MS) enhance the throughput of species-specific sulfur isotope ratio measurements, fostering new avenues for studying sulfur metabolism in complex biological matrices. This proof-of-concept study investigates the feasibility of online CE/MC-ICP-MS for directly analyzing sulfur isotope ratios in proteins (albumin). Leveraging our previous work on the applicability of CE/ICP-MS for quantifying sulfur-containing biological molecules, we explore its potential for sulfur isotope analysis. Our results demonstrate that direct analysis of sulfur isotopes in albumin protein using online capillary electrophoresis MC-ICP-MS (CE/MC-ICP-MS) eliminates the need for laborious pretreatment steps, while yielding isotope ratios comparable to the reference values. Although initial precision can be improved through further system optimization and protein injection techniques, this approach paves the way for future analysis of mixtures of various biological compounds in, for example, clinical diagnosis studies.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Validation of the Microreader 23HS Plex ID System: A Novel Supplementary Non-CODIS STR Multiplex Assay for Forensic Application. Microreader 23HS Plex ID 系统的开发验证:用于法医应用的新型补充性非 CODIS STR 多重检测。
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-30 DOI: 10.1002/elps.202400106
Hui Li, He Ren, Fan Yang, Man Chen, Weifen Sun, Lei Jiang, Zhixiao Gao, Yacheng Liu, Xiling Liu

A novel supplementary non-CODIS STR multiplex assay designated as the "Microreader 23HS Plex ID System" was developed. The Microreader 23HS Plex ID System enables simultaneous profiling of 23 STR loci and the amelogenin locus. The majority of these loci are non-CODIS STRs (D4S2408, D9S2157, D20S161, D3S2459, D18S1364, D13S305, D1S2142, D19S400, D6S1017, D7S1517, D2S1776, D2S1360, D3S1744, D16S3391, D3S1545, D11S4463, D20S85, D1S549, D10S2325, D21S2055), with the exception of three CODIS STRs (D2S441, D12S391, and D22S1045). Followed the recommendations of Scientific Working Group on DNA Analysis Methods (SWGDAM) and the Chinese validation standards, a comprehensive set of validation studies were conducted, encompassing PCR conditions, stutter ratio and peak height balance, sensitivity, precision and accuracy, reproducibility, species specificity, inhibition, as well as mixture testing. The results demonstrated that the Microreader 23HS Plex ID System is a reliable and robust assay, with well-balanced peak heights, high precision and accuracy, species specificity, and resistance to common inhibitors. The sensitivity of the assay was determined to be 0.125 ng of template DNA. In mixture study, all minor alleles were detected in two-sample mixtures across various ratios (1:19, 1:9, 1:4, 3:7, 2:3, 1:1, 3:2, 4:1, 9:1, and 19:1). In population study, a total of 500 unrelated individuals of Han ethnicity from East China were genotyped. The allele frequencies and forensic population genetic parameters were calculated, with a cumulative random match probability of 7.757 × 10-27, and a total power of discrimination exceeding 0.999,999,999,999,999,999,999,999,99. In conclusion, the Microreader 23HS Plex ID System shows promise as a valuable supplementary tool for forensic applications, particularly in addressing complex kinship testing and challenges posed by STR mutation.

我们开发了一种新型的辅助性非 CODIS STR 多重检测方法,命名为 "Microreader 23HS Plex ID 系统"。Microreader 23HS Plex ID 系统可同时分析 23 个 STR 基因座和淀粉样蛋白基因座。这些基因位点大部分是非 CODIS STR(D4S2408、D9S2157、D20S161、D3S2459、D18S1364、D13S305、D1S2142、D19S400、D6S1017、D7S1517、D2S1776、D2S1360、D3S1744、D16S1776、D3S1744)、D3S1744, D16S3391, D3S1545, D11S4463, D20S85, D1S549, D10S2325, D21S2055),只有三个 CODIS STR(D2S441、D12S391 和 D22S1045)除外。根据 DNA 分析方法科学工作组(SWGDAM)的建议和中国的验证标准,我们进行了一套全面的验证研究,包括 PCR 条件、滞后比和峰高平衡、灵敏度、精密度和准确度、重现性、物种特异性、抑制以及混合测试。结果表明,Microreader 23HS Plex ID 系统是一种可靠、稳健的检测方法,峰高均衡、精密度和准确度高、物种特异性强,而且对常见抑制剂具有抗性。测定灵敏度为 0.125 纳克模板 DNA。在混合物研究中,在不同比例(1:19、1:9、1:4、3:7、2:3、1:1、3:2、4:1、9:1 和 19:1)的两个样本混合物中检测到了所有小等位基因。在人群研究中,共对华东地区 500 名无血缘关系的汉族个体进行了基因分型。计算了等位基因频率和法医人群遗传参数,累计随机匹配概率为 7.757 × 10-27,总鉴别力超过 0.9999999999999999999。总之,Microreader 23HS Plex ID 系统有望成为法医应用的重要辅助工具,特别是在解决复杂的亲属关系测试和 STR 变异带来的挑战方面。
{"title":"Developmental Validation of the Microreader 23HS Plex ID System: A Novel Supplementary Non-CODIS STR Multiplex Assay for Forensic Application.","authors":"Hui Li, He Ren, Fan Yang, Man Chen, Weifen Sun, Lei Jiang, Zhixiao Gao, Yacheng Liu, Xiling Liu","doi":"10.1002/elps.202400106","DOIUrl":"https://doi.org/10.1002/elps.202400106","url":null,"abstract":"<p><p>A novel supplementary non-CODIS STR multiplex assay designated as the \"Microreader 23HS Plex ID System\" was developed. The Microreader 23HS Plex ID System enables simultaneous profiling of 23 STR loci and the amelogenin locus. The majority of these loci are non-CODIS STRs (D4S2408, D9S2157, D20S161, D3S2459, D18S1364, D13S305, D1S2142, D19S400, D6S1017, D7S1517, D2S1776, D2S1360, D3S1744, D16S3391, D3S1545, D11S4463, D20S85, D1S549, D10S2325, D21S2055), with the exception of three CODIS STRs (D2S441, D12S391, and D22S1045). Followed the recommendations of Scientific Working Group on DNA Analysis Methods (SWGDAM) and the Chinese validation standards, a comprehensive set of validation studies were conducted, encompassing PCR conditions, stutter ratio and peak height balance, sensitivity, precision and accuracy, reproducibility, species specificity, inhibition, as well as mixture testing. The results demonstrated that the Microreader 23HS Plex ID System is a reliable and robust assay, with well-balanced peak heights, high precision and accuracy, species specificity, and resistance to common inhibitors. The sensitivity of the assay was determined to be 0.125 ng of template DNA. In mixture study, all minor alleles were detected in two-sample mixtures across various ratios (1:19, 1:9, 1:4, 3:7, 2:3, 1:1, 3:2, 4:1, 9:1, and 19:1). In population study, a total of 500 unrelated individuals of Han ethnicity from East China were genotyped. The allele frequencies and forensic population genetic parameters were calculated, with a cumulative random match probability of 7.757 × 10<sup>-27</sup>, and a total power of discrimination exceeding 0.999,999,999,999,999,999,999,999,99. In conclusion, the Microreader 23HS Plex ID System shows promise as a valuable supplementary tool for forensic applications, particularly in addressing complex kinship testing and challenges posed by STR mutation.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons. 用最先进的样品制备材料重塑毛细管电泳:探索新视野。
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-30 DOI: 10.1002/elps.202400114
Alaa Bedair, Mahmoud Hamed, Fotouh R Mansour

Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.

毛细管电泳(CE)是一种功能强大的分析技术,具有分离效率高(分辨系数超过 1.5)、样品消耗量少(小于 10 µL)、成本效益高以及环保(减少溶剂使用和降低操作成本)等优点。然而,CE 也面临着一些限制,包括对低浓度样品的检测灵敏度有限以及复杂生物基质的干扰。在进行 CE 分析之前,通常会使用固相微萃取(SPME)和液相微萃取(LPME)等样品制备程序,以提高分析的灵敏度和选择性。最近,新型材料的开发取得了进展,它们有可能大大提高 SPME 和 LPME 的性能。本综述探讨了各种材料及其与 CE 结合后在微萃取中的应用。这些材料包括碳纳米管、共价有机框架、金属有机框架、石墨烯及其衍生物、分子印迹聚合物、层状双氢氧化物、离子液体和深共晶溶剂。目前正在研究如何在萃取方法中使用这些创新材料。利用一系列样品基质的分析物回收率和检测限来评估它们对萃取选择性、灵敏度和效率的影响。探索用于样品制备技术的新材料非常重要,因为它能使研究人员解决目前 CE 的局限性。新型材料的开发有可能大大提高萃取选择性、灵敏度和效率,从而改善 CE 在复杂生物分析中的性能。
{"title":"Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons.","authors":"Alaa Bedair, Mahmoud Hamed, Fotouh R Mansour","doi":"10.1002/elps.202400114","DOIUrl":"https://doi.org/10.1002/elps.202400114","url":null,"abstract":"<p><p>Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical Methods to Evaluate RNA Circularization Efficiency. 评估 RNA 循环效率的分析方法
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-30 DOI: 10.1002/elps.202400067
Yali Sun, Anis H Khimani, Yanhong Tong, Zhi-Xiang Lu

Circular RNAs (circRNAs) have emerged as pivotal players in RNA therapeutics. Unlike linear counterparts, circRNAs possess a closed-loop structure, conferring them with enhanced stability and resistance to degradation. Ribozyme-based strategy stands out as the predominant method for synthetic circRNA production, by precisely cleaving and promoting the formation of a covalent circular structure. However, there is still a lack of analytical methods that can provide high-throughput and quantitative analysis to facilitate the circRNA vector engineering process. In the report, we detail analytical methods to characterize and evaluate ribozyme-based RNA circularization efficiency. Our approach will capture the attention of researchers interested in optimizing RNA circularization efficiency, as well as those focused on exploring key elements for ribozyme catalytic activity.

环状 RNA(circRNA)已成为 RNA 疗法中的关键角色。与线性 RNA 不同,circRNA 具有闭环结构,使其具有更高的稳定性和抗降解性。基于核酸酶的策略通过精确裂解和促进共价环状结构的形成,成为合成 circRNA 的主要方法。然而,目前仍缺乏能提供高通量定量分析的分析方法,以促进 circRNA 载体的工程化进程。在报告中,我们详细介绍了表征和评估基于核糖酶的 RNA 环化效率的分析方法。我们的方法将吸引对优化 RNA 环化效率感兴趣的研究人员以及那些专注于探索核糖酶催化活性关键要素的研究人员的注意。
{"title":"Analytical Methods to Evaluate RNA Circularization Efficiency.","authors":"Yali Sun, Anis H Khimani, Yanhong Tong, Zhi-Xiang Lu","doi":"10.1002/elps.202400067","DOIUrl":"https://doi.org/10.1002/elps.202400067","url":null,"abstract":"<p><p>Circular RNAs (circRNAs) have emerged as pivotal players in RNA therapeutics. Unlike linear counterparts, circRNAs possess a closed-loop structure, conferring them with enhanced stability and resistance to degradation. Ribozyme-based strategy stands out as the predominant method for synthetic circRNA production, by precisely cleaving and promoting the formation of a covalent circular structure. However, there is still a lack of analytical methods that can provide high-throughput and quantitative analysis to facilitate the circRNA vector engineering process. In the report, we detail analytical methods to characterize and evaluate ribozyme-based RNA circularization efficiency. Our approach will capture the attention of researchers interested in optimizing RNA circularization efficiency, as well as those focused on exploring key elements for ribozyme catalytic activity.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaged Capillary Isoelectric Focusing Coupled to High-Resolution Mass Spectrometry (icIEF-MS) for Cysteine-Linked Antibody-Drug Conjugate (ADC) Heterogeneity Characterization Under Native Condition. 成像毛细管等电聚焦与高分辨率质谱联用技术(icIEF-MS)用于原生态条件下半胱氨酸连接抗体-药物共轭物(ADC)的异质性表征。
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-30 DOI: 10.1002/elps.202400083
Xiaoxi Zhang, Gang Wu, Min Du, Tao Bo, Tong Chen, Tiemin Huang

Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.

原生质谱(nMS)是一种尖端技术,它利用电喷雾离子化质谱(ESI-MS)来研究溶液中的大型生物分子及其复合物。nMS 的目标是在向气相过渡的过程中保留分析物的原生结构特征和相互作用,从而深入了解它们的天然构象。在生物制药开发过程中,nMS 是分析复杂蛋白质异质性的有力工具,可以在与其自然折叠形态极为相似的状态下检查非共价键结合的集合体。在此,我们介绍了一种成像毛细管等电聚焦-MS(icIEF-MS)工作流程,用于表征原生条件下半胱氨酸连接的抗体-药物共轭物(ADC)。对两种 ADC 进行了分析:最新一代半胱氨酸连接型 ADC polatuzumab vedotin 和首个获得 FDA 批准的半胱氨酸连接型 ADC brentuximab vedotin。该工作流程得益于最近开发的 icIEF 系统,该系统便于 MS 使用,能够直接与高灵敏度 MS 仪器连接。结果表明,icIEF 分离受药物有效载荷和翻译后修饰 (PTM) 的影响,而翻译后修饰可通过 MS 快速鉴定。总之,这种原生 icIEF-MS 方法展示了了解和控制关键质量属性 (CQAs) 的潜力,而关键质量属性对安全有效地使用 ADCs 至关重要。
{"title":"Imaged Capillary Isoelectric Focusing Coupled to High-Resolution Mass Spectrometry (icIEF-MS) for Cysteine-Linked Antibody-Drug Conjugate (ADC) Heterogeneity Characterization Under Native Condition.","authors":"Xiaoxi Zhang, Gang Wu, Min Du, Tao Bo, Tong Chen, Tiemin Huang","doi":"10.1002/elps.202400083","DOIUrl":"https://doi.org/10.1002/elps.202400083","url":null,"abstract":"<p><p>Native mass spectrometry (nMS) is a cutting-edge technique that leverages electrospray ionization MS (ESI-MS) to investigate large biomolecules and their complexes in solution. The goal of nMS is to retain the native structural features and interactions of the analytes during the transition to the gas phase, providing insights into their natural conformations. In biopharmaceutical development, nMS serves as a powerful tool for analyzing complex protein heterogeneity, allowing for the examination of non-covalently bonded assemblies in a state that closely resembles their natural folded form. Herein, we present an imaged capillary isoelectric focusing-MS (icIEF-MS) workflow to characterize cysteine-linked antibody-drug conjugate (ADC) under native conditions. Two ADCs were analyzed: a latest generation cysteine-linked ADC polatuzumab vedotin and the first FDA-approved cysteine-linked ADC brentuximab vedotin. This workflow benefits from a recently developed icIEF system that is MS-friendly and capable of directly coupling to a high-sensitivity MS instrument. Results show that the icIEF separation is influenced by both drug payloads and the post-translational modifications (PTMs), which are then promptly identified by MS. Overall, this native icIEF-MS method demonstrates the potential to understand and control the critical quality attributes (CQAs) that are essential for the safe and effective use of ADCs.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board: Electrophoresis 15–16'24 编辑委员会:电泳 15-16'24
IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-09-27 DOI: 10.1002/elps.202470092
{"title":"Editorial Board: Electrophoresis 15–16'24","authors":"","doi":"10.1002/elps.202470092","DOIUrl":"https://doi.org/10.1002/elps.202470092","url":null,"abstract":"","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202470092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ELECTROPHORESIS
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1