Hydrocephalus is a common neurological condition, characterized by the excessive accumulation of cerebrospinal fluid in the cerebral ventricles. Primary treatments for hydrocephalus mainly involve neurosurgical cerebrospinal fluid diversion, which hold high morbidity and failure rates, highlighting the necessity for the discovery of novel therapeutic approaches. Although the pathophysiology of hydrocephalus is highly multifactorial, impaired function of the brain ependymal cells plays a fundamental role in hydrocephalus. Here we show that GemC1 and McIdas, key regulators of multiciliated ependymal cell fate determination, induce direct cellular reprogramming towards ependyma. Our study reveals that ectopic expression of GemC1 and McIdas reprograms cortical astrocytes and programs mouse embryonic stem cells into ependyma. McIdas is sufficient to establish functional activity in the reprogrammed astrocytes. Furthermore, we show that McIdas' expression promotes ependymal cell regeneration in two different postnatal hydrocephalus mouse models: an intracranial hemorrhage and a genetic form of hydrocephalus and ameliorates the cytoarchitecture of the neurogenic niche. Our study provides evidence on the restoration of ependyma in animal models mimicking hydrocephalus that could be exploited towards future therapeutic interventions.
{"title":"Ependymal cell lineage reprogramming as a potential therapeutic intervention for hydrocephalus.","authors":"Konstantina Kaplani, Maria-Eleni Lalioti, Styliani Vassalou, Georgia Lokka, Evangelia Parlapani, Georgios Kritikos, Zoi Lygerou, Stavros Taraviras","doi":"10.1038/s44321-024-00156-5","DOIUrl":"10.1038/s44321-024-00156-5","url":null,"abstract":"<p><p>Hydrocephalus is a common neurological condition, characterized by the excessive accumulation of cerebrospinal fluid in the cerebral ventricles. Primary treatments for hydrocephalus mainly involve neurosurgical cerebrospinal fluid diversion, which hold high morbidity and failure rates, highlighting the necessity for the discovery of novel therapeutic approaches. Although the pathophysiology of hydrocephalus is highly multifactorial, impaired function of the brain ependymal cells plays a fundamental role in hydrocephalus. Here we show that GemC1 and McIdas, key regulators of multiciliated ependymal cell fate determination, induce direct cellular reprogramming towards ependyma. Our study reveals that ectopic expression of GemC1 and McIdas reprograms cortical astrocytes and programs mouse embryonic stem cells into ependyma. McIdas is sufficient to establish functional activity in the reprogrammed astrocytes. Furthermore, we show that McIdas' expression promotes ependymal cell regeneration in two different postnatal hydrocephalus mouse models: an intracranial hemorrhage and a genetic form of hydrocephalus and ameliorates the cytoarchitecture of the neurogenic niche. Our study provides evidence on the restoration of ependyma in animal models mimicking hydrocephalus that could be exploited towards future therapeutic interventions.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Di-(2-ethylhexyl) phthalate (DEHP), an environmental pollutant, has been widely detected in both environmental and clinical samples, representing a serious threat to the homeostasis of the endocrine system. The accumulation of DEHP is notably pronounced in the liver and can lead to liver damage. The lack of effective high-throughput screening system retards the discovery of such drugs that can specifically target and eliminate the detrimental impact of DEHP. Here, by developing a Cy5-modified single-strand DNA-aptamer-based approach targeting DEHP, we have identified luteolin as a potential drug, which showcasing robust efficacy in detoxifying the DEHP by facilitating the expulsion of DEHP in both mouse primary hepatocytes and livers. Mechanistically, luteolin enhances the protein degradation of hepatic urocanate hydratase 1 (Uroc1) by targeting its Ala270 and Val272 sites. More importantly, trans-urocanic acid (trans-UCA), as the substrate of Uroc1, possesses properties similar to luteolin by regulating the lysosomal exocytosis through the inhibition of the ERK1/2 signal cascade. In summary, luteolin serves as a potent therapeutic agent in efficiently detoxifying DEHP in the liver by regulating the UCA/Uroc1 axis.
{"title":"Luteolin detoxifies DEHP and prevents liver injury by degrading Uroc1 protein in mice.","authors":"Huiting Wang, Ziting Zhao, Mingming Song, Wenxiang Zhang, Chang Liu, Siyu Chen","doi":"10.1038/s44321-024-00160-9","DOIUrl":"10.1038/s44321-024-00160-9","url":null,"abstract":"<p><p>Di-(2-ethylhexyl) phthalate (DEHP), an environmental pollutant, has been widely detected in both environmental and clinical samples, representing a serious threat to the homeostasis of the endocrine system. The accumulation of DEHP is notably pronounced in the liver and can lead to liver damage. The lack of effective high-throughput screening system retards the discovery of such drugs that can specifically target and eliminate the detrimental impact of DEHP. Here, by developing a Cy5-modified single-strand DNA-aptamer-based approach targeting DEHP, we have identified luteolin as a potential drug, which showcasing robust efficacy in detoxifying the DEHP by facilitating the expulsion of DEHP in both mouse primary hepatocytes and livers. Mechanistically, luteolin enhances the protein degradation of hepatic urocanate hydratase 1 (Uroc1) by targeting its Ala270 and Val272 sites. More importantly, trans-urocanic acid (trans-UCA), as the substrate of Uroc1, possesses properties similar to luteolin by regulating the lysosomal exocytosis through the inhibition of the ERK1/2 signal cascade. In summary, luteolin serves as a potent therapeutic agent in efficiently detoxifying DEHP in the liver by regulating the UCA/Uroc1 axis.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1038/s44321-024-00161-8
Morgane Fournier, Joaquim Javary, Vincent Roh, Nadine Fournier, Freddy Radtke
Cancer cell plasticity contributes significantly to the failure of chemo- and targeted therapies in triple-negative breast cancer (TNBC). Molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance are largely unknown. Using a genome-wide CRISPR-Cas9 screen, we investigated escape mechanisms of NOTCH-driven TNBC treated with a gamma-secretase inhibitor (GSI) and identified SOX2 as a target of resistance to Notch inhibition. We describe a novel reciprocal inhibitory feedback mechanism between Notch signaling and SOX2. Specifically, Notch signaling inhibits SOX2 expression through its target genes of the HEY family, and SOX2 inhibits Notch signaling through direct interaction with RBPJ. This mechanism shapes divergent cell states with NOTCH positive TNBC being more epithelial-like, while SOX2 expression correlates with epithelial-mesenchymal transition, induces cancer stem cell features and GSI resistance. To counteract monotherapy-induced tumor relapse, we assessed GSI-paclitaxel and dasatinib-paclitaxel combination treatments in NOTCH inhibitor-sensitive and -resistant TNBC xenotransplants, respectively. These distinct preventive combinations and second-line treatment option dependent on NOTCH1 and SOX2 expression in TNBC are able to induce tumor growth control and reduce metastatic burden.
{"title":"Reciprocal inhibition of NOTCH and SOX2 shapes tumor cell plasticity and therapeutic escape in triple-negative breast cancer.","authors":"Morgane Fournier, Joaquim Javary, Vincent Roh, Nadine Fournier, Freddy Radtke","doi":"10.1038/s44321-024-00161-8","DOIUrl":"https://doi.org/10.1038/s44321-024-00161-8","url":null,"abstract":"<p><p>Cancer cell plasticity contributes significantly to the failure of chemo- and targeted therapies in triple-negative breast cancer (TNBC). Molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance are largely unknown. Using a genome-wide CRISPR-Cas9 screen, we investigated escape mechanisms of NOTCH-driven TNBC treated with a gamma-secretase inhibitor (GSI) and identified SOX2 as a target of resistance to Notch inhibition. We describe a novel reciprocal inhibitory feedback mechanism between Notch signaling and SOX2. Specifically, Notch signaling inhibits SOX2 expression through its target genes of the HEY family, and SOX2 inhibits Notch signaling through direct interaction with RBPJ. This mechanism shapes divergent cell states with NOTCH positive TNBC being more epithelial-like, while SOX2 expression correlates with epithelial-mesenchymal transition, induces cancer stem cell features and GSI resistance. To counteract monotherapy-induced tumor relapse, we assessed GSI-paclitaxel and dasatinib-paclitaxel combination treatments in NOTCH inhibitor-sensitive and -resistant TNBC xenotransplants, respectively. These distinct preventive combinations and second-line treatment option dependent on NOTCH1 and SOX2 expression in TNBC are able to induce tumor growth control and reduce metastatic burden.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fragmentomic features of circulating cell free mitochondrial DNA (ccf-mtDNA) including fragmentation profile, 5' end base preference and motif diversity are poorly understood. Here, we generated ccf-mtDNA sequencing data of 1607 plasma samples using capture-based next generation sequencing. We firstly found that fragmentomic features of ccf-mtDNA were remarkably different from those of circulating cell free nuclear DNA. Furthermore, region-specific fragmentomic features of ccf-mtDNA were observed, which was associated with protein binding, base composition and special structure of mitochondrial DNA. When comparing to non-cancer controls, six types of cancer patients exhibited aberrant fragmentomic features. Then, cancer detection models were built based on the fragmentomic features. Both internal and external validation cohorts demonstrated the excellent capacity of our model in distinguishing cancer patients from non-cancer control, with all area under curve higher than 0.9322. The overall accuracy of tissue-of-origin was 89.24% and 87.92% for six cancer types in two validation cohort, respectively. Altogether, our study comprehensively describes cancer-specific fragmentomic features of ccf-mtDNA and provides a proof-of-principle for the ccf-mtDNA fragmentomics-based multi-cancer detection and tissue-of-origin classification.
{"title":"Aberrant fragmentomic features of circulating cell-free mitochondrial DNA as novel biomarkers for multi-cancer detection.","authors":"Yang Liu, Fan Peng, Siyuan Wang, Huanmin Jiao, Miao Dang, Kaixiang Zhou, Wenjie Guo, Shanshan Guo, Huanqin Zhang, Wenjie Song, Jinliang Xing","doi":"10.1038/s44321-024-00163-6","DOIUrl":"https://doi.org/10.1038/s44321-024-00163-6","url":null,"abstract":"<p><p>Fragmentomic features of circulating cell free mitochondrial DNA (ccf-mtDNA) including fragmentation profile, 5' end base preference and motif diversity are poorly understood. Here, we generated ccf-mtDNA sequencing data of 1607 plasma samples using capture-based next generation sequencing. We firstly found that fragmentomic features of ccf-mtDNA were remarkably different from those of circulating cell free nuclear DNA. Furthermore, region-specific fragmentomic features of ccf-mtDNA were observed, which was associated with protein binding, base composition and special structure of mitochondrial DNA. When comparing to non-cancer controls, six types of cancer patients exhibited aberrant fragmentomic features. Then, cancer detection models were built based on the fragmentomic features. Both internal and external validation cohorts demonstrated the excellent capacity of our model in distinguishing cancer patients from non-cancer control, with all area under curve higher than 0.9322. The overall accuracy of tissue-of-origin was 89.24% and 87.92% for six cancer types in two validation cohort, respectively. Altogether, our study comprehensively describes cancer-specific fragmentomic features of ccf-mtDNA and provides a proof-of-principle for the ccf-mtDNA fragmentomics-based multi-cancer detection and tissue-of-origin classification.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1038/s44321-024-00157-4
Jing Chen, Michal Sobecki, Ewelina Krzywinska, Kevin Thierry, Mélissa Masmoudi, Shunmugam Nagarajan, Zheng Fan, Jingyi He, Irina Ferapontova, Eric Nelius, Frauke Seehusen, Dagmar Gotthardt, Norihiko Takeda, Lukas Sommer, Veronika Sexl, Christian Münz, David DeNardo, Ana Hennino, Christian Stockmann
A hallmark feature of pancreatic ductal adenocarcinoma (PDAC) is massive intratumoral fibrosis, designated as desmoplasia. Desmoplasia is characterized by the expansion of cancer-associated fibroblasts (CAFs) and a massive increase in extracellular matrix (ECM). During fibrogenesis, distinct genes become reactivated specifically in fibroblasts, e.g., the disintegrin metalloprotease, ADAM12. Previous studies have shown that immunotherapeutic ablation of ADAM12+ cells reduces fibrosis in various organs. In preclinical mouse models of PDAC, we observe ADAM12 expression in CAFs as well as in tumor cells but not in healthy mouse pancreas. Therefore, we tested prophylactic and therapeutic vaccination against ADAM12 in murine PDAC and observed delayed tumor growth along with a reduction in CAFs and tumor desmoplasia. This is furthermore associated with vascular normalization and alleviated tumor hypoxia. The ADAM12 vaccine induces a redistribution of CD8+ T cells within the tumor and cytotoxic responses against ADAM12+ cells. In summary, vaccination against the endogenous fibroblast target ADAM12 effectively depletes CAFs, reduces desmoplasia and delays the growth of murine PDACs. These results provide proof-of-principle for the development of vaccination-based immunotherapies to treat tumor desmoplasia.
{"title":"Fibrolytic vaccination against ADAM12 reduces desmoplasia in preclinical pancreatic adenocarcinomas.","authors":"Jing Chen, Michal Sobecki, Ewelina Krzywinska, Kevin Thierry, Mélissa Masmoudi, Shunmugam Nagarajan, Zheng Fan, Jingyi He, Irina Ferapontova, Eric Nelius, Frauke Seehusen, Dagmar Gotthardt, Norihiko Takeda, Lukas Sommer, Veronika Sexl, Christian Münz, David DeNardo, Ana Hennino, Christian Stockmann","doi":"10.1038/s44321-024-00157-4","DOIUrl":"https://doi.org/10.1038/s44321-024-00157-4","url":null,"abstract":"<p><p>A hallmark feature of pancreatic ductal adenocarcinoma (PDAC) is massive intratumoral fibrosis, designated as desmoplasia. Desmoplasia is characterized by the expansion of cancer-associated fibroblasts (CAFs) and a massive increase in extracellular matrix (ECM). During fibrogenesis, distinct genes become reactivated specifically in fibroblasts, e.g., the disintegrin metalloprotease, ADAM12. Previous studies have shown that immunotherapeutic ablation of ADAM12<sup>+</sup> cells reduces fibrosis in various organs. In preclinical mouse models of PDAC, we observe ADAM12 expression in CAFs as well as in tumor cells but not in healthy mouse pancreas. Therefore, we tested prophylactic and therapeutic vaccination against ADAM12 in murine PDAC and observed delayed tumor growth along with a reduction in CAFs and tumor desmoplasia. This is furthermore associated with vascular normalization and alleviated tumor hypoxia. The ADAM12 vaccine induces a redistribution of CD8<sup>+</sup> T cells within the tumor and cytotoxic responses against ADAM12<sup>+</sup> cells. In summary, vaccination against the endogenous fibroblast target ADAM12 effectively depletes CAFs, reduces desmoplasia and delays the growth of murine PDACs. These results provide proof-of-principle for the development of vaccination-based immunotherapies to treat tumor desmoplasia.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1038/s44321-024-00152-9
Van-Cuong Pham,Claudia Jasmin Rödel,Mariaelena Valentino,Matteo Malinverno,Alessio Paolini,Juliane Münch,Candice Pasquier,Favour C Onyeogaziri,Bojana Lazovic,Romuald Girard,Janne Koskimäki,Melina Hußmann,Benjamin Keith,Daniel Jachimowicz,Franziska Kohl,Astrid Hagelkruys,Josef M Penninger,Stefan Schulte-Merker,Issam A Awad,Ryan Hicks,Peetra U Magnusson,Eva Faurobert,Massimiliano Pagani,Salim Abdelilah-Seyfried
Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown. Here we show that Chromobox Protein Homolog 7 (CBX7), component of the Polycomb Repressive Complex 1, contributes to pathophysiological KLF2 signaling during zebrafish cardiovascular development. CBX7/cbx7a mRNA is strongly upregulated in lesions of CCM patients, and in human, mouse, and zebrafish CCM-deficient endothelial cells. The silencing or pharmacological inhibition of CBX7/Cbx7a suppresses pathological CCM phenotypes in ccm2 zebrafish, CCM2-deficient HUVECs, and in a pre-clinical murine CCM3 disease model. Whole-transcriptome datasets from zebrafish cardiovascular tissues and human endothelial cells reveal a role of CBX7/Cbx7a in the activation of KLF2 target genes including TEK, ANGPT1, WNT9, and endoMT-associated genes. Our findings uncover an intricate interplay in the regulation of Klf2-dependent biomechanical signaling by CBX7 in CCM. This work also provides insights for therapeutic strategies in the pathogenesis of CCM.
{"title":"Epigenetic regulation by polycomb repressive complex 1 promotes cerebral cavernous malformations.","authors":"Van-Cuong Pham,Claudia Jasmin Rödel,Mariaelena Valentino,Matteo Malinverno,Alessio Paolini,Juliane Münch,Candice Pasquier,Favour C Onyeogaziri,Bojana Lazovic,Romuald Girard,Janne Koskimäki,Melina Hußmann,Benjamin Keith,Daniel Jachimowicz,Franziska Kohl,Astrid Hagelkruys,Josef M Penninger,Stefan Schulte-Merker,Issam A Awad,Ryan Hicks,Peetra U Magnusson,Eva Faurobert,Massimiliano Pagani,Salim Abdelilah-Seyfried","doi":"10.1038/s44321-024-00152-9","DOIUrl":"https://doi.org/10.1038/s44321-024-00152-9","url":null,"abstract":"Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown. Here we show that Chromobox Protein Homolog 7 (CBX7), component of the Polycomb Repressive Complex 1, contributes to pathophysiological KLF2 signaling during zebrafish cardiovascular development. CBX7/cbx7a mRNA is strongly upregulated in lesions of CCM patients, and in human, mouse, and zebrafish CCM-deficient endothelial cells. The silencing or pharmacological inhibition of CBX7/Cbx7a suppresses pathological CCM phenotypes in ccm2 zebrafish, CCM2-deficient HUVECs, and in a pre-clinical murine CCM3 disease model. Whole-transcriptome datasets from zebrafish cardiovascular tissues and human endothelial cells reveal a role of CBX7/Cbx7a in the activation of KLF2 target genes including TEK, ANGPT1, WNT9, and endoMT-associated genes. Our findings uncover an intricate interplay in the regulation of Klf2-dependent biomechanical signaling by CBX7 in CCM. This work also provides insights for therapeutic strategies in the pathogenesis of CCM.","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":11.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loss-of-function mutations in MECP2 are associated to Rett syndrome (RTT), a severe neurodevelopmental disease. Mainly working as a transcriptional regulator, MeCP2 absence leads to gene expression perturbations resulting in deficits of synaptic function and neuronal activity. In addition, RTT patients and mouse models suffer from a complex metabolic syndrome, suggesting that related cellular pathways might contribute to neuropathogenesis. Along this line, autophagy is critical in sustaining developing neuron homeostasis by breaking down dysfunctional proteins, lipids, and organelles.Here, we investigated the autophagic pathway in RTT and found reduced content of autophagic vacuoles in Mecp2 knock-out neurons. This correlates with defective lipidation of LC3B, probably caused by a deficiency of the autophagic membrane lipid phosphatidylethanolamine. The administration of the autophagy inducer trehalose recovers LC3B lipidation, autophagosomes content in knock-out neurons, and ameliorates their morphology, neuronal activity and synaptic ultrastructure. Moreover, we provide evidence for attenuation of motor and exploratory impairment in Mecp2 knock-out mice upon trehalose administration. Overall, our findings open new perspectives for neurodevelopmental disorders therapies based on the concept of autophagy modulation.
{"title":"Unraveling autophagic imbalances and therapeutic insights in Mecp2-deficient models.","authors":"Alessandro Esposito,Tommaso Seri,Martina Breccia,Marzia Indrigo,Giuseppina De Rocco,Francesca Nuzzolillo,Vanna Denti,Francesca Pappacena,Gaia Tartaglione,Simone Serrao,Giuseppe Paglia,Luca Murru,Stefano de Pretis,Jean-Michel Cioni,Nicoletta Landsberger,Fabrizia Claudia Guarnieri,Michela Palmieri","doi":"10.1038/s44321-024-00151-w","DOIUrl":"https://doi.org/10.1038/s44321-024-00151-w","url":null,"abstract":"Loss-of-function mutations in MECP2 are associated to Rett syndrome (RTT), a severe neurodevelopmental disease. Mainly working as a transcriptional regulator, MeCP2 absence leads to gene expression perturbations resulting in deficits of synaptic function and neuronal activity. In addition, RTT patients and mouse models suffer from a complex metabolic syndrome, suggesting that related cellular pathways might contribute to neuropathogenesis. Along this line, autophagy is critical in sustaining developing neuron homeostasis by breaking down dysfunctional proteins, lipids, and organelles.Here, we investigated the autophagic pathway in RTT and found reduced content of autophagic vacuoles in Mecp2 knock-out neurons. This correlates with defective lipidation of LC3B, probably caused by a deficiency of the autophagic membrane lipid phosphatidylethanolamine. The administration of the autophagy inducer trehalose recovers LC3B lipidation, autophagosomes content in knock-out neurons, and ameliorates their morphology, neuronal activity and synaptic ultrastructure. Moreover, we provide evidence for attenuation of motor and exploratory impairment in Mecp2 knock-out mice upon trehalose administration. Overall, our findings open new perspectives for neurodevelopmental disorders therapies based on the concept of autophagy modulation.","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":11.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1038/s44321-024-00150-x
Ancély Ferreira Dos Santos,José Pedro Friedmann-Angeli
{"title":"Troubling bonds: lipid unsaturation promotes selenium dependency and sensitivity to ferroptosis.","authors":"Ancély Ferreira Dos Santos,José Pedro Friedmann-Angeli","doi":"10.1038/s44321-024-00150-x","DOIUrl":"https://doi.org/10.1038/s44321-024-00150-x","url":null,"abstract":"","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":11.1,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-21DOI: 10.1038/s44321-024-00119-w
Wing-Hong Jonathan Ho, Maria B Marinova, Dave R Listijono, Michael J Bertoldo, Dulama Richani, Lynn-Jee Kim, Amelia Brown, Angelique H Riepsamen, Safaa Cabot, Emily R Frost, Sonia Bustamante, Ling Zhong, Kaisa Selesniemi, Derek Wong, Romanthi Madawala, Maria Marchante, Dale M Goss, Catherine Li, Toshiyuki Araki, David J Livingston, Nigel Turner, David A Sinclair, Kirsty A Walters, Hayden A Homer, Robert B Gilchrist, Lindsay E Wu
Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P)+ metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD+ metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials. Importantly, treatment of a triple-negative breast cancer mouse model with the NAD+ precursor nicotinamide mononucleotide (NMN) reduced tumour growth and did not impair the efficacy of chemotherapy drugs in vivo or in diverse cancer cell lines. Overall, these findings raise the possibility that NAD+ precursors could be a non-invasive strategy for maintaining ovarian function in cancer patients, with potential benefits in cancer therapy.
{"title":"Fertility protection during chemotherapy treatment by boosting the NAD(P)<sup>+</sup> metabolome.","authors":"Wing-Hong Jonathan Ho, Maria B Marinova, Dave R Listijono, Michael J Bertoldo, Dulama Richani, Lynn-Jee Kim, Amelia Brown, Angelique H Riepsamen, Safaa Cabot, Emily R Frost, Sonia Bustamante, Ling Zhong, Kaisa Selesniemi, Derek Wong, Romanthi Madawala, Maria Marchante, Dale M Goss, Catherine Li, Toshiyuki Araki, David J Livingston, Nigel Turner, David A Sinclair, Kirsty A Walters, Hayden A Homer, Robert B Gilchrist, Lindsay E Wu","doi":"10.1038/s44321-024-00119-w","DOIUrl":"10.1038/s44321-024-00119-w","url":null,"abstract":"<p><p>Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P)<sup>+</sup> metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD<sup>+</sup> metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials. Importantly, treatment of a triple-negative breast cancer mouse model with the NAD<sup>+</sup> precursor nicotinamide mononucleotide (NMN) reduced tumour growth and did not impair the efficacy of chemotherapy drugs in vivo or in diverse cancer cell lines. Overall, these findings raise the possibility that NAD<sup>+</sup> precursors could be a non-invasive strategy for maintaining ovarian function in cancer patients, with potential benefits in cancer therapy.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}