Pub Date : 2024-08-01Epub Date: 2024-07-19DOI: 10.1038/s44321-024-00098-y
Luisa Chocarro, Ester Blanco, Leticia Fernandez-Rubio, Maider Garnica, Miren Zuazo, Maria Jesus Garcia, Ana Bocanegra, Miriam Echaide, Colette Johnston, Carolyn J Edwards, James Legg, Andrew J Pierce, Hugo Arasanz, Gonzalo Fernandez-Hinojal, Ruth Vera, Karina Ausin, Enrique Santamaria, Joaquin Fernandez-Irigoyen, Grazyna Kochan, David Escors
Many cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. To identify shared features associated to PD-1/LAG-3 dysfunctionality in human cancers and T-cells, multiomic expression profiles were obtained for all TCGA cancers immune infiltrates. A PD-1/LAG-3 dysfunctional signature was found which regulated immune, metabolic, genetic, and epigenetic pathways, but especially a reinforced negative regulation of the TCR signalosome. These results were validated in T-cell lines with constitutively active PD-1, LAG-3 pathways and their combination. A differential analysis of the proteome of PD-1/LAG-3 T-cells showed a specific enrichment in ubiquitin ligases participating in E3 ubiquitination pathways. PD-1/LAG-3 co-blockade inhibited CBL-B expression, while the use of a bispecific drug in clinical development also repressed C-CBL expression, which reverted T-cell dysfunctionality in lung cancer patients resistant to PD-L1/PD-1 blockade. The combination of CBL-B-specific small molecule inhibitors with anti-PD-1/anti-LAG-3 immunotherapies demonstrated notable therapeutic efficacy in models of lung cancer refractory to immunotherapies, overcoming PD-1/LAG-3 mediated resistance.
许多癌症患者无法从 PD-L1/PD-1 阻断免疫疗法中获益。T细胞中的PD-1和LAG-3共调控通过在T细胞中建立高度功能失调状态而成为抗药性的主要机制之一。为了确定人类癌症和T细胞中与PD-1/LAG-3功能失调相关的共同特征,我们获得了所有TCGA癌症免疫浸润的多组学表达谱。研究发现,PD-1/LAG-3功能失调特征可调控免疫、代谢、遗传和表观遗传途径,尤其是加强了对TCR信号组的负调控。这些结果在具有组成性活性 PD-1、LAG-3 途径及其组合的 T 细胞系中得到了验证。对 PD-1/LAG-3 T 细胞蛋白质组的差异分析表明,参与 E3 泛素化途径的泛素连接酶特别丰富。PD-1/LAG-3联合阻断抑制了CBL-B的表达,而使用临床开发中的一种双特异性药物也抑制了C-CBL的表达,从而恢复了对PD-L1/PD-1阻断耐药的肺癌患者的T细胞功能障碍。CBL-B特异性小分子抑制剂与抗PD-1/抗LAG-3免疫疗法相结合,在免疫疗法难治的肺癌模型中显示出显著疗效,克服了PD-1/LAG-3介导的耐药性。
{"title":"PD-1/LAG-3 co-signaling profiling uncovers CBL ubiquitin ligases as key immunotherapy targets.","authors":"Luisa Chocarro, Ester Blanco, Leticia Fernandez-Rubio, Maider Garnica, Miren Zuazo, Maria Jesus Garcia, Ana Bocanegra, Miriam Echaide, Colette Johnston, Carolyn J Edwards, James Legg, Andrew J Pierce, Hugo Arasanz, Gonzalo Fernandez-Hinojal, Ruth Vera, Karina Ausin, Enrique Santamaria, Joaquin Fernandez-Irigoyen, Grazyna Kochan, David Escors","doi":"10.1038/s44321-024-00098-y","DOIUrl":"10.1038/s44321-024-00098-y","url":null,"abstract":"<p><p>Many cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. To identify shared features associated to PD-1/LAG-3 dysfunctionality in human cancers and T-cells, multiomic expression profiles were obtained for all TCGA cancers immune infiltrates. A PD-1/LAG-3 dysfunctional signature was found which regulated immune, metabolic, genetic, and epigenetic pathways, but especially a reinforced negative regulation of the TCR signalosome. These results were validated in T-cell lines with constitutively active PD-1, LAG-3 pathways and their combination. A differential analysis of the proteome of PD-1/LAG-3 T-cells showed a specific enrichment in ubiquitin ligases participating in E3 ubiquitination pathways. PD-1/LAG-3 co-blockade inhibited CBL-B expression, while the use of a bispecific drug in clinical development also repressed C-CBL expression, which reverted T-cell dysfunctionality in lung cancer patients resistant to PD-L1/PD-1 blockade. The combination of CBL-B-specific small molecule inhibitors with anti-PD-1/anti-LAG-3 immunotherapies demonstrated notable therapeutic efficacy in models of lung cancer refractory to immunotherapies, overcoming PD-1/LAG-3 mediated resistance.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1791-1816"},"PeriodicalIF":9.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-15DOI: 10.1038/s44321-024-00103-4
Xingjuan Chen, Yunzheng Yan, Zhiqiang Liu, Shaokang Yang, Wei Li, Zhuang Wang, Mengyuan Wang, Juan Guo, Zhenyang Li, Weiyan Zhu, Jingjing Yang, Jiye Yin, Qingsong Dai, Yuexiang Li, Cui Wang, Lei Zhao, Xiaotong Yang, Xiaojia Guo, Ling Leng, Jiaxi Xu, Alexander G Obukhov, Ruiyuan Cao, Wu Zhong
Zika virus (ZIKV) infection may lead to severe neurological consequences, including seizures, and early infancy death. However, the involved mechanisms are still largely unknown. TRPC channels play an important role in regulating nervous system excitability and are implicated in seizure development. We investigated whether TRPCs might be involved in the pathogenesis of ZIKV infection. We found that ZIKV infection increases TRPC4 expression in host cells via the interaction between the ZIKV-NS3 protein and CaMKII, enhancing TRPC4-mediated calcium influx. Pharmacological inhibition of CaMKII decreased both pCREB and TRPC4 protein levels, whereas the suppression of either TRPC4 or CaMKII improved the survival rate of ZIKV-infected cells and reduced viral protein production, likely by impeding the replication phase of the viral life cycle. TRPC4 or CaMKII inhibitors also reduced seizures and increased the survival of ZIKV-infected neonatal mice and blocked the spread of ZIKV in brain organoids derived from human-induced pluripotent stem cells. These findings suggest that targeting CaMKII or TRPC4 may offer a promising approach for developing novel anti-ZIKV therapies, capable of preventing ZIKV-associated seizures and death.
{"title":"In vitro and in vivo inhibition of the host TRPC4 channel attenuates Zika virus infection.","authors":"Xingjuan Chen, Yunzheng Yan, Zhiqiang Liu, Shaokang Yang, Wei Li, Zhuang Wang, Mengyuan Wang, Juan Guo, Zhenyang Li, Weiyan Zhu, Jingjing Yang, Jiye Yin, Qingsong Dai, Yuexiang Li, Cui Wang, Lei Zhao, Xiaotong Yang, Xiaojia Guo, Ling Leng, Jiaxi Xu, Alexander G Obukhov, Ruiyuan Cao, Wu Zhong","doi":"10.1038/s44321-024-00103-4","DOIUrl":"10.1038/s44321-024-00103-4","url":null,"abstract":"<p><p>Zika virus (ZIKV) infection may lead to severe neurological consequences, including seizures, and early infancy death. However, the involved mechanisms are still largely unknown. TRPC channels play an important role in regulating nervous system excitability and are implicated in seizure development. We investigated whether TRPCs might be involved in the pathogenesis of ZIKV infection. We found that ZIKV infection increases TRPC4 expression in host cells via the interaction between the ZIKV-NS3 protein and CaMKII, enhancing TRPC4-mediated calcium influx. Pharmacological inhibition of CaMKII decreased both pCREB and TRPC4 protein levels, whereas the suppression of either TRPC4 or CaMKII improved the survival rate of ZIKV-infected cells and reduced viral protein production, likely by impeding the replication phase of the viral life cycle. TRPC4 or CaMKII inhibitors also reduced seizures and increased the survival of ZIKV-infected neonatal mice and blocked the spread of ZIKV in brain organoids derived from human-induced pluripotent stem cells. These findings suggest that targeting CaMKII or TRPC4 may offer a promising approach for developing novel anti-ZIKV therapies, capable of preventing ZIKV-associated seizures and death.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1817-1839"},"PeriodicalIF":9.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319825/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-08DOI: 10.1038/s44321-024-00093-3
Ibrahim Hawwari, Lukas Rossnagel, Nathalia Rosero, Salie Maasewerd, Matilde B Vasconcelos, Marius Jentzsch, Agnieszka Demczuk, Lino L Teichmann, Lisa Meffert, Damien Bertheloot, Lucas S Ribeiro, Sebastian Kallabis, Felix Meissner, Moshe Arditi, Asli E Atici, Magali Noval Rivas, Bernardo S Franklin
In humans, blood Classical CD14+ monocytes contribute to host defense by secreting large amounts of pro-inflammatory cytokines. Their aberrant activity causes hyper-inflammation and life-threatening cytokine storms, while dysfunctional monocytes are associated with 'immunoparalysis', a state of immune hypo responsiveness and reduced pro-inflammatory gene expression, predisposing individuals to opportunistic infections. Understanding how monocyte functions are regulated is critical to prevent these harmful outcomes. We reveal platelets' vital role in the pro-inflammatory cytokine responses of human monocytes. Naturally low platelet counts in patients with immune thrombocytopenia or removal of platelets from healthy monocytes result in monocyte immunoparalysis, marked by impaired cytokine response to immune challenge and weakened host defense transcriptional programs. Remarkably, supplementing monocytes with fresh platelets reverses these conditions. We discovered that platelets serve as reservoirs of key cytokine transcription regulators, such as NF-κB and MAPK p38, and pinpointed the enrichment of platelet NF-κB2 in human monocytes by proteomics. Platelets proportionally restore impaired cytokine production in human monocytes lacking MAPK p38α, NF-κB p65, and NF-κB2. We uncovered a vesicle-mediated platelet-monocyte-propagation of inflammatory transcription regulators, positioning platelets as central checkpoints in monocyte inflammation.
{"title":"Platelet transcription factors license the pro-inflammatory cytokine response of human monocytes.","authors":"Ibrahim Hawwari, Lukas Rossnagel, Nathalia Rosero, Salie Maasewerd, Matilde B Vasconcelos, Marius Jentzsch, Agnieszka Demczuk, Lino L Teichmann, Lisa Meffert, Damien Bertheloot, Lucas S Ribeiro, Sebastian Kallabis, Felix Meissner, Moshe Arditi, Asli E Atici, Magali Noval Rivas, Bernardo S Franklin","doi":"10.1038/s44321-024-00093-3","DOIUrl":"10.1038/s44321-024-00093-3","url":null,"abstract":"<p><p>In humans, blood Classical CD14<sup>+</sup> monocytes contribute to host defense by secreting large amounts of pro-inflammatory cytokines. Their aberrant activity causes hyper-inflammation and life-threatening cytokine storms, while dysfunctional monocytes are associated with 'immunoparalysis', a state of immune hypo responsiveness and reduced pro-inflammatory gene expression, predisposing individuals to opportunistic infections. Understanding how monocyte functions are regulated is critical to prevent these harmful outcomes. We reveal platelets' vital role in the pro-inflammatory cytokine responses of human monocytes. Naturally low platelet counts in patients with immune thrombocytopenia or removal of platelets from healthy monocytes result in monocyte immunoparalysis, marked by impaired cytokine response to immune challenge and weakened host defense transcriptional programs. Remarkably, supplementing monocytes with fresh platelets reverses these conditions. We discovered that platelets serve as reservoirs of key cytokine transcription regulators, such as NF-κB and MAPK p38, and pinpointed the enrichment of platelet NF-κB2 in human monocytes by proteomics. Platelets proportionally restore impaired cytokine production in human monocytes lacking MAPK p38α, NF-κB p65, and NF-κB2. We uncovered a vesicle-mediated platelet-monocyte-propagation of inflammatory transcription regulators, positioning platelets as central checkpoints in monocyte inflammation.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1901-1929"},"PeriodicalIF":9.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1038/s44321-024-00099-x
Alice Gambelli, Anna Nespolo, Gian Luca Rampioni Vinciguerra, Eliana Pivetta, Ilenia Pellarin, Milena S Nicoloso, Chiara Scapin, Linda Stefenatti, Ilenia Segatto, Andrea Favero, Sara D'Andrea, Maria Teresa Mucignat, Michele Bartoletti, Emilio Lucia, Monica Schiappacassi, Paola Spessotto, Vincenzo Canzonieri, Giorgio Giorda, Fabio Puglisi, Andrea Vecchione, Barbara Belletti, Maura Sonego, Gustavo Baldassarre
{"title":"Author Correction: Platinum-induced upregulation of ITGA6 promotes chemoresistance and spreading in ovarian cancer.","authors":"Alice Gambelli, Anna Nespolo, Gian Luca Rampioni Vinciguerra, Eliana Pivetta, Ilenia Pellarin, Milena S Nicoloso, Chiara Scapin, Linda Stefenatti, Ilenia Segatto, Andrea Favero, Sara D'Andrea, Maria Teresa Mucignat, Michele Bartoletti, Emilio Lucia, Monica Schiappacassi, Paola Spessotto, Vincenzo Canzonieri, Giorgio Giorda, Fabio Puglisi, Andrea Vecchione, Barbara Belletti, Maura Sonego, Gustavo Baldassarre","doi":"10.1038/s44321-024-00099-x","DOIUrl":"10.1038/s44321-024-00099-x","url":null,"abstract":"","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1981"},"PeriodicalIF":9.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319497/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Profibrotic proximal tubules (PT) were identified as a unique phenotype of proximal tubule cells (PTCs) in renal fibrosis by single-cell RNA sequencing (scRNA-seq). Controlling the process of renal fibrosis requires understanding how to manage the S1 subset's branch to the S3 subset rather than to the profibrotic PT subset. Insulin-induced gene 1 (Insig1) is one of the branch-dependent genes involved in controlling this process, although its role in renal fibrosis is unknown. Here, we discovered that tubular Insig1 deficiency, rather than fibroblast Insig1 deficiency, plays a detrimental role in the pathogenesis of renal fibrosis in vivo and in vitro. Overexpression of Insig1 profoundly inhibited renal fibrosis. Mechanistically, Insig1 deletion in PTCs boosted SREBP1 nuclear localization, increasing Aldh1a1 transcriptional activity, causing excessive NAD+ consumption and ER enlargement, as well as accelerating renal fibrosis. We also identified nicardipine as a selective inhibitor of Aldh1a1, which could restore NAD+ and maintain ER homeostasis, as well as improve renal fibrosis. Together, our findings support tubular Insig1 as a new therapeutic target for chronic kidney disease (CKD).
{"title":"Tubular insulin-induced gene 1 deficiency promotes NAD<sup>+</sup> consumption and exacerbates kidney fibrosis.","authors":"Shumin Li, Jun Qin, Yingying Zhao, Jiali Wang, Songming Huang, Xiaowen Yu","doi":"10.1038/s44321-024-00081-7","DOIUrl":"10.1038/s44321-024-00081-7","url":null,"abstract":"<p><p>Profibrotic proximal tubules (PT) were identified as a unique phenotype of proximal tubule cells (PTCs) in renal fibrosis by single-cell RNA sequencing (scRNA-seq). Controlling the process of renal fibrosis requires understanding how to manage the S1 subset's branch to the S3 subset rather than to the profibrotic PT subset. Insulin-induced gene 1 (Insig1) is one of the branch-dependent genes involved in controlling this process, although its role in renal fibrosis is unknown. Here, we discovered that tubular Insig1 deficiency, rather than fibroblast Insig1 deficiency, plays a detrimental role in the pathogenesis of renal fibrosis in vivo and in vitro. Overexpression of Insig1 profoundly inhibited renal fibrosis. Mechanistically, Insig1 deletion in PTCs boosted SREBP1 nuclear localization, increasing Aldh1a1 transcriptional activity, causing excessive NAD<sup>+</sup> consumption and ER enlargement, as well as accelerating renal fibrosis. We also identified nicardipine as a selective inhibitor of Aldh1a1, which could restore NAD<sup>+</sup> and maintain ER homeostasis, as well as improve renal fibrosis. Together, our findings support tubular Insig1 as a new therapeutic target for chronic kidney disease (CKD).</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1675-1703"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-19DOI: 10.1038/s44321-024-00082-6
Mark Sementsov, Leonie Ott, Julian Kött, Alexander Sartori, Amelie Lusque, Sarah Degenhardt, Bertille Segier, Isabel Heidrich, Beate Volkmer, Rüdiger Greinert, Peter Mohr, Ronald Simon, Julia-Christina Stadler, Darryl Irwin, Claudia Koch, Antje Andreas, Benjamin Deitert, Verena Thewes, Andreas Trumpp, Andreas Schneeweiss, Yassine Belloum, Sven Peine, Harriett Wikman, Sabine Riethdorf, Stefan W Schneider, Christoffer Gebhardt, Klaus Pantel, Laura Keller
Circulating tumor DNA (ctDNA) is the cornerstone of liquid biopsy diagnostics, revealing clinically relevant genomic aberrations from blood of cancer patients. Genomic analysis of single circulating tumor cells (CTCs) could provide additional insights into intra-patient heterogeneity, but it requires whole-genome amplification (WGA) of DNA, which might introduce bias. Here, we describe a novel approach based on mass spectrometry for mutation detection from individual CTCs not requiring WGA and complex bioinformatics pipelines. After establishment of our protocol on tumor cell line-derived single cells, it was validated on CTCs of 33 metastatic melanoma patients and the mutations were compared to those obtained from tumor tissue and ctDNA. Although concordance with tumor tissue was superior for ctDNA over CTC analysis, a larger number of mutations were found within CTCs compared to ctDNA (p = 0.039), including mutations in melanoma driver genes, or those associated with resistance to therapy or metastasis. Thus, our results demonstrate proof-of-principle data that CTC analysis can provide clinically relevant genomic information that is not redundant to tumor tissue or ctDNA analysis.
{"title":"Mutation analysis in individual circulating tumor cells depicts intratumor heterogeneity in melanoma.","authors":"Mark Sementsov, Leonie Ott, Julian Kött, Alexander Sartori, Amelie Lusque, Sarah Degenhardt, Bertille Segier, Isabel Heidrich, Beate Volkmer, Rüdiger Greinert, Peter Mohr, Ronald Simon, Julia-Christina Stadler, Darryl Irwin, Claudia Koch, Antje Andreas, Benjamin Deitert, Verena Thewes, Andreas Trumpp, Andreas Schneeweiss, Yassine Belloum, Sven Peine, Harriett Wikman, Sabine Riethdorf, Stefan W Schneider, Christoffer Gebhardt, Klaus Pantel, Laura Keller","doi":"10.1038/s44321-024-00082-6","DOIUrl":"10.1038/s44321-024-00082-6","url":null,"abstract":"<p><p>Circulating tumor DNA (ctDNA) is the cornerstone of liquid biopsy diagnostics, revealing clinically relevant genomic aberrations from blood of cancer patients. Genomic analysis of single circulating tumor cells (CTCs) could provide additional insights into intra-patient heterogeneity, but it requires whole-genome amplification (WGA) of DNA, which might introduce bias. Here, we describe a novel approach based on mass spectrometry for mutation detection from individual CTCs not requiring WGA and complex bioinformatics pipelines. After establishment of our protocol on tumor cell line-derived single cells, it was validated on CTCs of 33 metastatic melanoma patients and the mutations were compared to those obtained from tumor tissue and ctDNA. Although concordance with tumor tissue was superior for ctDNA over CTC analysis, a larger number of mutations were found within CTCs compared to ctDNA (p = 0.039), including mutations in melanoma driver genes, or those associated with resistance to therapy or metastasis. Thus, our results demonstrate proof-of-principle data that CTC analysis can provide clinically relevant genomic information that is not redundant to tumor tissue or ctDNA analysis.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1560-1578"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-15DOI: 10.1038/s44321-024-00074-6
Shene Chiou, Aysha H Al-Ani, Yi Pan, Komal M Patel, Isabella Y Kong, Lachlan W Whitehead, Amanda Light, Samuel N Young, Marilou Barrios, Callum Sargeant, Pradeep Rajasekhar, Leah Zhu, Anne Hempel, Ann Lin, James A Rickard, Cathrine Hall, Pradnya Gangatirkar, Raymond Kh Yip, Wayne Cawthorne, Annette V Jacobsen, Christopher R Horne, Katherine R Martin, Lisa J Ioannidis, Diana S Hansen, Jessica Day, Ian P Wicks, Charity Law, Matthew E Ritchie, Rory Bowden, Joanne M Hildebrand, Lorraine A O'Reilly, John Silke, Lisa Giulino-Roth, Ellen Tsui, Kelly L Rogers, Edwin D Hawkins, Britt Christensen, James M Murphy, André L Samson
Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.
{"title":"An immunohistochemical atlas of necroptotic pathway expression.","authors":"Shene Chiou, Aysha H Al-Ani, Yi Pan, Komal M Patel, Isabella Y Kong, Lachlan W Whitehead, Amanda Light, Samuel N Young, Marilou Barrios, Callum Sargeant, Pradeep Rajasekhar, Leah Zhu, Anne Hempel, Ann Lin, James A Rickard, Cathrine Hall, Pradnya Gangatirkar, Raymond Kh Yip, Wayne Cawthorne, Annette V Jacobsen, Christopher R Horne, Katherine R Martin, Lisa J Ioannidis, Diana S Hansen, Jessica Day, Ian P Wicks, Charity Law, Matthew E Ritchie, Rory Bowden, Joanne M Hildebrand, Lorraine A O'Reilly, John Silke, Lisa Giulino-Roth, Ellen Tsui, Kelly L Rogers, Edwin D Hawkins, Britt Christensen, James M Murphy, André L Samson","doi":"10.1038/s44321-024-00074-6","DOIUrl":"10.1038/s44321-024-00074-6","url":null,"abstract":"<p><p>Necroptosis is a lytic form of regulated cell death reported to contribute to inflammatory diseases of the gut, skin and lung, as well as ischemic-reperfusion injuries of the kidney, heart and brain. However, precise identification of the cells and tissues that undergo necroptotic cell death in vivo has proven challenging in the absence of robust protocols for immunohistochemical detection. Here, we provide automated immunohistochemistry protocols to detect core necroptosis regulators - Caspase-8, RIPK1, RIPK3 and MLKL - in formalin-fixed mouse and human tissues. We observed surprising heterogeneity in protein expression within tissues, whereby short-lived immune barrier cells were replete with necroptotic effectors, whereas long-lived cells lacked RIPK3 or MLKL expression. Local changes in the expression of necroptotic effectors occurred in response to insults such as inflammation, dysbiosis or immune challenge, consistent with necroptosis being dysregulated in disease contexts. These methods will facilitate the precise localisation and evaluation of necroptotic signaling in vivo.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1717-1749"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250867/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-14DOI: 10.1038/s44321-024-00085-3
Partho Protim Adhikary, Temilolu Idowu, Zheng Tan, Christopher Hoang, Selina Shanta, Malti Dumbani, Leah Mappalakayil, Bhuwan Awasthi, Marcel Bermudez, January Weiner, Dieter Beule, Gerhard Wolber, Brent Dg Page, Sarah Hedtrich
Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.
{"title":"Disrupting TSLP-TSLP receptor interactions via putative small molecule inhibitors yields a novel and efficient treatment option for atopic diseases.","authors":"Partho Protim Adhikary, Temilolu Idowu, Zheng Tan, Christopher Hoang, Selina Shanta, Malti Dumbani, Leah Mappalakayil, Bhuwan Awasthi, Marcel Bermudez, January Weiner, Dieter Beule, Gerhard Wolber, Brent Dg Page, Sarah Hedtrich","doi":"10.1038/s44321-024-00085-3","DOIUrl":"10.1038/s44321-024-00085-3","url":null,"abstract":"<p><p>Thymic stromal lymphopoietin (TSLP) is a key player in atopic diseases, which has sparked great interest in therapeutically targeting TSLP. Yet, no small-molecule TSLP inhibitors exist due to the challenges of disrupting the protein-protein interaction between TSLP and its receptor. Here, we report the development of small-molecule TSLP receptor inhibitors using virtual screening and docking of >1,000,000 compounds followed by iterative chemical synthesis. BP79 emerged as our lead compound that effectively abrogates TSLP-triggered cytokines at low micromolar concentrations. For in-depth analysis, we developed a human atopic disease drug discovery platform using multi-organ chips. Here, topical application of BP79 onto atopic skin models that were co-cultivated with lung models and Th2 cells effectively suppressed immune cell infiltration and IL-13, IL-4, TSLP, and periostin secretion, while upregulating skin barrier proteins. RNA-Seq analysis corroborate these findings and indicate protective downstream effects on the lungs. To the best of our knowledge, this represents the first report of a potent putative small molecule TSLPR inhibitor which has the potential to expand the therapeutic and preventive options in atopic diseases.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1630-1656"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-05DOI: 10.1038/s44321-024-00083-5
Laura de Boni, Amber Wallis, Aurelia Hays Watson, Alejandro Ruiz-Riquelme, Louise-Ann Leyland, Thomas Bourinaris, Naomi Hannaway, Ullrich Wüllner, Oliver Peters, Josef Priller, Björn H Falkenburger, Jens Wiltfang, Mathias Bähr, Inga Zerr, Katharina Bürger, Robert Perneczky, Stefan Teipel, Matthias Löhle, Wiebke Hermann, Björn-Hendrik Schott, Kathrin Brockmann, Annika Spottke, Katrin Haustein, Peter Breuer, Henry Houlden, Rimona S Weil, Tim Bartels
Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.
{"title":"Aggregation-resistant alpha-synuclein tetramers are reduced in the blood of Parkinson's patients.","authors":"Laura de Boni, Amber Wallis, Aurelia Hays Watson, Alejandro Ruiz-Riquelme, Louise-Ann Leyland, Thomas Bourinaris, Naomi Hannaway, Ullrich Wüllner, Oliver Peters, Josef Priller, Björn H Falkenburger, Jens Wiltfang, Mathias Bähr, Inga Zerr, Katharina Bürger, Robert Perneczky, Stefan Teipel, Matthias Löhle, Wiebke Hermann, Björn-Hendrik Schott, Kathrin Brockmann, Annika Spottke, Katrin Haustein, Peter Breuer, Henry Houlden, Rimona S Weil, Tim Bartels","doi":"10.1038/s44321-024-00083-5","DOIUrl":"10.1038/s44321-024-00083-5","url":null,"abstract":"<p><p>Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1657-1674"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250827/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-26DOI: 10.1038/s44321-024-00090-6
Nicla Lorito, Angela Subbiani, Alfredo Smiriglia, Marina Bacci, Francesca Bonechi, Laura Tronci, Elisabetta Romano, Alessia Corrado, Dario Livio Longo, Marta Iozzo, Luigi Ippolito, Giuseppina Comito, Elisa Giannoni, Icro Meattini, Alexandra Avgustinova, Paola Chiarugi, Angela Bachi, Andrea Morandi
Triple-negative breast cancer (TNBC) has limited therapeutic options, is highly metastatic and characterized by early recurrence. Lipid metabolism is generally deregulated in TNBC and might reveal vulnerabilities to be targeted or used as biomarkers with clinical value. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation which is facilitated by the presence of polyunsaturated fatty acids (PUFA). Here we identify fatty acid desaturases 1 and 2 (FADS1/2), which are responsible for PUFA biosynthesis, to be highly expressed in a subset of TNBC with a poorer prognosis. Lipidomic analysis, coupled with functional metabolic assays, showed that FADS1/2 high-expressing TNBC are susceptible to ferroptosis-inducing agents and that targeting FADS1/2 by both genetic interference and pharmacological approach renders those tumors ferroptosis-resistant while unbalancing PUFA/MUFA ratio by the supplementation of exogenous PUFA sensitizes resistant tumors to ferroptosis induction. Last, inhibiting lipid droplet (LD) formation and turnover suppresses the buffering capacity of LD and potentiates iron-dependent cell death. These findings have been validated in vitro and in vivo in mouse- and human-derived clinically relevant models and in a retrospective cohort of TNBC patients.
{"title":"FADS1/2 control lipid metabolism and ferroptosis susceptibility in triple-negative breast cancer.","authors":"Nicla Lorito, Angela Subbiani, Alfredo Smiriglia, Marina Bacci, Francesca Bonechi, Laura Tronci, Elisabetta Romano, Alessia Corrado, Dario Livio Longo, Marta Iozzo, Luigi Ippolito, Giuseppina Comito, Elisa Giannoni, Icro Meattini, Alexandra Avgustinova, Paola Chiarugi, Angela Bachi, Andrea Morandi","doi":"10.1038/s44321-024-00090-6","DOIUrl":"10.1038/s44321-024-00090-6","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) has limited therapeutic options, is highly metastatic and characterized by early recurrence. Lipid metabolism is generally deregulated in TNBC and might reveal vulnerabilities to be targeted or used as biomarkers with clinical value. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation which is facilitated by the presence of polyunsaturated fatty acids (PUFA). Here we identify fatty acid desaturases 1 and 2 (FADS1/2), which are responsible for PUFA biosynthesis, to be highly expressed in a subset of TNBC with a poorer prognosis. Lipidomic analysis, coupled with functional metabolic assays, showed that FADS1/2 high-expressing TNBC are susceptible to ferroptosis-inducing agents and that targeting FADS1/2 by both genetic interference and pharmacological approach renders those tumors ferroptosis-resistant while unbalancing PUFA/MUFA ratio by the supplementation of exogenous PUFA sensitizes resistant tumors to ferroptosis induction. Last, inhibiting lipid droplet (LD) formation and turnover suppresses the buffering capacity of LD and potentiates iron-dependent cell death. These findings have been validated in vitro and in vivo in mouse- and human-derived clinically relevant models and in a retrospective cohort of TNBC patients.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1533-1559"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}