Pub Date : 2024-07-01Epub Date: 2024-06-17DOI: 10.1038/s44321-024-00088-0
Majid Momeny, Mari Tienhaara, Mukund Sharma, Deepankar Chakroborty, Roosa Varjus, Iina Takala, Joni Merisaari, Artur Padzik, Andreas Vogt, Ilkka Paatero, Klaus Elenius, Teemu D Laajala, Kari J Kurppa, Jukka Westermarck
Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.
{"title":"DUSP6 inhibition overcomes neuregulin/HER3-driven therapy tolerance in HER2+ breast cancer.","authors":"Majid Momeny, Mari Tienhaara, Mukund Sharma, Deepankar Chakroborty, Roosa Varjus, Iina Takala, Joni Merisaari, Artur Padzik, Andreas Vogt, Ilkka Paatero, Klaus Elenius, Teemu D Laajala, Kari J Kurppa, Jukka Westermarck","doi":"10.1038/s44321-024-00088-0","DOIUrl":"10.1038/s44321-024-00088-0","url":null,"abstract":"<p><p>Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1603-1629"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1038/s44321-024-00078-2
Christine T Styles, Jie Zhou, Katie E Flight, Jonathan C Brown, Charlotte Lewis, Xinyu Wang, Michael Vanden Oever, Thomas P Peacock, Ziyin Wang, Rosie Millns, John S O'Neill, Alexander Borodavka, Joe Grove, Wendy S Barclay, John S Tregoning, Rachel S Edgar
{"title":"Author Correction: Propylene glycol inactivates respiratory viruses and prevents airborne transmission.","authors":"Christine T Styles, Jie Zhou, Katie E Flight, Jonathan C Brown, Charlotte Lewis, Xinyu Wang, Michael Vanden Oever, Thomas P Peacock, Ziyin Wang, Rosie Millns, John S O'Neill, Alexander Borodavka, Joe Grove, Wendy S Barclay, John S Tregoning, Rachel S Edgar","doi":"10.1038/s44321-024-00078-2","DOIUrl":"10.1038/s44321-024-00078-2","url":null,"abstract":"","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1751"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-11DOI: 10.1038/s44321-024-00087-1
Merryn Fraser, Blake Curtis, Patrick Phillips, Patrick A Yates, Kwong Sum Lam, Otto Netzel, Giel G van Dooren, Alyssa Ingmundson, Kai Matuschewski, Malcolm D McLeod, Alexander G Maier
Parasites, such as the malaria parasite P. falciparum, are critically dependent on host nutrients. Interference with nutrient uptake can lead to parasite death and, therefore, serve as a successful treatment strategy. P. falciparum parasites cannot synthesise cholesterol, and instead source this lipid from the host. Here, we tested whether cholesterol uptake pathways could be 'hijacked' for optimal drug delivery to the intracellular parasite. We found that fluorescent cholesterol analogues were delivered from the extracellular environment to the intracellular parasite. We investigated the uptake and inhibitory effects of conjugate compounds, where proven antimalarial drugs (primaquine and artesunate) were attached to steroids that mimic the structure of cholesterol. These conjugated antimalarial drugs improved the inhibitory effects against multiple parasite lifecycle stages, multiple parasite species, and drug-resistant parasites, whilst also lowering the toxicity to human host cells. Steroids with introduced peroxides also displayed antimalarial activity. These results provide a proof-of-concept that cholesterol mimics can be developed as a drug delivery system against apicomplexan parasites with the potential to improve drug efficacy, increase therapeutic index, and defeat drug resistance.
{"title":"Harnessing cholesterol uptake of malaria parasites for therapeutic applications.","authors":"Merryn Fraser, Blake Curtis, Patrick Phillips, Patrick A Yates, Kwong Sum Lam, Otto Netzel, Giel G van Dooren, Alyssa Ingmundson, Kai Matuschewski, Malcolm D McLeod, Alexander G Maier","doi":"10.1038/s44321-024-00087-1","DOIUrl":"10.1038/s44321-024-00087-1","url":null,"abstract":"<p><p>Parasites, such as the malaria parasite P. falciparum, are critically dependent on host nutrients. Interference with nutrient uptake can lead to parasite death and, therefore, serve as a successful treatment strategy. P. falciparum parasites cannot synthesise cholesterol, and instead source this lipid from the host. Here, we tested whether cholesterol uptake pathways could be 'hijacked' for optimal drug delivery to the intracellular parasite. We found that fluorescent cholesterol analogues were delivered from the extracellular environment to the intracellular parasite. We investigated the uptake and inhibitory effects of conjugate compounds, where proven antimalarial drugs (primaquine and artesunate) were attached to steroids that mimic the structure of cholesterol. These conjugated antimalarial drugs improved the inhibitory effects against multiple parasite lifecycle stages, multiple parasite species, and drug-resistant parasites, whilst also lowering the toxicity to human host cells. Steroids with introduced peroxides also displayed antimalarial activity. These results provide a proof-of-concept that cholesterol mimics can be developed as a drug delivery system against apicomplexan parasites with the potential to improve drug efficacy, increase therapeutic index, and defeat drug resistance.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1515-1532"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current brain tumor treatments are limited by the skull and BBB, leading to poor prognosis and short survival for glioma patients. We introduce a novel minimally-invasive brain tumor suppression (MIBTS) device combining personalized intracranial electric field therapy with in-situ chemotherapeutic coating. The core of our MIBTS technique is a wireless-ultrasound-powered, chip-sized, lightweight device with all functional circuits encapsulated in a small but efficient "Swiss-roll" structure, guaranteeing enhanced energy conversion while requiring tiny implantation windows ( ~ 3 × 5 mm), which favors broad consumers acceptance and easy-to-use of the device. Compared with existing technologies, competitive advantages in terms of tumor suppressive efficacy and therapeutic resolution were noticed, with maximum ~80% higher suppression effect than first-line chemotherapy and 50-70% higher than the most advanced tumor treating field technology. In addition, patient-personalized therapy strategies could be tuned from the MIBTS without increasing size or adding circuits on the integrated chip, ensuring the optimal therapeutic effect and avoid tumor resistance. These groundbreaking achievements of MIBTS offer new hope for controlling tumor recurrence and extending patient survival.
{"title":"Minimally-invasive implantable device enhances brain cancer suppression.","authors":"Xiaona Cao, Jie Li, Jinliang Ren, Jiajin Peng, Ruyue Zhong, Jiahao He, Ting Xu, Zhenhua Yu, Huawei Jin, Siqi Hao, Ruiwei Liu, Bingzhe Xu","doi":"10.1038/s44321-024-00091-5","DOIUrl":"10.1038/s44321-024-00091-5","url":null,"abstract":"<p><p>Current brain tumor treatments are limited by the skull and BBB, leading to poor prognosis and short survival for glioma patients. We introduce a novel minimally-invasive brain tumor suppression (MIBTS) device combining personalized intracranial electric field therapy with in-situ chemotherapeutic coating. The core of our MIBTS technique is a wireless-ultrasound-powered, chip-sized, lightweight device with all functional circuits encapsulated in a small but efficient \"Swiss-roll\" structure, guaranteeing enhanced energy conversion while requiring tiny implantation windows ( ~ 3 × 5 mm), which favors broad consumers acceptance and easy-to-use of the device. Compared with existing technologies, competitive advantages in terms of tumor suppressive efficacy and therapeutic resolution were noticed, with maximum <sup>~</sup>80% higher suppression effect than first-line chemotherapy and 50-70% higher than the most advanced tumor treating field technology. In addition, patient-personalized therapy strategies could be tuned from the MIBTS without increasing size or adding circuits on the integrated chip, ensuring the optimal therapeutic effect and avoid tumor resistance. These groundbreaking achievements of MIBTS offer new hope for controlling tumor recurrence and extending patient survival.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1704-1716"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-10DOI: 10.1038/s44321-024-00086-2
Chongbo Yang, J Magarian Blander
{"title":"Seeing is believing: a breakthrough to visualize necrosomes in the tissue.","authors":"Chongbo Yang, J Magarian Blander","doi":"10.1038/s44321-024-00086-2","DOIUrl":"10.1038/s44321-024-00086-2","url":null,"abstract":"","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1487-1489"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251154/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-03DOI: 10.1038/s44321-024-00084-4
Bernadette Jeremiasse, Ravian L van Ineveld, Veerle Bok, Michiel Kleinnijenhuis, Sam de Blank, Maria Alieva, Hannah R Johnson, Esmée J van Vliet, Amber L Zeeman, Lianne M Wellens, Gerard Llibre-Palomar, Mario Barrera Román, Alessia Di Maggio, Johanna F Dekkers, Sabrina Oliveira, Alexander L Vahrmeijer, Jan J Molenaar, Marc Hwa Wijnen, Alida Fw van der Steeg, Ellen J Wehrens, Anne C Rios
Achieving complete tumor resection is challenging and can be improved by real-time fluorescence-guided surgery with molecular-targeted probes. However, pre-clinical identification and validation of probes presents a lengthy process that is traditionally performed in animal models and further hampered by inter- and intra-tumoral heterogeneity in target expression. To screen multiple probes at patient scale, we developed a multispectral real-time 3D imaging platform that implements organoid technology to effectively model patient tumor heterogeneity and, importantly, healthy human tissue binding.
{"title":"A multispectral 3D live organoid imaging platform to screen probes for fluorescence guided surgery.","authors":"Bernadette Jeremiasse, Ravian L van Ineveld, Veerle Bok, Michiel Kleinnijenhuis, Sam de Blank, Maria Alieva, Hannah R Johnson, Esmée J van Vliet, Amber L Zeeman, Lianne M Wellens, Gerard Llibre-Palomar, Mario Barrera Román, Alessia Di Maggio, Johanna F Dekkers, Sabrina Oliveira, Alexander L Vahrmeijer, Jan J Molenaar, Marc Hwa Wijnen, Alida Fw van der Steeg, Ellen J Wehrens, Anne C Rios","doi":"10.1038/s44321-024-00084-4","DOIUrl":"10.1038/s44321-024-00084-4","url":null,"abstract":"<p><p>Achieving complete tumor resection is challenging and can be improved by real-time fluorescence-guided surgery with molecular-targeted probes. However, pre-clinical identification and validation of probes presents a lengthy process that is traditionally performed in animal models and further hampered by inter- and intra-tumoral heterogeneity in target expression. To screen multiple probes at patient scale, we developed a multispectral real-time 3D imaging platform that implements organoid technology to effectively model patient tumor heterogeneity and, importantly, healthy human tissue binding.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1495-1514"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-06DOI: 10.1038/s44321-024-00089-z
Wing Yan So, Weiping Han
{"title":"Gene therapy targeting key beta cell regulators as a potential intervention for diabetes.","authors":"Wing Yan So, Weiping Han","doi":"10.1038/s44321-024-00089-z","DOIUrl":"10.1038/s44321-024-00089-z","url":null,"abstract":"","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1490-1494"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1038/s44321-024-00095-1
Xiaoqin Wu, Laura E Nagy, Jérémie Gautheron
{"title":"Author Correction: Mediators of necroptosis: from cell death to metabolic regulation.","authors":"Xiaoqin Wu, Laura E Nagy, Jérémie Gautheron","doi":"10.1038/s44321-024-00095-1","DOIUrl":"10.1038/s44321-024-00095-1","url":null,"abstract":"","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1750"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-18DOI: 10.1038/s44321-024-00092-4
Oriana Mandolfo, Helen Parker, Èlia Aguado, Yuko Ishikawa Learmonth, Ai Yin Liao, Claire O'Leary, Stuart Ellison, Gabriella Forte, Jessica Taylor, Shaun Wood, Rachel Searle, Rebecca J Holley, Hervé Boutin, Brian W Bigger
Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C). The challenge with an acute high poly(I:C) dose exacerbated systemic and brain cytokine expression, especially IL-1β in the hippocampus. This was accompanied by an increase in caspase-1 activity within the brain of MPS IIIA mice with concomitant loss of hippocampal GFAP and NeuN expression. Similar levels of cell damage, together with exacerbation of gliosis, were also observed in MPS IIIA mice following low chronic poly(I:C) dosing. While further investigation is warranted to fully understand the extent of IL-1β involvement in MPS IIIA exacerbated neurodegeneration, our data robustly reinforces our previous findings, indicating IL-1β as a pivotal catalyst for neuropathological processes in MPS IIIA.
{"title":"Systemic immune challenge exacerbates neurodegeneration in a model of neurological lysosomal disease.","authors":"Oriana Mandolfo, Helen Parker, Èlia Aguado, Yuko Ishikawa Learmonth, Ai Yin Liao, Claire O'Leary, Stuart Ellison, Gabriella Forte, Jessica Taylor, Shaun Wood, Rachel Searle, Rebecca J Holley, Hervé Boutin, Brian W Bigger","doi":"10.1038/s44321-024-00092-4","DOIUrl":"10.1038/s44321-024-00092-4","url":null,"abstract":"<p><p>Mucopolysaccharidosis type IIIA (MPS IIIA) is a rare paediatric lysosomal storage disorder, caused by the progressive accumulation of heparan sulphate, resulting in neurocognitive decline and behavioural abnormalities. Anecdotal reports from paediatricians indicate a more severe neurodegeneration in MPS IIIA patients, following infection, suggesting inflammation as a potential driver of neuropathology. To test this hypothesis, we performed acute studies in which WT and MPS IIIA mice were challenged with the TLR3-dependent viral mimetic poly(I:C). The challenge with an acute high poly(I:C) dose exacerbated systemic and brain cytokine expression, especially IL-1β in the hippocampus. This was accompanied by an increase in caspase-1 activity within the brain of MPS IIIA mice with concomitant loss of hippocampal GFAP and NeuN expression. Similar levels of cell damage, together with exacerbation of gliosis, were also observed in MPS IIIA mice following low chronic poly(I:C) dosing. While further investigation is warranted to fully understand the extent of IL-1β involvement in MPS IIIA exacerbated neurodegeneration, our data robustly reinforces our previous findings, indicating IL-1β as a pivotal catalyst for neuropathological processes in MPS IIIA.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1579-1602"},"PeriodicalIF":9.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-04-29DOI: 10.1038/s44321-024-00066-6
Yao Xiang, Jorge Mata-Garrido, Yuanji Fu, Christophe Desterke, Eric Batsché, Ahmed Hamaï, Christine Sedlik, Youssouf Sereme, David Skurnik, Abdelali Jalil, Rachel Onifarasoaniaina, Eric Frapy, Jean-Christophe Beche, Razack Alao, Eliane Piaggio, Laurence Arbibe, Yunhua Chang
As an important immune stimulator and modulator, IFNγ is crucial for gut homeostasis and its dysregulation links to diverse colon pathologies, such as colitis and colorectal cancer (CRC). Here, we demonstrated that the epigenetic regulator, CBX3 (also known as HP1γ) antagonizes IFNγ signaling in the colon epithelium by transcriptionally repressing two critical IFNγ-responsive genes: STAT1 and CD274 (encoding Programmed death-ligand 1, PD-L1). Accordingly, CBX3 deletion resulted in chronic mouse colon inflammation, accompanied by upregulated STAT1 and CD274 expressions. Chromatin immunoprecipitation indicated that CBX3 tethers to STAT1 and CD274 promoters to inhibit their expression. Reversely, IFNγ significantly reduces CBX3 binding to these promoters and primes gene expression. This antagonist effect between CBX3 and IFNγ on STAT1/PD-L1 expression was also observed in CRC. Strikingly, CBX3 deletion heightened CRC cells sensitivity to IFNγ, which ultimately enhanced their chemosensitivity under IFNγ stimulation in vitro with CRC cells and in vivo with a syngeneic mouse tumor model. Overall, this work reveals that by negatively tuning IFNγ-stimulated immune genes' transcription, CBX3 participates in modulating colon inflammatory response and CRC chemo-resistance.
{"title":"CBX3 antagonizes IFNγ/STAT1/PD-L1 axis to modulate colon inflammation and CRC chemosensitivity.","authors":"Yao Xiang, Jorge Mata-Garrido, Yuanji Fu, Christophe Desterke, Eric Batsché, Ahmed Hamaï, Christine Sedlik, Youssouf Sereme, David Skurnik, Abdelali Jalil, Rachel Onifarasoaniaina, Eric Frapy, Jean-Christophe Beche, Razack Alao, Eliane Piaggio, Laurence Arbibe, Yunhua Chang","doi":"10.1038/s44321-024-00066-6","DOIUrl":"10.1038/s44321-024-00066-6","url":null,"abstract":"<p><p>As an important immune stimulator and modulator, IFNγ is crucial for gut homeostasis and its dysregulation links to diverse colon pathologies, such as colitis and colorectal cancer (CRC). Here, we demonstrated that the epigenetic regulator, CBX3 (also known as HP1γ) antagonizes IFNγ signaling in the colon epithelium by transcriptionally repressing two critical IFNγ-responsive genes: STAT1 and CD274 (encoding Programmed death-ligand 1, PD-L1). Accordingly, CBX3 deletion resulted in chronic mouse colon inflammation, accompanied by upregulated STAT1 and CD274 expressions. Chromatin immunoprecipitation indicated that CBX3 tethers to STAT1 and CD274 promoters to inhibit their expression. Reversely, IFNγ significantly reduces CBX3 binding to these promoters and primes gene expression. This antagonist effect between CBX3 and IFNγ on STAT1/PD-L1 expression was also observed in CRC. Strikingly, CBX3 deletion heightened CRC cells sensitivity to IFNγ, which ultimately enhanced their chemosensitivity under IFNγ stimulation in vitro with CRC cells and in vivo with a syngeneic mouse tumor model. Overall, this work reveals that by negatively tuning IFNγ-stimulated immune genes' transcription, CBX3 participates in modulating colon inflammatory response and CRC chemo-resistance.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1404-1426"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}