首页 > 最新文献

E-Jurnal Matematika最新文献

英文 中文
PENENTUAN KONTRAK OPSI TIPE EROPA MENGGUNAKAN MODEL SIMULASI VARIANCE GAMMA (VG) 使用伽玛变量模拟模型(VG)确定欧洲类型选项合同
Pub Date : 2023-08-23 DOI: 10.24843/mtk.2023.v12.i03.p417
N. Kadek, Lani Pitrayani, K. Dharmawan, I. N. Widana
Options are used as a hedge against stock price uncertainty brought on by unstable stock prices fluctuation. The price of an option contract can be determined using a variety of approaches, one of which is the Variance Gamma. The purpose of this study is to compare the Black Scholes method with the Variance Gamma simulation model to determine the European call option contract price. The first thing that needs to be done is to figure out the moment variance gamma method. These parameters were used as initial values to get an idea of what the parameters that will be used in the simulation will be like. The European call option contract's price is calculated using the simulation results, which are then compared to the Variance Gamma simulation model and the Black Scholes model for the European call option contract. This study shows that the European call option contract's price, which was calculated using the Variance Gamma simulation, is less expensive than the Black Scholes contract's price.
期权是一种对冲股票价格不稳定波动带来的不确定性的工具。期权合约的价格可以用多种方法确定,其中一种方法是方差伽玛。本研究的目的是比较Black Scholes方法和方差伽玛模拟模型来确定欧洲看涨期权合约价格。首先要做的是找出矩方差方法。这些参数被用作初始值,以了解将在模拟中使用的参数是什么样的。利用模拟结果计算欧式看涨期权合约的价格,然后将其与欧式看涨期权合约的方差伽玛模拟模型和布莱克斯科尔斯模型进行比较。本研究表明,采用方差伽玛模拟计算的欧式看涨期权合约价格低于Black Scholes合约价格。
{"title":"PENENTUAN KONTRAK OPSI TIPE EROPA MENGGUNAKAN MODEL SIMULASI VARIANCE GAMMA (VG)","authors":"N. Kadek, Lani Pitrayani, K. Dharmawan, I. N. Widana","doi":"10.24843/mtk.2023.v12.i03.p417","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i03.p417","url":null,"abstract":"Options are used as a hedge against stock price uncertainty brought on by unstable stock prices fluctuation. The price of an option contract can be determined using a variety of approaches, one of which is the Variance Gamma. The purpose of this study is to compare the Black Scholes method with the Variance Gamma simulation model to determine the European call option contract price. The first thing that needs to be done is to figure out the moment variance gamma method. These parameters were used as initial values to get an idea of what the parameters that will be used in the simulation will be like. The European call option contract's price is calculated using the simulation results, which are then compared to the Variance Gamma simulation model and the Black Scholes model for the European call option contract. This study shows that the European call option contract's price, which was calculated using the Variance Gamma simulation, is less expensive than the Black Scholes contract's price.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47492848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A PEMODELAN JUMLAH KEJADIAN BANJIR DI KABUPATEN DAN KOTA PROVINSI JAWA TIMUR DENGAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) 当采用地理加权回归(GWR)方法时,银行在CAPTAINS中的活动和作为时间供应成本提出了一个模型
Pub Date : 2023-08-23 DOI: 10.24843/mtk.2023.v12.i03.p423
Yeky Abil Nizar, M. Susilawati, I. G. A. M. Srinadi
East Java Province is a province that experiences many flood disasters. Floods are natural disaster events that are generally affected by the inability of an area to accommodate high rainfall, where rainfall is different in each region. This study aims to determine models and factors that can significantly cause floods in East Java Province with predictable variables including population density, number of rainy days, rainfall, humidity, population growth rate and development land use. The regression method that is able to model cases with these conditions is Geographically Weighted Regression (GWR). Source of research data were obtained from the Central Statistic Agency, POWER Data Access Viewer and Ministry of Environment and Forestry. The best model can be shown by the coefficient of determination, where the GWR obtains a greater coefficient of determination, namely 65.37% compared to the coefficient of determination in linear regression, which is equal to 31.19%, and the coefficient of determination of SAR is 36.26%.
东爪哇省是一个经历过多次洪水灾害的省份。洪水是一种自然灾害事件,通常受一个地区无法容纳高降雨量的影响,每个地区的降雨量不同。本研究旨在通过可预测的变量,包括人口密度、雨天数量、降雨量、湿度、人口增长率和开发用地,确定可能在东爪哇省引发洪水的模型和因素。能够在这些条件下对案例进行建模的回归方法是地理加权回归(GWR)。研究数据来源于中央统计局、POWER data Access Viewer和环境与林业部。最佳模型可以用决定系数来表示,其中GWR获得了更大的决定系数,即65.37%,而线性回归中的决定系数等于31.19%,SAR的决定系数为36.26%。
{"title":"A PEMODELAN JUMLAH KEJADIAN BANJIR DI KABUPATEN DAN KOTA PROVINSI JAWA TIMUR DENGAN METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR)","authors":"Yeky Abil Nizar, M. Susilawati, I. G. A. M. Srinadi","doi":"10.24843/mtk.2023.v12.i03.p423","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i03.p423","url":null,"abstract":"East Java Province is a province that experiences many flood disasters. Floods are natural disaster events that are generally affected by the inability of an area to accommodate high rainfall, where rainfall is different in each region. This study aims to determine models and factors that can significantly cause floods in East Java Province with predictable variables including population density, number of rainy days, rainfall, humidity, population growth rate and development land use. The regression method that is able to model cases with these conditions is Geographically Weighted Regression (GWR). Source of research data were obtained from the Central Statistic Agency, POWER Data Access Viewer and Ministry of Environment and Forestry. The best model can be shown by the coefficient of determination, where the GWR obtains a greater coefficient of determination, namely 65.37% compared to the coefficient of determination in linear regression, which is equal to 31.19%, and the coefficient of determination of SAR is 36.26%.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46993846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FAKTOR-FAKTOR YANG MEMENGARUHI MAHASISWA DALAM MENGGUNAKAN OJEK ONLINE 影响学生在线使用摩托车的因素
Pub Date : 2023-08-23 DOI: 10.24843/mtk.2023.v12.i03.p418
Delvi Amy Deska, Ketut Jayanegara, Desak Putu Eka Nilakusmawati
Transportation is a very important field of activities in the life of Indonesian people. Recognizing the importance  role of transportation, traffic and road transportation must be organized in an integrated national transportation system and able to realize the availability of transportation services in accordance to the level of need. One of the most widely used transportation is ojek online. Of course, some factors become the influence of the use of online motorcycle taxis. One quantitative method that can measure customer perception using online motorcycle taxis is the Factor Analysis method, which is a statistical analysis used to find out the factors that underlie and show interrelationships between changemakers. Based on questionnaires distributed to 150 students in the FMIPA environment of Udayana University in 2021 and after an analysis of factors on questionnaire data, it was obtained that factors which influence students' decisions to use online motorcycle taxis are location and destination factors, service factors, application factors, and promotional factors. These factors can explain the diversity of students to use online motorcycle taxis by 34.666%; 28,897%; 22.563% and 10.873%. The dominant factor that mostly influence students' decision to use online motorcycle taxis is the factor of place and destination location that can be explained by 34.666%.
交通是印尼人生活中一个非常重要的活动领域。认识到运输的重要作用,交通和公路运输必须组织在一个综合的国家运输系统中,并能够根据需要的程度提供运输服务。最广泛使用的交通工具之一是ojek在线。当然,也有一些因素成为影响在线摩的使用的因素。一种量化的方法,可以衡量客户对在线摩托车出租车的看法是因素分析法,这是一种统计分析,用于找出潜在的因素,并显示出变革者之间的相互关系。根据2021年在Udayana大学FMIPA环境中对150名学生发放的问卷,对问卷数据进行因素分析,得出影响学生使用在线摩的因素有:地点与目的地因素、服务因素、应用因素、促销因素。这些因素可以解释34.666%的学生使用网络摩的多样性;28897%;22.563%和10.873%。最能影响学生使用网络摩的决定的主导因素是地点和目的地位置因素,可以解释34.666%。
{"title":"FAKTOR-FAKTOR YANG MEMENGARUHI MAHASISWA DALAM MENGGUNAKAN OJEK ONLINE","authors":"Delvi Amy Deska, Ketut Jayanegara, Desak Putu Eka Nilakusmawati","doi":"10.24843/mtk.2023.v12.i03.p418","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i03.p418","url":null,"abstract":"Transportation is a very important field of activities in the life of Indonesian people. Recognizing the importance  role of transportation, traffic and road transportation must be organized in an integrated national transportation system and able to realize the availability of transportation services in accordance to the level of need. One of the most widely used transportation is ojek online. Of course, some factors become the influence of the use of online motorcycle taxis. One quantitative method that can measure customer perception using online motorcycle taxis is the Factor Analysis method, which is a statistical analysis used to find out the factors that underlie and show interrelationships between changemakers. Based on questionnaires distributed to 150 students in the FMIPA environment of Udayana University in 2021 and after an analysis of factors on questionnaire data, it was obtained that factors which influence students' decisions to use online motorcycle taxis are location and destination factors, service factors, application factors, and promotional factors. These factors can explain the diversity of students to use online motorcycle taxis by 34.666%; 28,897%; 22.563% and 10.873%. The dominant factor that mostly influence students' decision to use online motorcycle taxis is the factor of place and destination location that can be explained by 34.666%.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48232377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PENDUGAAN PARAMETER REGRESI ROBUST METODE MINIMUM COVARIANCE DETERMINANT DAN METODE TELBS 最小变量决定和TELBS方法的试剂回归参数
Pub Date : 2023-05-31 DOI: 10.24843/mtk.2023.v12.i02.p410
Ni Ketut, Zelina Yeriska, Gusti Ayu Made Srinadi, I. Komang, Gde Sukarsa
The parameter estimator on the regression model can be obtained through the ordinary least square (OLS). When there are outliers in the data, OLS cannot be applied because it will produce an unbiased estimator that is not the best linear estimator. Another alternative to addressing the presence of outlier data without deleting the data is robust regression. Robust regression methods include the minimum covariance determinant (MCD) and the TELBS method. This study aims to determine the estimation of regression parameters produced using the MCD and TELBS methods when entering outlier data. The data used are simulation data with various levels of outliers, namely 5%, 10%, and 20%. The outliers inserted are the outliers on variable X, variable Y, and variables X and Y. The result of this study is that the robust regression methods of MCD and TELBS both produce unbiased parameter estimators when there are outlier data.
回归模型上的参数估计量可以通过普通最小二乘法得到。当数据中存在异常值时,OLS不能应用,因为它会产生一个无偏估计量,而不是最好的线性估计量。在不删除数据的情况下解决异常数据存在的另一种选择是稳健回归。稳健回归方法包括最小协方差行列式(MCD)和TELBS方法。本研究旨在确定在输入异常数据时使用MCD和TELBS方法产生的回归参数的估计。所使用的数据是具有不同水平异常值的模拟数据,即5%、10%和20%。插入的异常值是变量X、变量Y以及变量X和Y上的异常值。本研究的结果是,当存在异常值数据时,MCD和TELBS的稳健回归方法都产生了无偏的参数估计量。
{"title":"PENDUGAAN PARAMETER REGRESI ROBUST METODE MINIMUM COVARIANCE DETERMINANT DAN METODE TELBS","authors":"Ni Ketut, Zelina Yeriska, Gusti Ayu Made Srinadi, I. Komang, Gde Sukarsa","doi":"10.24843/mtk.2023.v12.i02.p410","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i02.p410","url":null,"abstract":"The parameter estimator on the regression model can be obtained through the ordinary least square (OLS). When there are outliers in the data, OLS cannot be applied because it will produce an unbiased estimator that is not the best linear estimator. Another alternative to addressing the presence of outlier data without deleting the data is robust regression. Robust regression methods include the minimum covariance determinant (MCD) and the TELBS method. This study aims to determine the estimation of regression parameters produced using the MCD and TELBS methods when entering outlier data. The data used are simulation data with various levels of outliers, namely 5%, 10%, and 20%. The outliers inserted are the outliers on variable X, variable Y, and variables X and Y. The result of this study is that the robust regression methods of MCD and TELBS both produce unbiased parameter estimators when there are outlier data.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48901420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PENERAPAN ARTIFICIAL NEURAL NETWORK UNTUK MENDUGA PROGRAM STUDI DI UNIVERSITAS UDAYANA BERDASARKAN NILAI RAPOR 用于大学学习计划的人工神经网络开发
Pub Date : 2023-05-31 DOI: 10.24843/mtk.2023.v12.i02.p412
I. Bayu, Sulaksana Putra, P. Eka, N. Kencana, Luh Putu, Ida Harini
This research aims to develop an artificial neural network-based estimation system to predict the suitable study program at Udayana University for high school students in Denpasar City based on their report cards. The research is divided into four stages: system overview, user interface design, implementation of the artificial neural network in the system, and system testing. System testing results on report card data for science and social science classes demonstrate that the developed model has good accuracy with an error rate below 7%
本研究旨在开发一个基于人工神经网络的估计系统,根据登巴萨市高中生的成绩单来预测乌达亚纳大学适合他们的学习计划。研究分为四个阶段:系统概述、用户界面设计、人工神经网络在系统中的实现和系统测试。对科学和社会科学课程成绩单数据的系统测试结果表明,所开发的模型具有良好的准确性,误差率低于7%
{"title":"PENERAPAN ARTIFICIAL NEURAL NETWORK UNTUK MENDUGA PROGRAM STUDI DI UNIVERSITAS UDAYANA BERDASARKAN NILAI RAPOR","authors":"I. Bayu, Sulaksana Putra, P. Eka, N. Kencana, Luh Putu, Ida Harini","doi":"10.24843/mtk.2023.v12.i02.p412","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i02.p412","url":null,"abstract":"This research aims to develop an artificial neural network-based estimation system to predict the suitable study program at Udayana University for high school students in Denpasar City based on their report cards. The research is divided into four stages: system overview, user interface design, implementation of the artificial neural network in the system, and system testing. System testing results on report card data for science and social science classes demonstrate that the developed model has good accuracy with an error rate below 7%","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49452309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMPLEMENTASI METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) PADA KASUS DIARE BALITA DI PROVINSI JAWA TIMUR 实施方法
Pub Date : 2023-05-31 DOI: 10.24843/mtk.2023.v12.i02.p405
Felina Chantika Putri, NI Luh Putu Suciptawati, M. Susilawati
Spatial regression is an extension of classical regression analysis by considering spatial elements of spatial elements. One of the model of spatial regressions is the Geographically Weighted Regression (GWR). In the analysis, the GWR method considers the differences in characteristics between regions (spatial heterogeneity). Diarrhea cases in toddlers can be modeled using the GWR model. This research aims to model and identify factors that significantly influence diarrhea cases in toddlers in each district in East Java Province in 2020 using GWR. There are two weighting functions used in this research that are fixed bisquare kernel and adaptive bisquare kernel. The results showed that the GWR model with the adaptive kernel bisquare weighting function was more suitable because it produced the highest 𝑅 2 value of 79.29%. The factors that have a significant effect in each district are different and the dominant factor is the provision of vitamin A to toddlers.
空间回归是对经典回归分析的扩展,考虑空间元素的空间元素。其中一种空间回归模型是地理加权回归(GWR)。在分析中,GWR方法考虑了区域间特征的差异(空间异质性)。幼儿腹泻病例可以使用GWR模型建模。本研究旨在利用GWR对2020年东爪哇省各区幼儿腹泻病例进行建模并确定显著影响因素。本文采用了固定双方核和自适应双方核两种加权函数。结果表明,采用自适应核二方加权函数的GWR模型能产生最高的𝑅2值(79.29%),是最合适的模型。在每个地区有显著影响的因素是不同的,主要因素是向幼儿提供维生素a。
{"title":"IMPLEMENTASI METODE GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) PADA KASUS DIARE BALITA DI PROVINSI JAWA TIMUR","authors":"Felina Chantika Putri, NI Luh Putu Suciptawati, M. Susilawati","doi":"10.24843/mtk.2023.v12.i02.p405","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i02.p405","url":null,"abstract":"Spatial regression is an extension of classical regression analysis by considering spatial elements of spatial elements. One of the model of spatial regressions is the Geographically Weighted Regression (GWR). In the analysis, the GWR method considers the differences in characteristics between regions (spatial heterogeneity). Diarrhea cases in toddlers can be modeled using the GWR model. This research aims to model and identify factors that significantly influence diarrhea cases in toddlers in each district in East Java Province in 2020 using GWR. There are two weighting functions used in this research that are fixed bisquare kernel and adaptive bisquare kernel. The results showed that the GWR model with the adaptive kernel bisquare weighting function was more suitable because it produced the highest 𝑅 2 value of 79.29%. The factors that have a significant effect in each district are different and the dominant factor is the provision of vitamin A to toddlers.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42626031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PENERAPAN METODE SAFETY FIRST CRITERION PADA SELEKSI SAHAM UNTUK PEMBENTUKAN PORTOFOLIO OPTIMAL 安全方法开发——选择对优化PORTophOLIUM开发安全的第一标准
Pub Date : 2023-05-31 DOI: 10.24843/mtk.2023.v12.i02.p406
Hamita Hakmi, Komang Dharmawan, R. Widiastuti
The formation of an optimal portfolio can be done with the Safety First Criterion method which is based on down side risk, namely the risk of causing a loss. The purpose of this study is to determine the optimal portfolio using Safety First Criterion method. Safety first criteria for portfolio selection are concerned only with the risk of failing to achieve a criteria minimum target return or secure prespecified safety margins. There are three criteria for the Safety First, namely Roy, Kataoka and Telser criteria. The results of this study formed an optimal portfolio with different risk values the Roy criteria is 0.0486, Kataoka is 0.0487 and Telser is 0.0527. So that the best portfolio of the three criteria is Roy's criterion because it has the lowest risk value with expected return the same
最优投资组合的形成可以用安全第一准则方法来完成,该方法基于下行风险,即造成损失的风险。本研究的目的是利用安全第一准则的方法来确定最优的投资组合。投资组合选择的安全第一标准只关注未能达到标准最低目标回报或确保预先规定的安全边际的风险。安全第一有三个标准,即Roy标准、Kataoka标准和Telser标准。本研究结果形成了具有不同风险值的最优投资组合,Roy标准为0.0486,Kataoka标准为0.0487,Telser标准为0.0527。所以三个标准中的最佳投资组合是罗伊的标准因为它具有最低的风险值和相同的预期收益
{"title":"PENERAPAN METODE SAFETY FIRST CRITERION PADA SELEKSI SAHAM UNTUK PEMBENTUKAN PORTOFOLIO OPTIMAL","authors":"Hamita Hakmi, Komang Dharmawan, R. Widiastuti","doi":"10.24843/mtk.2023.v12.i02.p406","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i02.p406","url":null,"abstract":"The formation of an optimal portfolio can be done with the Safety First Criterion method which is based on down side risk, namely the risk of causing a loss. The purpose of this study is to determine the optimal portfolio using Safety First Criterion method. Safety first criteria for portfolio selection are concerned only with the risk of failing to achieve a criteria minimum target return or secure prespecified safety margins. There are three criteria for the Safety First, namely Roy, Kataoka and Telser criteria. The results of this study formed an optimal portfolio with different risk values the Roy criteria is 0.0486, Kataoka is 0.0487 and Telser is 0.0527. So that the best portfolio of the three criteria is Roy's criterion because it has the lowest risk value with expected return the same","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42539813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE 适用于向量机支持的SIROSIS-PEN分类
Pub Date : 2023-05-31 DOI: 10.24843/mtk.2023.v12.i02.p404
YR VaniaRiskasari, P. Eka, Nila Kencana, I. Komang, Gde Sukarsa
Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and 𝛾 that gives the best accuracy is determined. The final model using SVM with parameters C = 1 and 𝛾 = 0,6 is the best model with the accuracy value of 67,86 percent.
肝硬化是肝脏疾病的一种,由肝脏纤维化引起,使肝脏结构发生异常变化。根据腹水、静脉曲张和出血的表现,肝硬化可分为四个临床阶段。本研究旨在利用支持向量机(SVM)寻找肝硬化的最佳分类模型。支持向量机是一种监督学习方法,其目的是寻找具有最大边界的超平面。在本研究中,所得模型可用于确定患者的肝硬化分期。分类的变量有年龄、性别、腹水状态、肝肿大状态、蜘蛛状态、水肿状态、总胆红素、总胆固醇、白蛋白量、铜量、碱性磷酸酶水平试验结果、SGOT试验结果、甘油三酯量、血小板量、凝血酶原时间。采用径向基函数核,确定了参数C与的组合,得到了最佳的精度。最终采用参数C = 1, = 0,6的SVM模型为最佳模型,准确率为67.86%。
{"title":"KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE","authors":"YR VaniaRiskasari, P. Eka, Nila Kencana, I. Komang, Gde Sukarsa","doi":"10.24843/mtk.2023.v12.i02.p404","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i02.p404","url":null,"abstract":"Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and 𝛾 that gives the best accuracy is determined. The final model using SVM with parameters C = 1 and 𝛾 = 0,6 is the best model with the accuracy value of 67,86 percent.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45709359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANALISIS KEPUTUSAN INVESTASI PADA SAHAM PERBANKAN MENGGUNAKAN CAPM DAN CAPM-MONTE CARLO 银行提供CAPM和CAPM-蒙特卡罗投资决策分析
Pub Date : 2023-05-31 DOI: 10.24843/mtk.2023.v12.i02.p413
Emerald Diori Silaban, K. Dharmawan, Desak Putu Eka Nilakusmawati
Penelitian ini bertujuan untuk menghitung nilai beta dan ekspektasi return pada CAPM dengan menggunakan data historis dan menggunakan data dari simulasi Monte Carlo. Data yang digunakan dalam penelitian ini adalah data saham dari indeks infobank15. Model yang digunakan dalam penelitian ini adalah model ekuilibrium CAPM dan untuk mengestimasi harga saham penelitian ini menggunakan simulasi Monte Carlo. Hasil penelitian menunjukkan perhitungan beta menggunakan data historis dan data simulasi saham BBCA (0,91578 dan 0,89393), BBNI (2,10434 dan 2,28636), BBRI (1,42862 dan 1,43427), BMRI (1 ,28249 dan 1,37485), dan BBTN (2,49935 dan 2,75265). Dengan hasil tersebut saham BBCA defensif karena beta kurang dari satu dan empat saham lainnya agresif karena beta lebih dari satu. Hasil perhitungan expected return dengan menggunakan data historis dan data simulasi adalah BBCA (5,42% dan 5,28%), BBNI (6,46% dan 8,05%), BBRI (5,87% dan 6,36%) , BMRI (5,74% dan 6,24%), dan BBTN (6,81% dan 8,98%).
本研究旨在使用历史数据和蒙特卡洛模拟的数据计算CAPM的贝塔值和回报预期。本研究中使用的数据是来自infobank15指数的股票数据。本研究中使用的模型是CAPM均衡模型,并使用蒙特卡罗模拟来估计这些研究股票的价格。研究表明,我使用的是历史数据和股票模拟数据BBCA(0.91578和0.89393)、BBNI(2.10434和2.28636)、BBRI(1.42862和1.43427)、BMRI(128249和1.37485)和BBTN(2.49935和2.75265)。因此,防御性的BBCA股票是因为我不到一只,而其他四只股票是积极的,因为我不止一只。使用历史数据和模拟数据进行的预期回报计算为BBCA(5.42%和5.28%)、BBNI(6.46%和8.05%)、BBRI(5.87%和6.36%)、BMRI(5.74%和6.24%)和BBTN(6.81%和8.98%)。
{"title":"ANALISIS KEPUTUSAN INVESTASI PADA SAHAM PERBANKAN MENGGUNAKAN CAPM DAN CAPM-MONTE CARLO","authors":"Emerald Diori Silaban, K. Dharmawan, Desak Putu Eka Nilakusmawati","doi":"10.24843/mtk.2023.v12.i02.p413","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i02.p413","url":null,"abstract":"Penelitian ini bertujuan untuk menghitung nilai beta dan ekspektasi return pada CAPM dengan menggunakan data historis dan menggunakan data dari simulasi Monte Carlo. Data yang digunakan dalam penelitian ini adalah data saham dari indeks infobank15. Model yang digunakan dalam penelitian ini adalah model ekuilibrium CAPM dan untuk mengestimasi harga saham penelitian ini menggunakan simulasi Monte Carlo. Hasil penelitian menunjukkan perhitungan beta menggunakan data historis dan data simulasi saham BBCA (0,91578 dan 0,89393), BBNI (2,10434 dan 2,28636), BBRI (1,42862 dan 1,43427), BMRI (1 ,28249 dan 1,37485), dan BBTN (2,49935 dan 2,75265). Dengan hasil tersebut saham BBCA defensif karena beta kurang dari satu dan empat saham lainnya agresif karena beta lebih dari satu. Hasil perhitungan expected return dengan menggunakan data historis dan data simulasi adalah BBCA (5,42% dan 5,28%), BBNI (6,46% dan 8,05%), BBRI (5,87% dan 6,36%) , BMRI (5,74% dan 6,24%), dan BBTN (6,81% dan 8,98%).","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45993846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANALISIS PREMI BULANAN ASURANSI JIWA DWIGUNA POLIS PARTISIPASI MENGGUNAKAN SUKU BUNGA MODEL VASICEK 月度保险费分析
Pub Date : 2023-05-31 DOI: 10.24843/mtk.2023.v12.i02.p414
I. W. R. A. Prayana, I. N. Widana, Desak Putu Eka Nilakusmawati
{"title":"ANALISIS PREMI BULANAN ASURANSI JIWA DWIGUNA POLIS PARTISIPASI MENGGUNAKAN SUKU BUNGA MODEL VASICEK","authors":"I. W. R. A. Prayana, I. N. Widana, Desak Putu Eka Nilakusmawati","doi":"10.24843/mtk.2023.v12.i02.p414","DOIUrl":"https://doi.org/10.24843/mtk.2023.v12.i02.p414","url":null,"abstract":"","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48827311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
E-Jurnal Matematika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1