首页 > 最新文献

EKSPLORIUM最新文献

英文 中文
Ore Mineralization Characteristics in Hydrothermal Alteration at Mangunharjo and Surrounding Areas, Pacitan, Indonesia 印尼太平洋地区Mangunharjo及周边地区热液蚀变成矿特征
Pub Date : 2022-05-31 DOI: 10.17146/eksplorium.2022.43.1.6194
Abdul Faisal Baba, S. Mulyaningsih, R. A. Hidayah
The research area is located in Mangunharjo-Grindulu, Pacitan (Indonesia), as part of the Southern Mountain Tertiary Volcanic Arch. Outcrops of quartz veins-riched volcanic rock associated with sulfide minerals are found in this area. The Southern Mountain Oligo-Miocene magmatic arc is known as the potential area that contains precious metal deposits. The study aimed to determine the characteristics of the mineralized zone in this area. The research methods are geological surface mapping, thin-section observation, mineragraphy, and X-Ray Diffraction (XRD). The results show that the constituent lithologies were andesitic lava, breccia, and tuff; co-ignimbrite breccia, dacitic pumice and tuff, and dacitic dike; and pyroxene-rich andesitic volcanic rocks. The geological structure is dominated by oblique normal faults, strike-slip faults, and upward oblique faults associated with shear joints filled with quartz veins. Fieldwork observation, thin-section analyses, and mineragraphic and XRD observations identify three alteration zones in the hydrothermal system: the advanced argillic zone, the intermediate argillic zone, and the chloritized zone. By the mineral’s association, it is interpreted that the advanced argillic zone was formed at a temperature of 220-330oC and pH 3-6 due to dissemination with side rocks located near the hydrothermal flows; the intermediate argillic zone and the chloritized zone were formed at a temperature of 150-300oC and a pH of 5-6 due to chloritized alteration of the hydrothermal fluid carrying the ore. This alteration zone has no economic potential for precious metal minerals so it is better to be developed for education, conservation, and natural laboratories.
研究区域位于太平洋岛(印度尼西亚)的Mangunharjo-Grindulu,是南山第三纪火山拱的一部分。该地区发现了与硫化物矿物伴生的富含石英脉的火山岩露头。南山渐新-中新世岩浆弧被认为是蕴藏贵金属矿床的潜在区域。研究的目的是确定本区矿化带的特征。研究方法有地表填图、薄片观测、矿物学、x射线衍射等。结果表明,其组成岩性主要为安山岩熔岩、角砾岩和凝灰岩;辉灰岩角砾岩、辉灰岩和凝灰岩、辉灰岩脉;和富辉石安山岩火山岩。地质构造以斜向正断层、走滑断层、上行斜向断层为主,并伴有石英脉充填的剪切节理。通过野外观测、薄片分析、矿物学和XRD观测,确定了热液系统的3个蚀变带:高级泥质带、中级泥质带和绿泥化带。通过矿物的组合,解释了在温度220 ~ 330℃,pH值3 ~ 6的条件下,由于热液流附近的侧岩的传播作用,形成了先进的泥质带;中间泥质带和绿泥化带是由载矿热液的绿泥化蚀变作用在温度150 ~ 300℃、pH 5 ~ 6范围内形成的,该蚀变带不具有贵金属矿物的经济潜力,适合教育、保护和自然实验室开发。
{"title":"Ore Mineralization Characteristics in Hydrothermal Alteration at Mangunharjo and Surrounding Areas, Pacitan, Indonesia","authors":"Abdul Faisal Baba, S. Mulyaningsih, R. A. Hidayah","doi":"10.17146/eksplorium.2022.43.1.6194","DOIUrl":"https://doi.org/10.17146/eksplorium.2022.43.1.6194","url":null,"abstract":"The research area is located in Mangunharjo-Grindulu, Pacitan (Indonesia), as part of the Southern Mountain Tertiary Volcanic Arch. Outcrops of quartz veins-riched volcanic rock associated with sulfide minerals are found in this area. The Southern Mountain Oligo-Miocene magmatic arc is known as the potential area that contains precious metal deposits. The study aimed to determine the characteristics of the mineralized zone in this area. The research methods are geological surface mapping, thin-section observation, mineragraphy, and X-Ray Diffraction (XRD). The results show that the constituent lithologies were andesitic lava, breccia, and tuff; co-ignimbrite breccia, dacitic pumice and tuff, and dacitic dike; and pyroxene-rich andesitic volcanic rocks. The geological structure is dominated by oblique normal faults, strike-slip faults, and upward oblique faults associated with shear joints filled with quartz veins. Fieldwork observation, thin-section analyses, and mineragraphic and XRD observations identify three alteration zones in the hydrothermal system: the advanced argillic zone, the intermediate argillic zone, and the chloritized zone. By the mineral’s association, it is interpreted that the advanced argillic zone was formed at a temperature of 220-330oC and pH 3-6 due to dissemination with side rocks located near the hydrothermal flows; the intermediate argillic zone and the chloritized zone were formed at a temperature of 150-300oC and a pH of 5-6 due to chloritized alteration of the hydrothermal fluid carrying the ore. This alteration zone has no economic potential for precious metal minerals so it is better to be developed for education, conservation, and natural laboratories.","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"140 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77754028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sub-surface Geological Modeling Based on Gravity Residual Data in Adang Volcanic Rock Area, Mamuju, West Sulawesi Province 基于重力残差数据的西苏拉威西马木居阿当火山岩区的地下地质建模
Pub Date : 2022-05-31 DOI: 10.17146/eksplorium.2022.43.1.6089
Adhika Junara Karunianto, D. Haryanto, Ngadenin Ngadenin
The Mamuju area of West Sulawesi Province is composed of Adang volcanic rock that is a product of the process of volcanism in a volcanic complex with an eruption center and several lava domes. The geology of the study area is composed of eleven rock units, namely Adang breccia, Adang lava, lava dome, volcanic conglomerate, Ampalas breccia, Malunda breccia, Boteng lava, Tapalang breccia, limestone, reef limestone, and alluvium. The mineralization of uranium, thorium, and rare earth elements formed in Adang lava thorianite veins. Adang lava is intruded by a dioritoid found in the Mamuju river upstream. The gravity modeling technique has produced two 2-D subsurface models based on gravity data on 2-D cross-sections of the residual gravity map. It is known that the rock density range from 2.10 to 2.85 g/cm3 in the study area. Based on the interpretation of two 2-D subsurface models, a batholith, a giant-sized intrusive rock, is found in the southeastern part of the study area with a rock density of about 2.85 g/cm3 and is interpreted to be dioritoids. Furthermore, deep intrusion rocks also occur in the center part of the study area with a rock density of 2.8 g/cm3. It is estimated to be the same as the rock in the southeastern part of the study area. Dioritoid intrudes a volcanic breccia sedimentary rock with a density of about 2.1 g/cm3.
西苏拉威西省马木居地区由阿当火山岩组成,阿当火山岩是一个火山复合体中火山作用过程的产物,该火山复合体有一个喷发中心和几个熔岩圆顶。研究区地质由阿当角砾岩、阿当熔岩、熔岩穹窿、火山砾岩、安帕拉斯角砾岩、玛伦达角砾岩、博腾熔岩、塔帕朗角砾岩、灰岩、礁灰岩、冲积层等11个岩石单元组成。铀、钍、稀土元素的成矿作用形成于阿当熔岩钍脉中。阿当熔岩被上游马木居河的闪长岩侵入。重力建模技术基于剩余重力图二维截面上的重力数据,生成了两个二维地下模型。已知研究区岩石密度在2.10 ~ 2.85 g/cm3之间。根据两个二维地下模型的解释,在研究区东南部发现了一大块侵入岩,岩石密度约为2.85 g/cm3,解释为闪长岩。研究区中部还发育深部侵入岩,岩石密度为2.8 g/cm3。估计它与研究区东南部的岩石相同。闪长岩侵入火山角砾岩沉积岩,密度约为2.1 g/cm3。
{"title":"Sub-surface Geological Modeling Based on Gravity Residual Data in Adang Volcanic Rock Area, Mamuju, West Sulawesi Province","authors":"Adhika Junara Karunianto, D. Haryanto, Ngadenin Ngadenin","doi":"10.17146/eksplorium.2022.43.1.6089","DOIUrl":"https://doi.org/10.17146/eksplorium.2022.43.1.6089","url":null,"abstract":"The Mamuju area of West Sulawesi Province is composed of Adang volcanic rock that is a product of the process of volcanism in a volcanic complex with an eruption center and several lava domes. The geology of the study area is composed of eleven rock units, namely Adang breccia, Adang lava, lava dome, volcanic conglomerate, Ampalas breccia, Malunda breccia, Boteng lava, Tapalang breccia, limestone, reef limestone, and alluvium. The mineralization of uranium, thorium, and rare earth elements formed in Adang lava thorianite veins. Adang lava is intruded by a dioritoid found in the Mamuju river upstream. The gravity modeling technique has produced two 2-D subsurface models based on gravity data on 2-D cross-sections of the residual gravity map. It is known that the rock density range from 2.10 to 2.85 g/cm3 in the study area. Based on the interpretation of two 2-D subsurface models, a batholith, a giant-sized intrusive rock, is found in the southeastern part of the study area with a rock density of about 2.85 g/cm3 and is interpreted to be dioritoids. Furthermore, deep intrusion rocks also occur in the center part of the study area with a rock density of 2.8 g/cm3. It is estimated to be the same as the rock in the southeastern part of the study area. Dioritoid intrudes a volcanic breccia sedimentary rock with a density of about 2.1 g/cm3.","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88360171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geostatistical Ore Body Modeling on Uranium Mineralization in Remaja Sector, Kalan Area, West Kalimantan 西加里曼丹Kalan地区Remaja段铀矿化地质统计矿体模拟
Pub Date : 2022-05-31 DOI: 10.17146/eksplorium.2022.43.1.6622
R. C. Ciputra, M. Heriawan, H. Syaeful, Dhatu Kamajati, Putri Rahmawati
Manual ore body modeling on Remaja Sector, Kalan, West Kalimantan generally takes a long time and is subjective. On the other hand, automatic modeling (implicit modeling) is faster, objective, and equipped with uncertainty factors. This study aimed to analyze the comparison between the geostatistical Sequential Indicator Simulation (SIS) ore body model to the manual ore body model. The lithology database was used as input for variogram analysis and SIS simulation. The directional variogram was used to construct an experimental variogram for the lithology with orientation data. The orientation of the lithologies corresponds to the anisotropy of their variogram map. The SIS was carried out in  Block A and Block B with block sizes of 6×6×6 m3 and 5×5×5 m3 respectively. The simulation results were processed to produce a lithology probability model. By using maximum probability as block lithology, simulation results were well validated by the composite database histogram, the lithologies along the tunnel on the geological map of level 450 masl of Eko Remaja Tunnel., and the lithologies along boreholes. The weakness of the geostatistical ore body model was the results depending on the input parameters. Meanwhile, several advantages of the geostatistical ore body model were a faster processing process, equipped with an uncertainty factor, and the block size of the model has taken into account the distance between grade data so that it can be used directly for grade estimation. Quantitatively, the geostatistical ore body model had a higher average percentage of conformity to the lithology of the mineralized zone along the borehole than the manual ore body model.
在西加里曼丹卡兰的Remaja区,手工矿体建模通常需要很长时间,而且是主观的。另一方面,自动建模(隐式建模)速度更快、更客观,并带有不确定性因素。本研究旨在分析地统计序贯指标模拟(SIS)矿体模型与人工矿体模型的比较。岩性数据库作为变异分析和SIS模拟的输入。利用定向变异函数构造了具有定向数据的岩性实验变异函数。岩性的取向与其变异图的各向异性相对应。SIS在A块和B块进行,块大小分别为6×6×6 m3和5×5×5 m3。对模拟结果进行处理,得到岩性概率模型。采用最大概率法作为块体岩性,利用复合数据库直方图,在Eko Remaja隧道450层的地质图上对隧道沿线岩性进行了较好的验证。,以及钻孔沿线的岩性。地统计矿体模型的缺点是结果依赖于输入参数。同时,地统计矿体模型的优点是处理速度快,具有不确定性因素,模型的块大小考虑了品位数据之间的距离,可以直接用于品位估算。在定量上,地统计矿体模型与矿化带沿钻孔岩性的平均符合率高于人工矿体模型。
{"title":"Geostatistical Ore Body Modeling on Uranium Mineralization in Remaja Sector, Kalan Area, West Kalimantan","authors":"R. C. Ciputra, M. Heriawan, H. Syaeful, Dhatu Kamajati, Putri Rahmawati","doi":"10.17146/eksplorium.2022.43.1.6622","DOIUrl":"https://doi.org/10.17146/eksplorium.2022.43.1.6622","url":null,"abstract":"Manual ore body modeling on Remaja Sector, Kalan, West Kalimantan generally takes a long time and is subjective. On the other hand, automatic modeling (implicit modeling) is faster, objective, and equipped with uncertainty factors. This study aimed to analyze the comparison between the geostatistical Sequential Indicator Simulation (SIS) ore body model to the manual ore body model. The lithology database was used as input for variogram analysis and SIS simulation. The directional variogram was used to construct an experimental variogram for the lithology with orientation data. The orientation of the lithologies corresponds to the anisotropy of their variogram map. The SIS was carried out in  Block A and Block B with block sizes of 6×6×6 m3 and 5×5×5 m3 respectively. The simulation results were processed to produce a lithology probability model. By using maximum probability as block lithology, simulation results were well validated by the composite database histogram, the lithologies along the tunnel on the geological map of level 450 masl of Eko Remaja Tunnel., and the lithologies along boreholes. The weakness of the geostatistical ore body model was the results depending on the input parameters. Meanwhile, several advantages of the geostatistical ore body model were a faster processing process, equipped with an uncertainty factor, and the block size of the model has taken into account the distance between grade data so that it can be used directly for grade estimation. Quantitatively, the geostatistical ore body model had a higher average percentage of conformity to the lithology of the mineralized zone along the borehole than the manual ore body model.","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77050747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on Granitic Rocks in Sumatra: Intrusion Process, Classification, Mineralization and Potential Uses 苏门答腊岛花岗质岩石:侵入过程、分类、成矿作用及潜在用途
Pub Date : 2022-05-31 DOI: 10.17146/eksplorium.2022.43.1.6471
Ronaldo Irzon, H. Syaeful, A. Kusworo, J. Wahyudiono, Ngadenin Ngadenin
Granitic rocks are widely distributed in Sumatra and surrounding areas. These granitoids are classified into several granite provinces of Southeast Asia with different intrusion processes and specific characteristics. This paper aims to review the intrusion of granitic rocks in Sumatra and describe the opportunities associated with it. Granite rocks are used to manufacture cultural heritage, works of art, and ornaments because of their weathering resistance, color diversity, and hardness characters. S-type granite intrusion in Sumatra might be associated with tin mineralization while silver-gold with the I-type. Theoretically, granite contains more REE than other igneous rocks. Mining and extraction difficulties complicate the direct REE exploitation from fresh granite. A-type granite relatively contains more REE than the other types, but this type of granite is not correlated with certain provinces. Indonesia has a tropical climate which is prone to weathering. Therefore, it is possible for REE and/or bauxite enrichments in the granite weathering horizon. Granite is assumed to be a potential source of uranium and thorium, especially for the S-type, because it is formed through the compression of sediments that can absorb these radioactive elements from the continental crust.
花岗岩广泛分布于苏门答腊及其周边地区。这些花岗岩体可划分为东南亚几个花岗岩体省,其侵入过程和特征各不相同。本文综述了苏门答腊岛花岗质岩石的侵入,并描述了与之相关的机会。花岗石因其耐风化、颜色多样、硬度大等特点,被用来制作文物、艺术品和装饰品。苏门答腊的s型花岗岩侵入岩可能与锡矿化有关,而银金矿则与i型侵入岩有关。理论上,花岗岩比其他火成岩含有更多的稀土元素。从新鲜花岗岩中直接开采稀土元素是采矿和提取困难的问题。a型花岗岩的稀土元素含量相对高于其他类型,但与某些省份没有相关性。印度尼西亚属热带气候,容易风化。因此,花岗岩风化层可能富集稀土和/或铝土矿。花岗岩被认为是铀和钍的潜在来源,尤其是s型,因为它是通过沉积物的压缩形成的,而沉积物可以从大陆地壳中吸收这些放射性元素。
{"title":"Review on Granitic Rocks in Sumatra: Intrusion Process, Classification, Mineralization and Potential Uses","authors":"Ronaldo Irzon, H. Syaeful, A. Kusworo, J. Wahyudiono, Ngadenin Ngadenin","doi":"10.17146/eksplorium.2022.43.1.6471","DOIUrl":"https://doi.org/10.17146/eksplorium.2022.43.1.6471","url":null,"abstract":"Granitic rocks are widely distributed in Sumatra and surrounding areas. These granitoids are classified into several granite provinces of Southeast Asia with different intrusion processes and specific characteristics. This paper aims to review the intrusion of granitic rocks in Sumatra and describe the opportunities associated with it. Granite rocks are used to manufacture cultural heritage, works of art, and ornaments because of their weathering resistance, color diversity, and hardness characters. S-type granite intrusion in Sumatra might be associated with tin mineralization while silver-gold with the I-type. Theoretically, granite contains more REE than other igneous rocks. Mining and extraction difficulties complicate the direct REE exploitation from fresh granite. A-type granite relatively contains more REE than the other types, but this type of granite is not correlated with certain provinces. Indonesia has a tropical climate which is prone to weathering. Therefore, it is possible for REE and/or bauxite enrichments in the granite weathering horizon. Granite is assumed to be a potential source of uranium and thorium, especially for the S-type, because it is formed through the compression of sediments that can absorb these radioactive elements from the continental crust.","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89424508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tectonic Pattern Imaging of Southern Sumatra Region Using Double Difference Seismic Tomography 双差地震层析成像技术在南苏门答腊地区的应用
Pub Date : 2022-05-31 DOI: 10.17146/eksplorium.2022.43.1.6603
Akmal Firmansyah, W. Wandono, M. Ramdhan
Southern Sumatra and its surroundings are close to the contact zone of the Indo-Australian plate and Eurasian plate, so the area always relates to the high seismicity zone. The Sumatran subduction zone, the Mentawai fault, and several segments of the Sumatran fault drive seismic activities in the area. Tectonic settings are essential to understanding the area's source and hazard. This understanding can be obtained using the relocated hypocenter distribution and the 3D velocity model in the area. Relocated hypocenters and velocity models are obtained from simultaneous inversion from the BMKG earthquake catalog in January 2012-December 2020 using the double difference seismic tomography method. Seismic velocity inversion of P- and S- wave tomograms image the thermal zone beneath Dempo and Patah volcanoes at a depth of 30-50 km. Slab dehydration is also observed in several forearc high zone. Both phenomena are associated with negative anomalies. The Sumatran and Mentawai fault zones are marked between negative and positive anomalies on the contact zone. The subducted slab of the Indo-Australian plate is observed until a depth of 150 km, which is the maximum depth of nodes used in this study. The granitic basement beneath Anak Krakatau volcano is detected until 10 km. Two of those geological features are related to positive anomalies.
南苏门答腊及其周边地区靠近印澳板块和欧亚板块的接触带,因此该地区始终与高地震活动带有关。苏门答腊俯冲带、明打威断裂带和苏门答腊断裂带的若干段驱动了该地区的地震活动。构造环境对于了解该地区的来源和危害至关重要。这种认识可以通过重新定位的震源分布和该地区的三维速度模型来获得。采用双差地震层析成像方法,对2012年1月至2020年12月BMKG地震目录进行同步反演,得到了重新定位震源和速度模型。地震速度反演的P波和S波层析成像Dempo和Patah火山下的热区深度为30-50公里。在几个弧前高带也观察到板坯脱水。这两种现象都与负异常有关。在接触带上,苏门答腊断裂带和明打威断裂带处于正、负异常之间。印澳板块俯冲板块的观测深度为150km,这是本研究中使用的最大节点深度。喀拉喀托火山下的花岗岩基底直到10公里才被探测到。其中两个地质特征与正异常有关。
{"title":"Tectonic Pattern Imaging of Southern Sumatra Region Using Double Difference Seismic Tomography","authors":"Akmal Firmansyah, W. Wandono, M. Ramdhan","doi":"10.17146/eksplorium.2022.43.1.6603","DOIUrl":"https://doi.org/10.17146/eksplorium.2022.43.1.6603","url":null,"abstract":"Southern Sumatra and its surroundings are close to the contact zone of the Indo-Australian plate and Eurasian plate, so the area always relates to the high seismicity zone. The Sumatran subduction zone, the Mentawai fault, and several segments of the Sumatran fault drive seismic activities in the area. Tectonic settings are essential to understanding the area's source and hazard. This understanding can be obtained using the relocated hypocenter distribution and the 3D velocity model in the area. Relocated hypocenters and velocity models are obtained from simultaneous inversion from the BMKG earthquake catalog in January 2012-December 2020 using the double difference seismic tomography method. Seismic velocity inversion of P- and S- wave tomograms image the thermal zone beneath Dempo and Patah volcanoes at a depth of 30-50 km. Slab dehydration is also observed in several forearc high zone. Both phenomena are associated with negative anomalies. The Sumatran and Mentawai fault zones are marked between negative and positive anomalies on the contact zone. The subducted slab of the Indo-Australian plate is observed until a depth of 150 km, which is the maximum depth of nodes used in this study. The granitic basement beneath Anak Krakatau volcano is detected until 10 km. Two of those geological features are related to positive anomalies.","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90189583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peningkatan Perolehan Uranium, Torium, dan Logam Tanah Jarang dalam Residu Pelarutan Parsial pada Pengolahan Monasit 铀、铀和粘土金属的增加很少出现在金融处理的部分溶剂残留物中
Pub Date : 2021-11-30 DOI: 10.17146/eksplorium.2021.42.2.6044
Novita Sari Fatihah, Mutia Anggraini, Afiq Azfar Pratama, K. Widana
ABSTRAK. Monasit merupakan mineral hasil samping pengolahan timah yang mengandung fosfat, logam tanah jarang, dan unsur radioaktif berupa uranium dan torium. Unsur-unsur tersebut dapat dimanfaatkan secara optimal jika terpisah satu dengan yang lainnya melalui proses pengolahan. Pengolahan monasit meliputi proses dekomposisi, pelarutan parsial, dan pengendapan. Pemisahan unsur logam tanah jarang dari unsur radioaktif dalam monasit dilakukan melalui proses pelarutan parsial, akan tetapi pemisahan tersebut belum optimal sehingga diperlukan proses lebih lanjut untuk meningkatkan perolehan unsur-unsur tersebut. Pada penelitian ini, proses tersebut dilakukan melalui dua metode yaitu pelarutan total dengan asam klorida (HCl) yang bertujuan untuk melarutkan semua unsur dalam endapan dan pengendapan dengan ammonium hidroksida (NH4OH) yang bertujuan untuk memisahkan unsur radioaktif dan unsur logam tanah jarang. Kedua metode tersebut dilakukan pada kondisi optimum proses dengan berbagai variasi pH, suhu, dan waktu. Berdasarkan hasil pengamatan diperoleh bahwa kelarutan optimum masing-masing unsur sebesar 67,6% uranium, 15,3% torium, dan 50,8% LTJ pada kondisi proses pelarutan pH 1, pada suhu 80°C selama 2 jam. Sedangkan pada proses pengendapan diperoleh recovery pengendapan masing-masing unsur sebesar 57% uranium, 75,7% torium, 4,8% logam tanah jarang pada kondisi pH 6. Berdasarkan data tersebut disimpulkan bahwa uranium, torium, dan logam tanah jarang dapat larut pada kondisi proses pelarutan pH 1, suhu 80°C selama 2 jam, dan dapat dipisahkan pada kondisi pH pengendapan 6.ABSTRACT. Monazite is a by-product of tin processing containing phosphate, rare earth elements, and radioactive elements such as uranium and thorium. These elements can be utilized optimally if separated from one another through processing. Monazite processing includes decomposition, partial dissolution, and precipitation processes. The separation of rare earth elements from radioactive elements in monazite is carried out through a partial dissolution process, but the separation is not optimal so that further processes are needed to increase the recovery of these elements. In this study, the process was carried out using two methods, namely total dissolution with hydrochloric acid (HCl) which aims to dissolve all elements in the precipitate and precipitation with ammonium hydroxide (NH4OH) which aims to separate radioactive elements and rare earth elements. Both methods were carried out under optimum process conditions with various variations in pH, temperature, and time. Based on observations, it was found that the optimum solubility of each element was 67.6% uranium, 15.3% thorium and 50.8% LTJ under the dissolving process conditions of pH 1, at 80°C for 2 hours. While in the deposition process, the precipitation recovery of each element is 57% uranium, 75.7% thorium, 4.8% rare earth metals at pH 6 conditions. Based on these data, it can be concluded that uranium, thorium, and rare ear
抽象。硫酸是一种含有磷酸盐、稀有土壤金属和铀元素元素的铅加工副产品。如果通过处理过程与他人分离,这些元素可以得到最佳的利用。monasit处理包括分解、部分溶剂和沉积。金融中稀有的金属元素与放射性元素的分离是通过部分溶解法进行的,但这种分离还不是最理想的,因此需要进一步的过程来增加这些元素的获得。在这项研究中,这一过程是通过两种方法来完成的,即总酸性盐酸(HCl),其目的是将沉积物和沉积中的所有元素与氢氧化铵(NH4OH)溶解,后者将其与稀有的土壤元素和金属元素分离。这两种方法都是在处理过程的最佳条件下,其pH、温度和时间的变化。根据观察结果,最佳溶解度67,6%大小的每个元素铀、15,3%实验室和50,8% LTJ在饱和过程pH条件1、在80°C的温度下两个小时。而在沉积过程中获得的每一种元素的康复,分别为57%的铀,75.7%的内部,48%的土壤金属在pH值6中是罕见的。基于这些数据推断、实验室和稀土金属铀可以溶解于pH饱和过程1、80°C的温度条件2小时,可以在pH沉积条件6 .抽象分开。Monazite是一种byproduct的锡处理材料,一种稀有的地球元素,一种放射性元素就像铀和钍。如果通过不同的处理,这些元素可以实现最佳的用途。莫纳济加工包括分解、部分分解和有限处理。monazite中稀有的地球元素的分离是由一个部分的不解决方案引起的,但是分离并不是最理想的,所以进一步的机制需要增加这些元素的恢复。在这次研究中,这个过程被两种方法所carrying out the process was carryed with two methods两种方法都是在最佳加工条件下采用各种pH、温度和时间的变化。改编自一名,这是找到那个最佳《solubility每67号元素是。6%的50、15 . 3%的铀和钍。8% LTJ dissolving的过程条件》下pH值1,在80°C for 2小时。在继续过程中,每个元素的分解是57%的铀,75%的钍,4.8%的地球金属在pH 6条件下。这些数据,它可以成为结论这就是改编自地球铀、钍和不常见的文本可以成为dissolved at 1, pH值在80°C for 2小时,和可以分开at 6 precipitation pH值条件。
{"title":"Peningkatan Perolehan Uranium, Torium, dan Logam Tanah Jarang dalam Residu Pelarutan Parsial pada Pengolahan Monasit","authors":"Novita Sari Fatihah, Mutia Anggraini, Afiq Azfar Pratama, K. Widana","doi":"10.17146/eksplorium.2021.42.2.6044","DOIUrl":"https://doi.org/10.17146/eksplorium.2021.42.2.6044","url":null,"abstract":"ABSTRAK. Monasit merupakan mineral hasil samping pengolahan timah yang mengandung fosfat, logam tanah jarang, dan unsur radioaktif berupa uranium dan torium. Unsur-unsur tersebut dapat dimanfaatkan secara optimal jika terpisah satu dengan yang lainnya melalui proses pengolahan. Pengolahan monasit meliputi proses dekomposisi, pelarutan parsial, dan pengendapan. Pemisahan unsur logam tanah jarang dari unsur radioaktif dalam monasit dilakukan melalui proses pelarutan parsial, akan tetapi pemisahan tersebut belum optimal sehingga diperlukan proses lebih lanjut untuk meningkatkan perolehan unsur-unsur tersebut. Pada penelitian ini, proses tersebut dilakukan melalui dua metode yaitu pelarutan total dengan asam klorida (HCl) yang bertujuan untuk melarutkan semua unsur dalam endapan dan pengendapan dengan ammonium hidroksida (NH4OH) yang bertujuan untuk memisahkan unsur radioaktif dan unsur logam tanah jarang. Kedua metode tersebut dilakukan pada kondisi optimum proses dengan berbagai variasi pH, suhu, dan waktu. Berdasarkan hasil pengamatan diperoleh bahwa kelarutan optimum masing-masing unsur sebesar 67,6% uranium, 15,3% torium, dan 50,8% LTJ pada kondisi proses pelarutan pH 1, pada suhu 80°C selama 2 jam. Sedangkan pada proses pengendapan diperoleh recovery pengendapan masing-masing unsur sebesar 57% uranium, 75,7% torium, 4,8% logam tanah jarang pada kondisi pH 6. Berdasarkan data tersebut disimpulkan bahwa uranium, torium, dan logam tanah jarang dapat larut pada kondisi proses pelarutan pH 1, suhu 80°C selama 2 jam, dan dapat dipisahkan pada kondisi pH pengendapan 6.ABSTRACT. Monazite is a by-product of tin processing containing phosphate, rare earth elements, and radioactive elements such as uranium and thorium. These elements can be utilized optimally if separated from one another through processing. Monazite processing includes decomposition, partial dissolution, and precipitation processes. The separation of rare earth elements from radioactive elements in monazite is carried out through a partial dissolution process, but the separation is not optimal so that further processes are needed to increase the recovery of these elements. In this study, the process was carried out using two methods, namely total dissolution with hydrochloric acid (HCl) which aims to dissolve all elements in the precipitate and precipitation with ammonium hydroxide (NH4OH) which aims to separate radioactive elements and rare earth elements. Both methods were carried out under optimum process conditions with various variations in pH, temperature, and time. Based on observations, it was found that the optimum solubility of each element was 67.6% uranium, 15.3% thorium and 50.8% LTJ under the dissolving process conditions of pH 1, at 80°C for 2 hours. While in the deposition process, the precipitation recovery of each element is 57% uranium, 75.7% thorium, 4.8% rare earth metals at pH 6 conditions. Based on these data, it can be concluded that uranium, thorium, and rare ear","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79912604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Sedimentary Process of Sand Deposits in Bogowonto River, Purworejo, Central Java, and Progo River, Kulonprogo, Yogyakarta Using Granulometric Analysis 中爪哇Purworejo Bogowonto河和日惹Kulonprogo Progo河沉积物沉积过程的粒度分析
Pub Date : 2021-11-30 DOI: 10.17146/eksplorium.2021.42.2.6436
Muchamad Ocky Bayu Nugroho, Y. Rizkianto, Riyan Ranggas Yuditama, Akbar Ryan, A. Maulana
Sedimentation is the most traditional separation technique and it is relying on efficient coagulation and flocculation to produce flocs with good settling properties. Bogowonto River and Progo River belong to South Serayu Area. There are similar geological processes that affected the river forming process i.e., erosional process, provenance, and fault systems. The sand sedimentation process for each river could be different due to geometry and river morphology. This research aims to reveal the possible parameters that affected the sedimentary process and sediment material along the stream river. Granulometric analysis was done in this research. Samples were taken from 3 points (upstream, middle, and downstream) of Bogowonto river and Progo river. Statistically, the upstream and middle stream of Bogowonto River shows more dunes and beach environment characters than Progo River. It could be interpreted if Bogowonto has more deposit plain like point bar than Progo River. The downstream area has been interpreted as the upper part of estuarine due to river and beach environment. The volcanic arc (Tertiary & Quarternary) is the main sediment source for these rivers. The sediment supply of the Progo River is strongly influenced by Merapi’s eruption whereas Bogowonto river is dominated by reworked Old Andesite Formation (OAF) & Sumbing’s material. Morphologically, Bogowonto has more meandering features than Progo that indicates the development of river stage in a long time and wide distributed sediment materials.
沉淀是最传统的分离技术,它依靠高效的混凝和絮凝来生产具有良好沉降性能的絮凝体。波古原托河和普罗戈河属于南塞拉尤地区。影响河流形成的地质过程有相似的地质作用,即侵蚀作用、物源作用和断裂作用。由于河流的几何形状和形态不同,每条河流的泥沙沉积过程可能不同。本研究旨在揭示影响河流沿流沉积过程和沉积物物质的可能参数。本研究采用颗粒分析法。样本取自Bogowonto河和Progo河的上游、中游和下游3个点。从统计上看,波古原图河上游和中游比普罗戈河具有更多的沙丘和海滩环境特征。如果波古原托比普罗戈河有更多的沉积平原样点坝,则可以解释。由于河滩环境的影响,下游区域被解释为河口的上游。火山弧(第三纪和第四纪)是这些河流的主要沉积物来源。Progo河的沉积物供应受Merapi火山喷发的强烈影响,而Bogowonto河的沉积物供应主要受旧安山岩组(OAF)和Sumbing的物质的影响。从形态上看,波古原托比普罗戈具有更多的曲流特征,表明河段发育时间较长,沉积物分布较广。
{"title":"The Sedimentary Process of Sand Deposits in Bogowonto River, Purworejo, Central Java, and Progo River, Kulonprogo, Yogyakarta Using Granulometric Analysis","authors":"Muchamad Ocky Bayu Nugroho, Y. Rizkianto, Riyan Ranggas Yuditama, Akbar Ryan, A. Maulana","doi":"10.17146/eksplorium.2021.42.2.6436","DOIUrl":"https://doi.org/10.17146/eksplorium.2021.42.2.6436","url":null,"abstract":"Sedimentation is the most traditional separation technique and it is relying on efficient coagulation and flocculation to produce flocs with good settling properties. Bogowonto River and Progo River belong to South Serayu Area. There are similar geological processes that affected the river forming process i.e., erosional process, provenance, and fault systems. The sand sedimentation process for each river could be different due to geometry and river morphology. This research aims to reveal the possible parameters that affected the sedimentary process and sediment material along the stream river. Granulometric analysis was done in this research. Samples were taken from 3 points (upstream, middle, and downstream) of Bogowonto river and Progo river. Statistically, the upstream and middle stream of Bogowonto River shows more dunes and beach environment characters than Progo River. It could be interpreted if Bogowonto has more deposit plain like point bar than Progo River. The downstream area has been interpreted as the upper part of estuarine due to river and beach environment. The volcanic arc (Tertiary & Quarternary) is the main sediment source for these rivers. The sediment supply of the Progo River is strongly influenced by Merapi’s eruption whereas Bogowonto river is dominated by reworked Old Andesite Formation (OAF) & Sumbing’s material. Morphologically, Bogowonto has more meandering features than Progo that indicates the development of river stage in a long time and wide distributed sediment materials.","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78280432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penentuan Komposisi Bahan Bakar Nabati Dalam Bahan Bakar Minyak Campuran Menggunakan Metode Direct Counting C-14 使用直接计数C-14测定混合燃料中植物燃料的成分
Pub Date : 2021-11-30 DOI: 10.17146/eksplorium.2021.42.2.6363
Neneng Laksminingpuri Sanusi, Moch Faizal Ramadhani, Nurfadhlini Nurfadhlini, Lisa Aisyah
ABSTRAK. Telah dilakukan penentuan komposisi bahan bakar nabati (BBN) dalam bahan bakar minyak campuran (BBMC) dengan metode direct counting C-14. Penentuan komposisi BBN dalam BBMC dilakukan dengan cara memipet 10 mL BBMC ke dalam vial gelas kemudian ditambahkan 10 mL larutan sintilator Ultima Gold F (UGF) ke dalamnya. Vial tersebut dikocok agar campuran menjadi homogen kemudian dicacah menggunakan LSC (Liquid Scintillation Counter) Elmer Perkin 2900TR selama 20 menit sebanyak 30 siklus. Hasil pencacahan ditampilkan dalam bentuk tSIE (transformed external standard spectrum) dan cpm (cacahan permenit). Hasil analisis memperlihatkan nilai cpm yang meningkat seiring kenaikan persentase BBN dalam BBMC. Nilai cpm terendah dan tertinggi untuk sampel bensin, avtur, dan solar berturut-turut adalah 14,2363 dan 62,0343, 10,664 dan 44,535, serta 9,410 dan 61,789. Terdapat korelasi kuat antara nilai tSIE dan nilai cpm pada bensin dan solar tapi tidak pada avtur. Hasil analisis terhadap sampel uji menunjukkan bahwa sampel tersebut berada di luar grafik deret sampel. Metode direct counting ini diharapkan dapat menjadi referensi dalam uji mutu BBMC.ABSTRACT. The composition of biofuel (BF) in mixed oil fuel (MOF) has been determined using the C-14 direct counting method. Determination of the composition of BF in MOF was carried out by pipetting 10 mL of BBMC into a glass vial and then adding 10 mL of Ultima Gold F (UGF) scintillator solution into it. The vial was shaken so that the mixture became homogeneous and then counted using the Elmer Perkin 2900TR LSC (Liquid Scintillation Counter) for 20 minutes for 30 cycles. The results of the counting are displayed in the form of tSIE (transformed external standard spectrum) and cpm (counts per minute). The results of the analysis show that the value of cpm increases with the increase in the percentage of BF in MOF. The lowest and highest cpm values for gasoline, avtur, and diesel samples were 14.2363 and 62.0343, 10.664 and 44.535, and 9.410 and 61.789, respectively. There is a strong correlation between tSIE and cpm values for gasoline and diesel but not for avtur. The results of the analysis of the test sample indicate that the sample is outside the sample series graph. This direct counting method is expected to be a reference in the BBMC quality test.
抽象。已通过直接计算C-14方法确定混合物燃料(bn)的成分。在BBMC中,将BBN的成分确定为将10毫升的BBMC吸收到小瓶中,然后加入10毫升的Ultima Gold溶液。小瓶被摇匀,然后用LSC分解,埃尔默·Perkin 2900TR进行20分钟的循环。鞭笞以tSIE(变形前标准)和cpm (cacahan每分钟)的形式出现。分析结果显示,随着BBN的百分比增加,cpm的价值呈指数级上升。汽油样品、avtur和一个连续太阳能样品的最低和最高cpm值为14.2363、62,0343、10.664和44.535、9.410和61.789。tSIE的值与汽油和柴油的cpm值有很强的相关性,但avtur没有。对试验样本的分析结果表明,该样本超出了样本线图。这种直接计算方法有望成为BBMC抽象质量测试的参考。混合石油燃料中的生物燃料(MOF)一直使用C-14直接计数方法加以确定。MOF的结论是由一个玻璃罐中烘烤10毫升的混合物引起的,然后加入10毫升的氟金制溶液。我们的小瓶一直在颤抖,所以混合变得均匀,然后用埃尔默·佩金2900TR LSC(液体平衡)进行了20分钟的30分钟的循环。报告的结果是在tSIE(变形前标准)和cpm(分钟计数)的表格中被提及。分析结果显示,cpm的价值随着MOF中BF的进步而增加。其重量和高度cpm对汽油、阿夫图尔和柴油样品的估值为14.2363和62.0343,10664和44,535,9410和61789,尊重。tSIE和cpm之间有一种强大的相关性,这种关系关系涉及汽油和柴油,但不是avtur。样本测试的分析结果,样本在样本系列之外。本direct计数方法有望在BBMC质量测试中得到参考。
{"title":"Penentuan Komposisi Bahan Bakar Nabati Dalam Bahan Bakar Minyak Campuran Menggunakan Metode Direct Counting C-14","authors":"Neneng Laksminingpuri Sanusi, Moch Faizal Ramadhani, Nurfadhlini Nurfadhlini, Lisa Aisyah","doi":"10.17146/eksplorium.2021.42.2.6363","DOIUrl":"https://doi.org/10.17146/eksplorium.2021.42.2.6363","url":null,"abstract":"ABSTRAK. Telah dilakukan penentuan komposisi bahan bakar nabati (BBN) dalam bahan bakar minyak campuran (BBMC) dengan metode direct counting C-14. Penentuan komposisi BBN dalam BBMC dilakukan dengan cara memipet 10 mL BBMC ke dalam vial gelas kemudian ditambahkan 10 mL larutan sintilator Ultima Gold F (UGF) ke dalamnya. Vial tersebut dikocok agar campuran menjadi homogen kemudian dicacah menggunakan LSC (Liquid Scintillation Counter) Elmer Perkin 2900TR selama 20 menit sebanyak 30 siklus. Hasil pencacahan ditampilkan dalam bentuk tSIE (transformed external standard spectrum) dan cpm (cacahan permenit). Hasil analisis memperlihatkan nilai cpm yang meningkat seiring kenaikan persentase BBN dalam BBMC. Nilai cpm terendah dan tertinggi untuk sampel bensin, avtur, dan solar berturut-turut adalah 14,2363 dan 62,0343, 10,664 dan 44,535, serta 9,410 dan 61,789. Terdapat korelasi kuat antara nilai tSIE dan nilai cpm pada bensin dan solar tapi tidak pada avtur. Hasil analisis terhadap sampel uji menunjukkan bahwa sampel tersebut berada di luar grafik deret sampel. Metode direct counting ini diharapkan dapat menjadi referensi dalam uji mutu BBMC.ABSTRACT. The composition of biofuel (BF) in mixed oil fuel (MOF) has been determined using the C-14 direct counting method. Determination of the composition of BF in MOF was carried out by pipetting 10 mL of BBMC into a glass vial and then adding 10 mL of Ultima Gold F (UGF) scintillator solution into it. The vial was shaken so that the mixture became homogeneous and then counted using the Elmer Perkin 2900TR LSC (Liquid Scintillation Counter) for 20 minutes for 30 cycles. The results of the counting are displayed in the form of tSIE (transformed external standard spectrum) and cpm (counts per minute). The results of the analysis show that the value of cpm increases with the increase in the percentage of BF in MOF. The lowest and highest cpm values for gasoline, avtur, and diesel samples were 14.2363 and 62.0343, 10.664 and 44.535, and 9.410 and 61.789, respectively. There is a strong correlation between tSIE and cpm values for gasoline and diesel but not for avtur. The results of the analysis of the test sample indicate that the sample is outside the sample series graph. This direct counting method is expected to be a reference in the BBMC quality test.","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83122038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Karakterisasi Hidrogeologi Daerah Sekitar Tapak PLTN di Bengkayang, Kalimantan Barat
Pub Date : 2021-11-30 DOI: 10.17146/eksplorium.2021.42.2.6479
Adiman Muhammad, Rachman Fauzi, Adhika Junara Karunianto, Wira Cakrabuana, Widodo Widodo
ABSTRAK. Evaluasi tapak merupakan tahap penting dalam penentuan lokasi calon tapak PLTN skala komersial di Indonesia. Aspek–aspek yang dikaji dalam evaluasi tapak berdasarkan peraturan yang berlaku antara lain aspek geoteknik dan aspek dispersi zat radioaktif. Untuk mendukung kajian aspek tersebut maka perlu adanya kajian karakterisasi hidrogeologi daerah sekitar tapak. Tujuan penelitian ini adalah menentukan karakteristik hidrogeologi daerah sekitar tapak PLTN di Kabupaten Bengkayang, Provinsi Kalimantan Barat berdasarkan aspek geologi dan geofisika. Metode yang dilakukan adalah pemetaan geomorfologi, pemetaan geologi, pemetaan hidrogeologi, pengukuran geolistrik, serta analisis terpadu. Secara morfologi, daerah penyelidikan dibagi menjadi tiga satuan, yaitu dataran aluvial, bukit terisolasi, dan dataran pantai. Secara stratigrafi, satuan batuan yang ditemukan berurutan dari tua ke muda adalah andesit, granodiorit, diorit, endapan pasir kuarsa, endapan pantai, dan endapan aluvial. Pengukuran geofisika menggunakan metode geolistrik dilakukan pada 12 lintasan dengan masing-masing panjang lintasan 470 m dan spasi elektroda 10 m. Pada penampang geolistrik ditemukan beberapa anomali pada kompleks batuan beku yang mengalami frakturasi atau tubuh diorit yang menerobos satuan andesit. Nilai anomali ini berkisar antara 300 Ωm dan >8000 Ωm. Nilai resistivitas yang sangat rendah (<30 Ωm) diinterpretasikan sebagai endapan aluvial yang jenuh air dengan ketebalan mencapai ±100 m. Daerah penelitian dapat dibagi menjadi tiga satuan hidrogeologi; akuifer dengan aliran melalui ruang antarbutir kelulusan tinggi, akuifer dengan aliran melalui ruang antarbutir kelulusan sedang, dan akuifug setempat berarti. Secara umum pola aliran tanah bebas mengalir relatif dari SSW ke NNE.ABSTRACT. Site evaluation is an important phase of site selection for commercial-scale nuclear power plants (NPP) in Indonesia. Geotechnical and radioactive material dispersion aspects are some of the aspects which are assessed in site evaluation under provisions of laws and regulations. To support those aspect evaluations, it is necessary to conduct hydrogeological characterization in the vicinity of the NPP site. The purpose of this study is to determine the hydrogeological characteristic of the vicinity of the NPP site in Bengkayang Regency, West Kalimantan Province based on geological and geophysical aspects. The methods of this study consist of geomorphological mapping, geological mapping, hydrogeological mapping, geoelectric measurement, and integrated analysis. The study area consists of three morphological units: alluvial plain, isolated hills, and coastal plain. Stratigraphically, the lithology units of the study area, from the oldest to the youngest, consist of andesite, granodiorite, diorite, quartz sand deposits, coastal deposits, and alluvial deposits. The geophysical measurement used is the geoelectric method which is conducted at 12 electrode arrays with 470 m length and spacing o
抽象。胎面评估是确定潜在客户规模印尼肌的位置的重要阶段。方面——根据适用的规则对足迹评价的一个方面——地理工程方面和放射性物质分散方面。为了支持这方面的研究,我们需要对足迹周围的水文区域进行描述。本研究的目的是根据地质和地球物理方面的角度,确定加里曼丹省班加阳棕榈皮PLTN地区的水文地质特征。研究方法包括地形图图、地质图、水文图、区域反胃测量和综合分析。形态学将研究区域分为三个单位,即冲积平原、与世隔绝的山丘和沿海平原。从地层上看,从老到年轻连续发现的依次岩层是天然的、颗粒状的、二氧化石矿、石英沉积物、沙滩沉积物和冲积层沉积物。地球物理学测量方法是在12个轨道上进行,每个轨道长470米,间隔10米电极。在车厢内,我们在岩体中发现了一些异常,岩体在岩体中断裂或闪长岩体突破了地方性单位。这些异常值300不等Ω和> 8000Ωm。电阻率非常低(8000米)。《relatively low resistivity价值观(< 30 Wm)是美国interpreted水saturated-alluvial deposits那本可以a thickness of±100 m。在研究区域有三水地质单位:从SSW到NNE,地板通常在研究区域流动。
{"title":"Karakterisasi Hidrogeologi Daerah Sekitar Tapak PLTN di Bengkayang, Kalimantan Barat","authors":"Adiman Muhammad, Rachman Fauzi, Adhika Junara Karunianto, Wira Cakrabuana, Widodo Widodo","doi":"10.17146/eksplorium.2021.42.2.6479","DOIUrl":"https://doi.org/10.17146/eksplorium.2021.42.2.6479","url":null,"abstract":"ABSTRAK. Evaluasi tapak merupakan tahap penting dalam penentuan lokasi calon tapak PLTN skala komersial di Indonesia. Aspek–aspek yang dikaji dalam evaluasi tapak berdasarkan peraturan yang berlaku antara lain aspek geoteknik dan aspek dispersi zat radioaktif. Untuk mendukung kajian aspek tersebut maka perlu adanya kajian karakterisasi hidrogeologi daerah sekitar tapak. Tujuan penelitian ini adalah menentukan karakteristik hidrogeologi daerah sekitar tapak PLTN di Kabupaten Bengkayang, Provinsi Kalimantan Barat berdasarkan aspek geologi dan geofisika. Metode yang dilakukan adalah pemetaan geomorfologi, pemetaan geologi, pemetaan hidrogeologi, pengukuran geolistrik, serta analisis terpadu. Secara morfologi, daerah penyelidikan dibagi menjadi tiga satuan, yaitu dataran aluvial, bukit terisolasi, dan dataran pantai. Secara stratigrafi, satuan batuan yang ditemukan berurutan dari tua ke muda adalah andesit, granodiorit, diorit, endapan pasir kuarsa, endapan pantai, dan endapan aluvial. Pengukuran geofisika menggunakan metode geolistrik dilakukan pada 12 lintasan dengan masing-masing panjang lintasan 470 m dan spasi elektroda 10 m. Pada penampang geolistrik ditemukan beberapa anomali pada kompleks batuan beku yang mengalami frakturasi atau tubuh diorit yang menerobos satuan andesit. Nilai anomali ini berkisar antara 300 Ωm dan >8000 Ωm. Nilai resistivitas yang sangat rendah (<30 Ωm) diinterpretasikan sebagai endapan aluvial yang jenuh air dengan ketebalan mencapai ±100 m. Daerah penelitian dapat dibagi menjadi tiga satuan hidrogeologi; akuifer dengan aliran melalui ruang antarbutir kelulusan tinggi, akuifer dengan aliran melalui ruang antarbutir kelulusan sedang, dan akuifug setempat berarti. Secara umum pola aliran tanah bebas mengalir relatif dari SSW ke NNE.ABSTRACT. Site evaluation is an important phase of site selection for commercial-scale nuclear power plants (NPP) in Indonesia. Geotechnical and radioactive material dispersion aspects are some of the aspects which are assessed in site evaluation under provisions of laws and regulations. To support those aspect evaluations, it is necessary to conduct hydrogeological characterization in the vicinity of the NPP site. The purpose of this study is to determine the hydrogeological characteristic of the vicinity of the NPP site in Bengkayang Regency, West Kalimantan Province based on geological and geophysical aspects. The methods of this study consist of geomorphological mapping, geological mapping, hydrogeological mapping, geoelectric measurement, and integrated analysis. The study area consists of three morphological units: alluvial plain, isolated hills, and coastal plain. Stratigraphically, the lithology units of the study area, from the oldest to the youngest, consist of andesite, granodiorite, diorite, quartz sand deposits, coastal deposits, and alluvial deposits. The geophysical measurement used is the geoelectric method which is conducted at 12 electrode arrays with 470 m length and spacing o","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83418611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution and Mineralogical Characteristic of Raya Volcanics, West Kalimantan 西加里曼丹拉雅火山岩的分布与矿物学特征
Pub Date : 2021-11-30 DOI: 10.17146/eksplorium.2021.42.2.6511
W. A. Draniswari, F. Pratiwi, Ngadenin Ngadenin, I. Sukadana, T. B. Adimedha, R. C. Ciputra, Ekky Novia Stasia Argianto, Erwina Aminarthi, V. Supraba
{"title":"Distribution and Mineralogical Characteristic of Raya Volcanics, West Kalimantan","authors":"W. A. Draniswari, F. Pratiwi, Ngadenin Ngadenin, I. Sukadana, T. B. Adimedha, R. C. Ciputra, Ekky Novia Stasia Argianto, Erwina Aminarthi, V. Supraba","doi":"10.17146/eksplorium.2021.42.2.6511","DOIUrl":"https://doi.org/10.17146/eksplorium.2021.42.2.6511","url":null,"abstract":"","PeriodicalId":11616,"journal":{"name":"EKSPLORIUM","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86557064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
EKSPLORIUM
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1