首页 > 最新文献

Essays in biochemistry最新文献

英文 中文
Considerations for prioritising clinical research using bacteriophage. 利用噬菌体进行临床研究的优先考虑因素。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-30 DOI: 10.1042/EBC20240013
Sarah J L Edwards, Yiran Tao, Rodas Elias, Robert Schooley

Antimicrobial resistance (AMR) poses a significant global health threat, as it contributes to prolonged illness, higher mortality rates and increased healthcare costs. As traditional antibiotics become less effective, treatments such as bacteriophage therapy offer potential solutions. The question remains, however, on how to set research priorities in the face of a growing number of antibiotic-resistant pathogens, some common and/or dangerous. One standard way of making decisions about which research to prioritise is by using the disability-adjusted life year metric to estimate the current global impact of a disease or condition, combined with considerations of social justice although decisions made at a national level by governments, especially in low income countries with forecasting potential over future needs may look very different. Another approach is based on the needs of researchers and regulators given what we know about the technology itself. The biological characteristics of bacteriophage therapies set challenges to a universal and standardised prioritisation method. A proof of principle is still arguably needed. With a preliminary discussion of the scope and complexity of AMR and AMR therapeutics, we propose some implications of regulatory frameworks aiming to integrate bacteriophage therapy into mainstream medical practice while gathering scientific data on safety and efficacy, enhancing the collective action needed to combat AMR.

抗菌药耐药性(AMR)对全球健康构成了重大威胁,因为它导致病程延长、死亡率升高和医疗成本增加。随着传统抗生素的疗效越来越差,噬菌体疗法等治疗方法提供了潜在的解决方案。然而,面对越来越多的抗生素耐药病原体(有些是常见的和/或危险的),如何确定研究重点仍然是个问题。决定优先开展哪些研究的一种标准方法是使用残疾调整生命年指标来估算某种疾病或病症目前对全球的影响,同时考虑社会公正问题,尽管各国政府,特别是低收入国家政府在国家层面上做出的决定可能与预测未来需求的潜力大相径庭。另一种方法是根据我们对技术本身的了解,以研究人员和监管人员的需求为基础。噬菌体疗法的生物特性对通用和标准化的优先排序方法提出了挑战。可以说,我们仍然需要一个原则证明。通过对 AMR 和 AMR 治疗的范围和复杂性的初步讨论,我们提出了监管框架的一些影响,旨在将噬菌体疗法纳入主流医疗实践,同时收集有关安全性和有效性的科学数据,加强对抗 AMR 所需的集体行动。
{"title":"Considerations for prioritising clinical research using bacteriophage.","authors":"Sarah J L Edwards, Yiran Tao, Rodas Elias, Robert Schooley","doi":"10.1042/EBC20240013","DOIUrl":"https://doi.org/10.1042/EBC20240013","url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) poses a significant global health threat, as it contributes to prolonged illness, higher mortality rates and increased healthcare costs. As traditional antibiotics become less effective, treatments such as bacteriophage therapy offer potential solutions. The question remains, however, on how to set research priorities in the face of a growing number of antibiotic-resistant pathogens, some common and/or dangerous. One standard way of making decisions about which research to prioritise is by using the disability-adjusted life year metric to estimate the current global impact of a disease or condition, combined with considerations of social justice although decisions made at a national level by governments, especially in low income countries with forecasting potential over future needs may look very different. Another approach is based on the needs of researchers and regulators given what we know about the technology itself. The biological characteristics of bacteriophage therapies set challenges to a universal and standardised prioritisation method. A proof of principle is still arguably needed. With a preliminary discussion of the scope and complexity of AMR and AMR therapeutics, we propose some implications of regulatory frameworks aiming to integrate bacteriophage therapy into mainstream medical practice while gathering scientific data on safety and efficacy, enhancing the collective action needed to combat AMR.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational research priorities for bacteriophage therapeutics. 噬菌体疗法的转化研究重点。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-17 DOI: 10.1042/EBC20240020
Robert T Schooley

The growing threat of antimicrobial resistant (AMR) bacterial pathogens coupled with the relative dearth of promising novel antibiotics requires the discovery and development additional medical interventions. Over the past decade bacteriophages have emerged one of the most promising new tools to combat AMR pathogens. Anecdotal clinical experiences under so-called 'compassionate use' regulatory pathways as well as a limited number of clinical trials have provided ample evidence of safety and early evidence of efficacy. For phages to reach their full potential it is critical that rigorous clinical trials be conducted that define their optimal use and that enable regulatory authorities to support the commercialization required to afford global access. The clinical development of phage therapeutics requires the design and execution of clinical trials that take full advantage of lessons learned from a century of antibiotic development and that use clinical investigation as a platform in which aspects of phage biology that are critical to therapeutics are more clearly elucidated. Translational research that elucidates phage biology in the context of clinical trials will promote highly relevant hypothesis-driven work in basic science laboratories and will greatly accelerate the development of the field of phage therapeutics.

抗菌剂耐药性(AMR)细菌病原体的威胁与日俱增,而有前景的新型抗生素却相对匮乏,这就需要发现和开发更多的医疗干预措施。在过去的十年中,噬菌体已成为对抗 AMR 病原体的最有前途的新工具之一。所谓 "同情使用 "监管途径下的轶事临床经验以及数量有限的临床试验提供了充分的安全性证据和早期疗效证据。要充分发挥噬菌体的潜力,关键是要进行严格的临床试验,以确定其最佳用途,并使监管机构能够支持所需的商业化,让全球都能使用噬菌体。噬菌体疗法的临床开发需要设计和实施临床试验,充分利用从一个世纪的抗生素开发中吸取的经验教训,并将临床研究作为一个平台,在这个平台上,噬菌体生物学中对疗法至关重要的方面得到了更清晰的阐释。在临床试验中阐明噬菌体生物学的转化研究将促进基础科学实验室中高度相关的假设驱动工作,并将大大加快噬菌体疗法领域的发展。
{"title":"Translational research priorities for bacteriophage therapeutics.","authors":"Robert T Schooley","doi":"10.1042/EBC20240020","DOIUrl":"https://doi.org/10.1042/EBC20240020","url":null,"abstract":"<p><p>The growing threat of antimicrobial resistant (AMR) bacterial pathogens coupled with the relative dearth of promising novel antibiotics requires the discovery and development additional medical interventions. Over the past decade bacteriophages have emerged one of the most promising new tools to combat AMR pathogens. Anecdotal clinical experiences under so-called 'compassionate use' regulatory pathways as well as a limited number of clinical trials have provided ample evidence of safety and early evidence of efficacy. For phages to reach their full potential it is critical that rigorous clinical trials be conducted that define their optimal use and that enable regulatory authorities to support the commercialization required to afford global access. The clinical development of phage therapeutics requires the design and execution of clinical trials that take full advantage of lessons learned from a century of antibiotic development and that use clinical investigation as a platform in which aspects of phage biology that are critical to therapeutics are more clearly elucidated. Translational research that elucidates phage biology in the context of clinical trials will promote highly relevant hypothesis-driven work in basic science laboratories and will greatly accelerate the development of the field of phage therapeutics.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":""},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic mechanism and kinetics of malate dehydrogenase. 苹果酸脱氢酶的催化机制和动力学。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1042/EBC20230086
Laura de Lorenzo, Tyler M M Stack, Kristin M Fox, Katherine M Walstrom

Malate dehydrogenase (MDH) is a ubiquitous and central enzyme in cellular metabolism, found in all kingdoms of life, where it plays vital roles in the cytoplasm and various organelles. It catalyzes the reversible NAD+-dependent reduction of L-malate to oxaloacetate. This review describes the reaction mechanism for MDH and the effects of mutations in and around the active site on catalytic activity and substrate specificity, with a particular focus on the loop that encloses the active site after the substrates have bound. While MDH exhibits selectivity for its preferred substrates, mutations can alter the specificity of MDH for each cosubstrate. The kinetic characteristics and similarities of a variety of MDH isozymes are summarized, and they illustrate that the KM values are consistent with the relative concentrations of the substrates in cells. As a result of its existence in different cellular environments, MDH properties vary, making it an attractive model enzyme for studying enzyme activity and structure under different conditions.

苹果酸脱氢酶(MDH)是细胞代谢中一种无处不在的核心酶,存在于所有生命体中,在细胞质和各种细胞器中发挥着重要作用。它催化依赖 NAD+ 的 L-苹果酸还原为草酰乙酸的可逆反应。这篇综述介绍了 MDH 的反应机理以及活性位点内部和周围的突变对催化活性和底物特异性的影响,尤其侧重于底物结合后包围活性位点的环路。虽然 MDH 对其首选底物具有选择性,但突变会改变 MDH 对每种共底物的特异性。本文总结了多种 MDH 同工酶的动力学特征和相似性,并说明 KM 值与细胞中底物的相对浓度是一致的。由于存在于不同的细胞环境中,MDH 的特性各不相同,因此它是研究不同条件下酶活性和结构的一种有吸引力的模型酶。
{"title":"Catalytic mechanism and kinetics of malate dehydrogenase.","authors":"Laura de Lorenzo, Tyler M M Stack, Kristin M Fox, Katherine M Walstrom","doi":"10.1042/EBC20230086","DOIUrl":"10.1042/EBC20230086","url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) is a ubiquitous and central enzyme in cellular metabolism, found in all kingdoms of life, where it plays vital roles in the cytoplasm and various organelles. It catalyzes the reversible NAD+-dependent reduction of L-malate to oxaloacetate. This review describes the reaction mechanism for MDH and the effects of mutations in and around the active site on catalytic activity and substrate specificity, with a particular focus on the loop that encloses the active site after the substrates have bound. While MDH exhibits selectivity for its preferred substrates, mutations can alter the specificity of MDH for each cosubstrate. The kinetic characteristics and similarities of a variety of MDH isozymes are summarized, and they illustrate that the KM values are consistent with the relative concentrations of the substrates in cells. As a result of its existence in different cellular environments, MDH properties vary, making it an attractive model enzyme for studying enzyme activity and structure under different conditions.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"73-82"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Malate dehydrogenase in parasitic protozoans: roles in metabolism and potential therapeutic applications. 寄生原生动物中的苹果酸脱氢酶:在新陈代谢中的作用和潜在的治疗应用。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1042/EBC20230075
Amy L Springer, Swati Agrawal, Eric P Chang

The role of malate dehydrogenase (MDH) in the metabolism of various medically significant protozoan parasites is reviewed. MDH is an NADH-dependent oxidoreductase that catalyzes interconversion between oxaloacetate and malate, provides metabolic intermediates for both catabolic and anabolic pathways, and can contribute to NAD+/NADH balance in multiple cellular compartments. MDH is present in nearly all organisms; isoforms of MDH from apicomplexans (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium spp.), trypanosomatids (Trypanosoma brucei, T. cruzi) and anaerobic protozoans (Trichomonas vaginalis, Giardia duodenalis) are presented here. Many parasitic species have complex life cycles and depend on the environment of their hosts for carbon sources and other nutrients. Metabolic plasticity is crucial to parasite transition between host environments; thus, the regulation of metabolic processes is an important area to explore for therapeutic intervention. Common themes in protozoan parasite metabolism include emphasis on glycolytic catabolism, substrate-level phosphorylation, non-traditional uses of common pathways like tricarboxylic acid cycle and adapted or reduced mitochondria-like organelles. We describe the roles of MDH isoforms in these pathways, discuss unusual structural or functional features of these isoforms relevant to activity or drug targeting, and review current studies exploring the therapeutic potential of MDH and related genes. These studies show that MDH activity has important roles in many metabolic pathways, and thus in the metabolic transitions of protozoan parasites needed for success as pathogens.

本文综述了苹果酸脱氢酶(MDH)在各种具有医学意义的原生动物寄生虫代谢过程中的作用。MDH 是一种依赖于 NADH 的氧化还原酶,可催化草酰乙酸和苹果酸之间的相互转化,为分解代谢和合成代谢途径提供代谢中间产物,并可促进多个细胞区的 NAD+/NADH 平衡。MDH 几乎存在于所有生物体中;本文介绍了来自无丝复合体(恶性疟原虫、弓形虫、隐孢子虫属)、锥虫(布氏锥虫、克鲁兹锥虫)和厌氧原生动物(阴道毛滴虫、十二指肠贾第虫)的 MDH 同工酶。许多寄生物种具有复杂的生命周期,并依赖宿主环境中的碳源和其他营养物质。代谢可塑性对寄生虫在宿主环境之间的转换至关重要;因此,调节代谢过程是探索治疗干预的一个重要领域。原生动物寄生虫新陈代谢的共同主题包括强调糖酵解代谢、底物级磷酸化、三羧酸循环等常见途径的非传统使用以及线粒体类细胞器的适应或减少。我们描述了 MDH 异构体在这些途径中的作用,讨论了这些异构体与活性或药物靶向相关的不寻常结构或功能特征,并回顾了目前探索 MDH 及相关基因的治疗潜力的研究。这些研究表明,MDH 活性在许多代谢途径中具有重要作用,因此在原生动物寄生虫作为病原体成功所需的代谢转换中也具有重要作用。
{"title":"Malate dehydrogenase in parasitic protozoans: roles in metabolism and potential therapeutic applications.","authors":"Amy L Springer, Swati Agrawal, Eric P Chang","doi":"10.1042/EBC20230075","DOIUrl":"10.1042/EBC20230075","url":null,"abstract":"<p><p>The role of malate dehydrogenase (MDH) in the metabolism of various medically significant protozoan parasites is reviewed. MDH is an NADH-dependent oxidoreductase that catalyzes interconversion between oxaloacetate and malate, provides metabolic intermediates for both catabolic and anabolic pathways, and can contribute to NAD+/NADH balance in multiple cellular compartments. MDH is present in nearly all organisms; isoforms of MDH from apicomplexans (Plasmodium falciparum, Toxoplasma gondii, Cryptosporidium spp.), trypanosomatids (Trypanosoma brucei, T. cruzi) and anaerobic protozoans (Trichomonas vaginalis, Giardia duodenalis) are presented here. Many parasitic species have complex life cycles and depend on the environment of their hosts for carbon sources and other nutrients. Metabolic plasticity is crucial to parasite transition between host environments; thus, the regulation of metabolic processes is an important area to explore for therapeutic intervention. Common themes in protozoan parasite metabolism include emphasis on glycolytic catabolism, substrate-level phosphorylation, non-traditional uses of common pathways like tricarboxylic acid cycle and adapted or reduced mitochondria-like organelles. We describe the roles of MDH isoforms in these pathways, discuss unusual structural or functional features of these isoforms relevant to activity or drug targeting, and review current studies exploring the therapeutic potential of MDH and related genes. These studies show that MDH activity has important roles in many metabolic pathways, and thus in the metabolic transitions of protozoan parasites needed for success as pathogens.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"235-251"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461325/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation of mammalian cytosolic and mitochondrial malate dehydrogenase: insights into regulation. 哺乳动物细胞质和线粒体苹果酸脱氢酶的磷酸化:对调控的见解。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1042/EBC20230079
Joseph J Provost, Kathleen A Cornely, Pamela S Mertz, Celeste N Peterson, Sophie G Riley, Harrison J Tarbox, Shree R Narasimhan, Andrew J Pulido, Amy L Springer

Malate dehydrogenase (MDH) is a key enzyme in mammalian metabolic pathways in cytosolic and mitochondrial compartments. Regulation of MDH through phosphorylation remains an underexplored area. In this review we consolidate evidence supporting the potential role of phosphorylation in modulating the function of mammalian MDH. Parallels are drawn with the phosphorylation of lactate dehydrogenase, a homologous enzyme, to reveal its regulatory significance and to suggest a similar regulatory strategy for MDH. Comprehensive mining of phosphorylation databases, provides substantial experimental (primarily mass spectrometry) evidence of MDH phosphorylation in mammalian cells. Experimentally identified phosphorylation sites are overlaid with MDH's functional domains, offering perspective on how these modifications could influence enzyme activity. Preliminary results are presented from phosphomimetic mutations (serine/threonine residues changed to aspartate) generated in recombinant MDH proteins serving as a proof of concept for the regulatory impact of phosphorylation. We also examine and highlight several approaches to probe the structural and cellular impact of phosphorylation. This review highlights the need to explore the dynamic nature of MDH phosphorylation and calls for identifying the responsible kinases and the physiological conditions underpinning this modification. The synthesis of current evidence and experimental data aims to provide insights for future research on understanding MDH regulation, offering new avenues for therapeutic interventions in metabolic disorders and cancer.

苹果酸脱氢酶(MDH)是哺乳动物细胞膜和线粒体代谢途径中的一种关键酶。通过磷酸化对 MDH 进行调控仍是一个尚未充分探索的领域。在这篇综述中,我们整合了支持磷酸化在调节哺乳动物 MDH 功能方面潜在作用的证据。我们将其与同源酶乳酸脱氢酶的磷酸化进行了比较,以揭示其调控意义,并建议对 MDH 采用类似的调控策略。对磷酸化数据库的全面挖掘提供了大量哺乳动物细胞中 MDH 磷酸化的实验证据(主要是质谱)。实验确定的磷酸化位点与 MDH 的功能域重叠在一起,提供了这些修饰如何影响酶活性的视角。我们介绍了在重组 MDH 蛋白中产生的拟磷酸突变(丝氨酸/苏氨酸残基变为天冬氨酸)的初步结果,作为磷酸化调控影响的概念证明。我们还研究并重点介绍了几种探究磷酸化对结构和细胞影响的方法。这篇综述强调了探索 MDH 磷酸化动态性质的必要性,并呼吁确定负责的激酶和支撑这种修饰的生理条件。综述当前的证据和实验数据,旨在为今后了解 MDH 调控的研究提供见解,为代谢紊乱和癌症的治疗干预提供新途径。
{"title":"Phosphorylation of mammalian cytosolic and mitochondrial malate dehydrogenase: insights into regulation.","authors":"Joseph J Provost, Kathleen A Cornely, Pamela S Mertz, Celeste N Peterson, Sophie G Riley, Harrison J Tarbox, Shree R Narasimhan, Andrew J Pulido, Amy L Springer","doi":"10.1042/EBC20230079","DOIUrl":"10.1042/EBC20230079","url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) is a key enzyme in mammalian metabolic pathways in cytosolic and mitochondrial compartments. Regulation of MDH through phosphorylation remains an underexplored area. In this review we consolidate evidence supporting the potential role of phosphorylation in modulating the function of mammalian MDH. Parallels are drawn with the phosphorylation of lactate dehydrogenase, a homologous enzyme, to reveal its regulatory significance and to suggest a similar regulatory strategy for MDH. Comprehensive mining of phosphorylation databases, provides substantial experimental (primarily mass spectrometry) evidence of MDH phosphorylation in mammalian cells. Experimentally identified phosphorylation sites are overlaid with MDH's functional domains, offering perspective on how these modifications could influence enzyme activity. Preliminary results are presented from phosphomimetic mutations (serine/threonine residues changed to aspartate) generated in recombinant MDH proteins serving as a proof of concept for the regulatory impact of phosphorylation. We also examine and highlight several approaches to probe the structural and cellular impact of phosphorylation. This review highlights the need to explore the dynamic nature of MDH phosphorylation and calls for identifying the responsible kinases and the physiological conditions underpinning this modification. The synthesis of current evidence and experimental data aims to provide insights for future research on understanding MDH regulation, offering new avenues for therapeutic interventions in metabolic disorders and cancer.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"183-198"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Malate dehydrogenase in plants: evolution, structure, and a myriad of functions. 植物中的苹果酸脱氢酶:进化、结构和多种功能。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1042/EBC20230089
Lisa M Baird, Christopher E Berndsen, Jonathan D Monroe

Malate dehydrogenase (MDH) catalyzes the interconversion of oxaloacetate and malate coupled to the oxidation/reduction of coenzymes NAD(P)H/NAD(P)+. While most animals have two isoforms of MDH located in the cytosol and mitochondria, all major groups of land plants have at least six MDHs localized to the cytosol, mitochondria, plastids, and peroxisomes. This family of enzymes participates in important reactions in plant cells including photosynthesis, photorespiration, lipid metabolism, and NH4+ metabolism. MDH also helps to regulate the energy balance in the cell and may help the plant cope with various environmental stresses. Despite their functional diversity, all of the plant MDH enzymes share a similar structural fold and act as dimers. In this review, we will introduce readers to our current understanding of the plant MDHs, including their evolution, structure, and function. The focus will be on the MDH enzymes of the model plant Arabidopsis thaliana.

苹果酸脱氢酶(MDH)催化草酰乙酸和苹果酸的相互转化,并与辅酶 NAD(P)H/NAD(P)+ 的氧化/还原作用结合在一起。大多数动物的细胞质和线粒体中都有两种同工酶,而陆生植物的所有主要类群在细胞质、线粒体、质体和过氧物酶体中至少有六种同工酶。这个酶家族参与植物细胞中的重要反应,包括光合作用、光呼吸、脂质代谢和 NH4+ 代谢。MDH 还有助于调节细胞内的能量平衡,并可帮助植物应对各种环境压力。尽管功能多种多样,但所有植物 MDH 酶都具有相似的结构折叠,并以二聚体形式存在。在这篇综述中,我们将向读者介绍我们目前对植物 MDH 的了解,包括它们的进化、结构和功能。重点将放在模式植物拟南芥的 MDH 酶上。
{"title":"Malate dehydrogenase in plants: evolution, structure, and a myriad of functions.","authors":"Lisa M Baird, Christopher E Berndsen, Jonathan D Monroe","doi":"10.1042/EBC20230089","DOIUrl":"10.1042/EBC20230089","url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) catalyzes the interconversion of oxaloacetate and malate coupled to the oxidation/reduction of coenzymes NAD(P)H/NAD(P)+. While most animals have two isoforms of MDH located in the cytosol and mitochondria, all major groups of land plants have at least six MDHs localized to the cytosol, mitochondria, plastids, and peroxisomes. This family of enzymes participates in important reactions in plant cells including photosynthesis, photorespiration, lipid metabolism, and NH4+ metabolism. MDH also helps to regulate the energy balance in the cell and may help the plant cope with various environmental stresses. Despite their functional diversity, all of the plant MDH enzymes share a similar structural fold and act as dimers. In this review, we will introduce readers to our current understanding of the plant MDHs, including their evolution, structure, and function. The focus will be on the MDH enzymes of the model plant Arabidopsis thaliana.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"221-233"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetics of MDH in humans. 人类 MDH 遗传学。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1042/EBC20230078
Adam Haberman, Celeste N Peterson

Malate dehydrogenase (MDH) performs key roles in metabolism, but little is known about its function specifically in human health and disease. In this minireview, we describe the incomplete state of our knowledge of human MDH genetics. Humans have three MDH genes with a total of four validated isoforms. MDH1 and MDH2 are widely expressed, while MDH1B is only expressed in a small subset of tissues. Many mutations in MDH1 and MDH2 have been identified in patients, but only a few have been studied to determine what symptoms they cause. MDH1 has been associated with cancer and a neurodevelopmental disorder. MDH2 has been associated with diabetes, neurodevelopmental disorders, and cancer.

苹果酸脱氢酶(MDH)在新陈代谢中发挥着关键作用,但人们对它在人类健康和疾病中的具体功能知之甚少。在本小视图中,我们将介绍我们对人类 MDH 遗传学的不完全了解。人类有三个 MDH 基因,共有四种有效的同工酶。MDH1 和 MDH2 广泛表达,而 MDH1B 仅在一小部分组织中表达。已在患者中发现了许多 MDH1 和 MDH2 基因突变的病例,但只有少数病例被研究以确定其导致的症状。MDH1 与癌症和神经发育障碍有关。MDH2 与糖尿病、神经发育障碍和癌症有关。
{"title":"Genetics of MDH in humans.","authors":"Adam Haberman, Celeste N Peterson","doi":"10.1042/EBC20230078","DOIUrl":"10.1042/EBC20230078","url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) performs key roles in metabolism, but little is known about its function specifically in human health and disease. In this minireview, we describe the incomplete state of our knowledge of human MDH genetics. Humans have three MDH genes with a total of four validated isoforms. MDH1 and MDH2 are widely expressed, while MDH1B is only expressed in a small subset of tissues. Many mutations in MDH1 and MDH2 have been identified in patients, but only a few have been studied to determine what symptoms they cause. MDH1 has been associated with cancer and a neurodevelopmental disorder. MDH2 has been associated with diabetes, neurodevelopmental disorders, and cancer.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"107-119"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Malate dehydrogenase (MDH) in cancer: a promiscuous enzyme, a redox regulator, and a metabolic co-conspirator. 癌症中的苹果酸脱氢酶(MDH):一种杂合酶、氧化还原调节器和代谢共谋者。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1042/EBC20230088
Betsy Leverett, Shane Austin, Jason Tan-Arroyo

Malate dehydrogenase (MDH) is an essential enzyme in the tricarboxylic acid cycle that functions in cellular respiration and redox homeostasis. Recent studies indicate that MDH facilitates metabolic plasticity in tumor cells, catalyzing the formation of an oncometabolite, contributing to altered epigenetics, and maintaining redox capacity to support the rewired energy metabolism and biosynthesis that enables cancer progression. This minireview summarizes current findings on the unique supporting roles played by MDH in human cancers and provides an update on targeting MDH in cancer chemotherapy.

苹果酸脱氢酶(MDH)是三羧酸循环中的一种重要酶,在细胞呼吸和氧化还原平衡中发挥作用。最近的研究表明,MDH 促进了肿瘤细胞的代谢可塑性,催化了肿瘤细胞内代谢产物的形成,促进了表观遗传学的改变,并维持了氧化还原能力以支持能量代谢和生物合成的重新配线,从而使癌症得以进展。这篇微型综述总结了目前关于 MDH 在人类癌症中发挥的独特支持作用的研究结果,并提供了在癌症化疗中靶向 MDH 的最新进展。
{"title":"Malate dehydrogenase (MDH) in cancer: a promiscuous enzyme, a redox regulator, and a metabolic co-conspirator.","authors":"Betsy Leverett, Shane Austin, Jason Tan-Arroyo","doi":"10.1042/EBC20230088","DOIUrl":"10.1042/EBC20230088","url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) is an essential enzyme in the tricarboxylic acid cycle that functions in cellular respiration and redox homeostasis. Recent studies indicate that MDH facilitates metabolic plasticity in tumor cells, catalyzing the formation of an oncometabolite, contributing to altered epigenetics, and maintaining redox capacity to support the rewired energy metabolism and biosynthesis that enables cancer progression. This minireview summarizes current findings on the unique supporting roles played by MDH in human cancers and provides an update on targeting MDH in cancer chemotherapy.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"135-146"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the uncharted territory of the potential protein-protein interactions of cytosolic malate dehydrogenase. 探索细胞膜苹果酸脱氢酶潜在蛋白质间相互作用的未知领域。
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1042/EBC20230083
Joseph J Provost, Amy D Parente, Kristin M Slade, Thomas J Wiese

In this review, we examine the protein-protein interactions of cytosolic malate dehydrogenase (MDH), an under-studied area in cellular metabolism. We provide a comprehensive overview of MDH involvement in metabolism, especially its interactions with metabolic partners and dynamics of changing metabolism. We present an analysis of the biophysical nature of these interactions and the current methods used to study them. Our review includes an assessment of computational docking studies, which offer initial hypotheses about potential MDH interaction partners. Furthermore, we provide a summary of the sparse yet insightful experimental evidence available, establishing a foundation for future research. By integrating biophysical analysis and methodological advancements, this paper aims to illuminate the intricate network of interactions involving cytosolic MDH and their metabolic implications. This work not only contributes to our understanding of MDH's role in metabolism but also highlights the potential impact of these interactions in metabolic disorders.

在这篇综述中,我们研究了细胞代谢中一个研究不足的领域--细胞膜苹果酸脱氢酶(MDH)的蛋白质间相互作用。我们全面概述了 MDH 参与新陈代谢的情况,尤其是它与新陈代谢伙伴的相互作用以及新陈代谢的动态变化。我们分析了这些相互作用的生物物理性质以及目前用于研究它们的方法。我们的综述包括对计算对接研究的评估,这些研究提供了关于潜在 MDH 相互作用伙伴的初步假设。此外,我们还总结了现有的稀少但有洞察力的实验证据,为未来的研究奠定了基础。通过整合生物物理分析和方法学的进步,本文旨在阐明涉及细胞质 MDH 的错综复杂的相互作用网络及其对新陈代谢的影响。这项工作不仅有助于我们理解 MDH 在新陈代谢中的作用,还强调了这些相互作用在代谢紊乱中的潜在影响。
{"title":"Exploring the uncharted territory of the potential protein-protein interactions of cytosolic malate dehydrogenase.","authors":"Joseph J Provost, Amy D Parente, Kristin M Slade, Thomas J Wiese","doi":"10.1042/EBC20230083","DOIUrl":"10.1042/EBC20230083","url":null,"abstract":"<p><p>In this review, we examine the protein-protein interactions of cytosolic malate dehydrogenase (MDH), an under-studied area in cellular metabolism. We provide a comprehensive overview of MDH involvement in metabolism, especially its interactions with metabolic partners and dynamics of changing metabolism. We present an analysis of the biophysical nature of these interactions and the current methods used to study them. Our review includes an assessment of computational docking studies, which offer initial hypotheses about potential MDH interaction partners. Furthermore, we provide a summary of the sparse yet insightful experimental evidence available, establishing a foundation for future research. By integrating biophysical analysis and methodological advancements, this paper aims to illuminate the intricate network of interactions involving cytosolic MDH and their metabolic implications. This work not only contributes to our understanding of MDH's role in metabolism but also highlights the potential impact of these interactions in metabolic disorders.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"83-97"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is the TCA cycle malate dehydrogenase-citrate synthase metabolon an illusion? TCA 循环苹果酸脱氢酶-柠檬酸合成酶代谢物是假象吗?
IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-03 DOI: 10.1042/EBC20230084
Joy Omini, Taiwo Dele-Osibanjo, Heejeong Kim, Jing Zhang, Toshihiro Obata

This review discusses the intriguing yet controversial concept of metabolons, focusing on the malate dehydrogenase-citrate synthase (MDH-CISY) metabolon as a model. Metabolons are multienzyme complexes composed of enzymes that catalyze sequential reactions in metabolic pathways. Metabolons have been proposed to enhance metabolic pathway efficiency by facilitating substrate channeling. However, there is skepticism about the presence of metabolons and their functionality in physiological conditions in vivo. We address the skepticism by reviewing compelling evidence supporting the existence of the MDH-CISY metabolon and highlighting its potential functions in cellular metabolism. The electrostatic interaction between MDH and CISY and the intermediate oxaloacetate, channeled within the metabolon, has been demonstrated using various experimental techniques, including protein-protein interaction assays, isotope dilution studies, and enzyme coupling assays. Regardless of the wealth of in vitro evidence, further validation is required to elucidate the functionality of MDH-CISY metabolons in living systems using advanced structural and spatial analysis techniques.

本综述以苹果酸脱氢酶-柠檬酸合成酶(MDH-CISY)代谢子为模型,讨论了代谢子这一引人入胜但又颇具争议的概念。代谢子是由催化代谢途径中连续反应的酶组成的多酶复合物。代谢子被认为可通过促进底物通道来提高代谢途径的效率。然而,人们对代谢子的存在及其在体内生理条件下的功能性持怀疑态度。我们通过回顾支持 MDH-CISY 代谢子存在的有力证据并强调其在细胞代谢中的潜在功能,来回应这种怀疑。MDH 和 CISY 之间的静电相互作用以及代谢子中的中间产物草酰乙酸,已通过各种实验技术得到证实,包括蛋白质-蛋白质相互作用测定、同位素稀释研究和酶偶联测定。尽管有大量的体外证据,但仍需要进一步验证,以便利用先进的结构和空间分析技术阐明 MDH-CISY 代谢物在活体系统中的功能。
{"title":"Is the TCA cycle malate dehydrogenase-citrate synthase metabolon an illusion?","authors":"Joy Omini, Taiwo Dele-Osibanjo, Heejeong Kim, Jing Zhang, Toshihiro Obata","doi":"10.1042/EBC20230084","DOIUrl":"10.1042/EBC20230084","url":null,"abstract":"<p><p>This review discusses the intriguing yet controversial concept of metabolons, focusing on the malate dehydrogenase-citrate synthase (MDH-CISY) metabolon as a model. Metabolons are multienzyme complexes composed of enzymes that catalyze sequential reactions in metabolic pathways. Metabolons have been proposed to enhance metabolic pathway efficiency by facilitating substrate channeling. However, there is skepticism about the presence of metabolons and their functionality in physiological conditions in vivo. We address the skepticism by reviewing compelling evidence supporting the existence of the MDH-CISY metabolon and highlighting its potential functions in cellular metabolism. The electrostatic interaction between MDH and CISY and the intermediate oxaloacetate, channeled within the metabolon, has been demonstrated using various experimental techniques, including protein-protein interaction assays, isotope dilution studies, and enzyme coupling assays. Regardless of the wealth of in vitro evidence, further validation is required to elucidate the functionality of MDH-CISY metabolons in living systems using advanced structural and spatial analysis techniques.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"99-106"},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461322/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Essays in biochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1