Explainable Artificial Intelligence (XAI) focuses on research and technology that can explain an AI system’s functioning and its underlying methods, and also on making these explanations better through personalization. Our research study investigates a natural language personalization method called lexical alignment in understanding an explanation provided by a conversational agent. The study setup was online and navigated the participants through an interaction with a conversational agent. Participants faced either an agent designed to align its responses to those of the participants, a misaligned agent, or a control condition that did not involve any dialogue. The dialogue delivered an explanation based on a pre-defined set of causes and effects. The recall and understanding of the explanations was evaluated using a combination of Yes-No questions, a Cloze test (fill-in-the-blanks), and What-style questions. The analysis of the test scores revealed a significant advantage in information recall for those who interacted with an aligning agent against the participants who either interacted with a non-aligning agent or did not go through any dialogue. The Yes-No type questions that included probes on higher-order inferences (understanding) also reflected an advantage for the participants who had an aligned dialogue against both non-aligned and no dialogue conditions. The results overall suggest a positive effect of lexical alignment on understanding of explanations.
{"title":"The Role of Lexical Alignment in Human Understanding of Explanations by Conversational Agents","authors":"S. Srivastava, M. Theune, Alejandro Catalá","doi":"10.1145/3581641.3584086","DOIUrl":"https://doi.org/10.1145/3581641.3584086","url":null,"abstract":"Explainable Artificial Intelligence (XAI) focuses on research and technology that can explain an AI system’s functioning and its underlying methods, and also on making these explanations better through personalization. Our research study investigates a natural language personalization method called lexical alignment in understanding an explanation provided by a conversational agent. The study setup was online and navigated the participants through an interaction with a conversational agent. Participants faced either an agent designed to align its responses to those of the participants, a misaligned agent, or a control condition that did not involve any dialogue. The dialogue delivered an explanation based on a pre-defined set of causes and effects. The recall and understanding of the explanations was evaluated using a combination of Yes-No questions, a Cloze test (fill-in-the-blanks), and What-style questions. The analysis of the test scores revealed a significant advantage in information recall for those who interacted with an aligning agent against the participants who either interacted with a non-aligning agent or did not go through any dialogue. The Yes-No type questions that included probes on higher-order inferences (understanding) also reflected an advantage for the participants who had an aligned dialogue against both non-aligned and no dialogue conditions. The results overall suggest a positive effect of lexical alignment on understanding of explanations.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116854402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Pereira Santos, Joey Relouw, Kevin Hutchinson-Lhuissier, A. V. Buggenum, A. Boudry, A. Fransen, M. V. D. Ven, Igor Mayer
.Post-partum hemorrhaging is a medical emergency that occurs during childbirth and, in extreme cases, can be life-threatening. It is the number one cause of maternal mortality worldwide. High-quality training of medical staff can contribute to early diagnosis and work towards preventing escalation towards more serious cases. Healthcare education uses manikin-based simulators to train obstetricians for various childbirth scenarios before training on real patients. However, these medical simulators lack certain key features portraying important symptoms and are incapable of communicating with the trainees. The authors present a digital embodiment agent that can improve the current state of the art by providing a specification of the requirements as well as an extensive design and development approach. This digital embodiment allows educators to respond and role-play as the patient in real time and can easily be integrated with existing training procedures. This research was performed in collaboration with medical experts, making a new contribution to medical training by bringing digital humans and the representation of affective interfaces to the field of healthcare.
{"title":"Embodied Agents for Obstetric Simulation Training","authors":"Carlos Pereira Santos, Joey Relouw, Kevin Hutchinson-Lhuissier, A. V. Buggenum, A. Boudry, A. Fransen, M. V. D. Ven, Igor Mayer","doi":"10.1145/3581641.3584100","DOIUrl":"https://doi.org/10.1145/3581641.3584100","url":null,"abstract":".Post-partum hemorrhaging is a medical emergency that occurs during childbirth and, in extreme cases, can be life-threatening. It is the number one cause of maternal mortality worldwide. High-quality training of medical staff can contribute to early diagnosis and work towards preventing escalation towards more serious cases. Healthcare education uses manikin-based simulators to train obstetricians for various childbirth scenarios before training on real patients. However, these medical simulators lack certain key features portraying important symptoms and are incapable of communicating with the trainees. The authors present a digital embodiment agent that can improve the current state of the art by providing a specification of the requirements as well as an extensive design and development approach. This digital embodiment allows educators to respond and role-play as the patient in real time and can easily be integrated with existing training procedures. This research was performed in collaboration with medical experts, making a new contribution to medical training by bringing digital humans and the representation of affective interfaces to the field of healthcare.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117066100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pat Pataranutaporn, Valdemar Danry, Lancelot Blanchard, Lavanay Thakral, Naoki Ohsugi, P. Maes, Misha Sra
Every human culture has developed practices and rituals associated with remembering people of the past - be it for mourning, cultural preservation, or learning about historical events. In this paper, we present the concept of “Living Memories”: interactive digital mementos that are created from journals, letters and data that an individual have left behind. Like an interactive photograph, living memories can be talked to and asked questions, making accessing the knowledge, attitudes and past experiences of a person easily accessible. To demonstrate our concept, we created an AI-based system for generating living memories from any data source and implemented living memories of the three historical figures “Leonardo Da Vinci”, “Murasaki Shikibu”, and “Captain Robert Scott”. As a second key contribution, we present a novel metrics scheme for evaluating the accuracy of living memory architectures and show the accuracy of our pipeline to improve over baselines. Finally, we compare the user experience and learning effects of interacting with the living memory of Leonardo Da Vinci to reading his journal. Our results show that interacting with the living memory, in addition to simply reading a journal, increases learning effectiveness and motivation to learn about the character.
{"title":"Living Memories: AI-Generated Characters as Digital Mementos","authors":"Pat Pataranutaporn, Valdemar Danry, Lancelot Blanchard, Lavanay Thakral, Naoki Ohsugi, P. Maes, Misha Sra","doi":"10.1145/3581641.3584065","DOIUrl":"https://doi.org/10.1145/3581641.3584065","url":null,"abstract":"Every human culture has developed practices and rituals associated with remembering people of the past - be it for mourning, cultural preservation, or learning about historical events. In this paper, we present the concept of “Living Memories”: interactive digital mementos that are created from journals, letters and data that an individual have left behind. Like an interactive photograph, living memories can be talked to and asked questions, making accessing the knowledge, attitudes and past experiences of a person easily accessible. To demonstrate our concept, we created an AI-based system for generating living memories from any data source and implemented living memories of the three historical figures “Leonardo Da Vinci”, “Murasaki Shikibu”, and “Captain Robert Scott”. As a second key contribution, we present a novel metrics scheme for evaluating the accuracy of living memory architectures and show the accuracy of our pipeline to improve over baselines. Finally, we compare the user experience and learning effects of interacting with the living memory of Leonardo Da Vinci to reading his journal. Our results show that interacting with the living memory, in addition to simply reading a journal, increases learning effectiveness and motivation to learn about the character.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121685612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanna Tschakert, Florian Lang, Markus Wieland, Albrecht Schmidt, Tonja Machulla
Many modern household appliances are challenging to operate for people with visual impairment. Low-contrast designs and insufficient tactile feedback make it difficult to distinguish interface elements and to recognize their function. Augmented reality (AR) can be used to visually highlight such elements and provide assistance to people with residual vision. To realize this goal, we (1) created a dataset consisting of 13,702 images of interfaces from household appliances and manually labeled control elements; (2) trained a neural network to recognize control elements and to distinguish between PushButton, TouchButton, Knob, Slider, and Toggle; and (3) designed various contrast-rich and visually simple AR augmentations for these elements. The results were implemented as a screen-based assistive AR application, which we tested in a user study with six individuals with visual impairment. Participants were able to recognize control elements that were imperceptible without the assistive application. The approach was well received, especially for the potential of familiarizing oneself with novel devices. The automatic parsing and augmentation of interfaces provide an important step toward the independent interaction of people with visual impairments with their everyday environment.
{"title":"A Dataset and Machine Learning Approach to Classify and Augment Interface Elements of Household Appliances to Support People with Visual Impairment","authors":"Hanna Tschakert, Florian Lang, Markus Wieland, Albrecht Schmidt, Tonja Machulla","doi":"10.1145/3581641.3584038","DOIUrl":"https://doi.org/10.1145/3581641.3584038","url":null,"abstract":"Many modern household appliances are challenging to operate for people with visual impairment. Low-contrast designs and insufficient tactile feedback make it difficult to distinguish interface elements and to recognize their function. Augmented reality (AR) can be used to visually highlight such elements and provide assistance to people with residual vision. To realize this goal, we (1) created a dataset consisting of 13,702 images of interfaces from household appliances and manually labeled control elements; (2) trained a neural network to recognize control elements and to distinguish between PushButton, TouchButton, Knob, Slider, and Toggle; and (3) designed various contrast-rich and visually simple AR augmentations for these elements. The results were implemented as a screen-based assistive AR application, which we tested in a user study with six individuals with visual impairment. Participants were able to recognize control elements that were imperceptible without the assistive application. The approach was well received, especially for the potential of familiarizing oneself with novel devices. The automatic parsing and augmentation of interfaces provide an important step toward the independent interaction of people with visual impairments with their everyday environment.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126304921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clara Bove, Marie-Jeanne Lesot, C. Tijus, Marcin Detyniecki
Plural counterfactual examples have been proposed to explain the prediction of a classifier by offering a user several instances of minimal modifications that may be performed to change the prediction. Yet, such explanations may provide too much information, generating potential confusion for the end-users with no specific knowledge, neither on the machine learning, nor on the application domains. In this paper, we investigate the design of explanation user interfaces for plural counterfactual examples offering comparative analysis features to mitigate this potential confusion and improve the intelligibility of such explanations for non-expert users. We propose an implementation of such an enhanced explanation user interface, illustrating it in a financial scenario related to a loan application. We then present the results of a lab user study conducted with 112 participants to evaluate the effectiveness of having plural examples and of offering comparative analysis principles, both on the objective understanding and satisfaction of such explanations. The results demonstrate the effectiveness of the plural condition, both on objective understanding and satisfaction scores, as compared to having a single counterfactual example. Beside the statistical analysis, we perform a thematic analysis of the participants’ responses to the open-response questions, that also shows encouraging results for the comparative analysis features on the objective understanding.
{"title":"Investigating the Intelligibility of Plural Counterfactual Examples for Non-Expert Users: an Explanation User Interface Proposition and User Study","authors":"Clara Bove, Marie-Jeanne Lesot, C. Tijus, Marcin Detyniecki","doi":"10.1145/3581641.3584082","DOIUrl":"https://doi.org/10.1145/3581641.3584082","url":null,"abstract":"Plural counterfactual examples have been proposed to explain the prediction of a classifier by offering a user several instances of minimal modifications that may be performed to change the prediction. Yet, such explanations may provide too much information, generating potential confusion for the end-users with no specific knowledge, neither on the machine learning, nor on the application domains. In this paper, we investigate the design of explanation user interfaces for plural counterfactual examples offering comparative analysis features to mitigate this potential confusion and improve the intelligibility of such explanations for non-expert users. We propose an implementation of such an enhanced explanation user interface, illustrating it in a financial scenario related to a loan application. We then present the results of a lab user study conducted with 112 participants to evaluate the effectiveness of having plural examples and of offering comparative analysis principles, both on the objective understanding and satisfaction of such explanations. The results demonstrate the effectiveness of the plural condition, both on objective understanding and satisfaction scores, as compared to having a single counterfactual example. Beside the statistical analysis, we perform a thematic analysis of the participants’ responses to the open-response questions, that also shows encouraging results for the comparative analysis features on the objective understanding.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126878205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federico Maria Cau, H. Hauptmann, L. D. Spano, N. Tintarev
A common criteria for Explainable AI (XAI) is to support users in establishing appropriate trust in the AI – rejecting advice when it is incorrect, and accepting advice when it is correct. Previous findings suggest that explanations can cause an over-reliance on AI (overly accepting advice). Explanations that evoke appropriate trust are even more challenging for decision-making tasks that are difficult for humans and AI. For this reason, we study decision-making by non-experts in the high-uncertainty domain of stock trading. We compare the effectiveness of three different explanation styles (influenced by inductive, abductive, and deductive reasoning) and the role of AI confidence in terms of a) the users’ reliance on the XAI interface elements (charts with indicators, AI prediction, explanation), b) the correctness of the decision (task performance), and c) the agreement with the AI’s prediction. In contrast to previous work, we look at interactions between different aspects of decision-making, including AI correctness, and the combined effects of AI confidence and explanations styles. Our results show that specific explanation styles (abductive and deductive) improve the user’s task performance in the case of high AI confidence compared to inductive explanations. In other words, these styles of explanations were able to invoke correct decisions (for both positive and negative decisions) when the system was certain. In such a condition, the agreement between the user’s decision and the AI prediction confirms this finding, highlighting a significant agreement increase when the AI is correct. This suggests that both explanation styles are suitable for evoking appropriate trust in a confident AI. Our findings further indicate a need to consider AI confidence as a criterion for including or excluding explanations from AI interfaces. In addition, this paper highlights the importance of carefully selecting an explanation style according to the characteristics of the task and data.
{"title":"Supporting High-Uncertainty Decisions through AI and Logic-Style Explanations","authors":"Federico Maria Cau, H. Hauptmann, L. D. Spano, N. Tintarev","doi":"10.1145/3581641.3584080","DOIUrl":"https://doi.org/10.1145/3581641.3584080","url":null,"abstract":"A common criteria for Explainable AI (XAI) is to support users in establishing appropriate trust in the AI – rejecting advice when it is incorrect, and accepting advice when it is correct. Previous findings suggest that explanations can cause an over-reliance on AI (overly accepting advice). Explanations that evoke appropriate trust are even more challenging for decision-making tasks that are difficult for humans and AI. For this reason, we study decision-making by non-experts in the high-uncertainty domain of stock trading. We compare the effectiveness of three different explanation styles (influenced by inductive, abductive, and deductive reasoning) and the role of AI confidence in terms of a) the users’ reliance on the XAI interface elements (charts with indicators, AI prediction, explanation), b) the correctness of the decision (task performance), and c) the agreement with the AI’s prediction. In contrast to previous work, we look at interactions between different aspects of decision-making, including AI correctness, and the combined effects of AI confidence and explanations styles. Our results show that specific explanation styles (abductive and deductive) improve the user’s task performance in the case of high AI confidence compared to inductive explanations. In other words, these styles of explanations were able to invoke correct decisions (for both positive and negative decisions) when the system was certain. In such a condition, the agreement between the user’s decision and the AI prediction confirms this finding, highlighting a significant agreement increase when the AI is correct. This suggests that both explanation styles are suitable for evoking appropriate trust in a confident AI. Our findings further indicate a need to consider AI confidence as a criterion for including or excluding explanations from AI interfaces. In addition, this paper highlights the importance of carefully selecting an explanation style according to the characteristics of the task and data.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132671917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahin Sharifi Noorian, S. Qiu, Burcu Sayin, Agathe Balayn, U. Gadiraju, Jie Yang, A. Bozzon
High-quality data plays a vital role in developing reliable image classification models. Despite that, what makes an image difficult to classify remains an unstudied topic. This paper provides a first-of-its-kind, model-agnostic characterization of image atypicality based on human understanding. We consider the setting of image classification “in the wild”, where a large number of unlabeled images are accessible, and introduce a scalable and effective human computation approach for proactive identification and characterization of atypical images. Our approach consists of i) an image atypicality identification and characterization task that presents to the human worker both a local view of visually similar images and a global view of images from the class of interest and ii) an automatic image sampling method that selects a diverse set of atypical images based on both visual and semantic features. We demonstrate the effectiveness and cost-efficiency of our approach through controlled crowdsourcing experiments and provide a characterization of image atypicality based on human annotations of 10K images. We showcase the utility of the identified atypical images by testing state-of-the-art image classification services against such images and provide an in-depth comparative analysis of the alignment between human- and machine-perceived image atypicality. Our findings have important implications for developing and deploying reliable image classification systems.
{"title":"Perspective: Leveraging Human Understanding for Identifying and Characterizing Image Atypicality","authors":"Shahin Sharifi Noorian, S. Qiu, Burcu Sayin, Agathe Balayn, U. Gadiraju, Jie Yang, A. Bozzon","doi":"10.1145/3581641.3584096","DOIUrl":"https://doi.org/10.1145/3581641.3584096","url":null,"abstract":"High-quality data plays a vital role in developing reliable image classification models. Despite that, what makes an image difficult to classify remains an unstudied topic. This paper provides a first-of-its-kind, model-agnostic characterization of image atypicality based on human understanding. We consider the setting of image classification “in the wild”, where a large number of unlabeled images are accessible, and introduce a scalable and effective human computation approach for proactive identification and characterization of atypical images. Our approach consists of i) an image atypicality identification and characterization task that presents to the human worker both a local view of visually similar images and a global view of images from the class of interest and ii) an automatic image sampling method that selects a diverse set of atypical images based on both visual and semantic features. We demonstrate the effectiveness and cost-efficiency of our approach through controlled crowdsourcing experiments and provide a characterization of image atypicality based on human annotations of 10K images. We showcase the utility of the identified atypical images by testing state-of-the-art image classification services against such images and provide an in-depth comparative analysis of the alignment between human- and machine-perceived image atypicality. Our findings have important implications for developing and deploying reliable image classification systems.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126189417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yohai Trabelsi, Or Shabat, J. Lanir, Oleg Maksimov, Sarit Kraus
Teleoperation of autonomous vehicles has been gaining a lot of attention recently and is expected to play an important role in helping autonomous vehicles handle difficult situations which they cannot handle on their own. In such cases, a remote driver located in a teleoperation center can remotely drive the vehicle until the situation is resolved. However, teledriving is a challenging task and requires many cognitive resources from the teleoperator. Our goal is to assist the remote driver in some complex situations by giving the driver appropriate advice. The advice is displayed on the driver’s screen to help her make the right decision. To this end, we introduce the TeleOperator Advisor (TOA), an adaptive agent that provides assisting advice to a remote driver. We evaluate the TOA in a simulation-based setting in two scenarios: overtaking a slow vehicle and passing through a traffic light. Results indicate that our advice helps to reduce the cognitive load of the remote driver and improve driving performance.
{"title":"Advice Provision in Teleoperation of Autonomous Vehicles","authors":"Yohai Trabelsi, Or Shabat, J. Lanir, Oleg Maksimov, Sarit Kraus","doi":"10.1145/3581641.3584068","DOIUrl":"https://doi.org/10.1145/3581641.3584068","url":null,"abstract":"Teleoperation of autonomous vehicles has been gaining a lot of attention recently and is expected to play an important role in helping autonomous vehicles handle difficult situations which they cannot handle on their own. In such cases, a remote driver located in a teleoperation center can remotely drive the vehicle until the situation is resolved. However, teledriving is a challenging task and requires many cognitive resources from the teleoperator. Our goal is to assist the remote driver in some complex situations by giving the driver appropriate advice. The advice is displayed on the driver’s screen to help her make the right decision. To this end, we introduce the TeleOperator Advisor (TOA), an adaptive agent that provides assisting advice to a remote driver. We evaluate the TOA in a simulation-based setting in two scenarios: overtaking a slow vehicle and passing through a traffic light. Results indicate that our advice helps to reduce the cognitive load of the remote driver and improve driving performance.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126547256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seokmin Choi, Junghwan Yim, Yincheng Jin, Yang Gao, Jiyang Li, Zhanpeng Jin
Wearable devices have become indispensable gadgets in people’s daily lives nowadays; especially wireless earphones have experienced unprecedented growth in recent years, which lead to increasing interest and explorations of user authentication techniques. Conventional user authentication methods embedded in wireless earphones that use microphones or other modalities are vulnerable to environmental factors, such as loud noises or occlusions. To address this limitation, we introduce EarPPG, a new biometric modality that takes advantage of the unique in-ear photoplethysmography (PPG) signals, altered by a user’s unique speaking behaviors. When the user is speaking, muscle movements cause changes in the blood vessel geometry, inducing unique PPG signal variations. As speaking behaviors and PPG signals are unique, the EarPPG combines both biometric traits and presents a secure and obscure authentication solution. The system first detects and segments EarPPG signals and proceeds to extract effective features to construct a user authentication model with the 1D ReGRU network. We conducted comprehensive real-world evaluations with 25 human participants and achieved 94.84% accuracy, 0.95 precision, recall, and f1-score, respectively. Moreover, considering the practical implications, we conducted several extensive in-the-wild experiments, including body motions, occlusions, lighting, and permanence. Overall outcomes of this study possess the potential to be embedded in future smart earable devices.
{"title":"EarPPG: Securing Your Identity with Your Ears","authors":"Seokmin Choi, Junghwan Yim, Yincheng Jin, Yang Gao, Jiyang Li, Zhanpeng Jin","doi":"10.1145/3581641.3584070","DOIUrl":"https://doi.org/10.1145/3581641.3584070","url":null,"abstract":"Wearable devices have become indispensable gadgets in people’s daily lives nowadays; especially wireless earphones have experienced unprecedented growth in recent years, which lead to increasing interest and explorations of user authentication techniques. Conventional user authentication methods embedded in wireless earphones that use microphones or other modalities are vulnerable to environmental factors, such as loud noises or occlusions. To address this limitation, we introduce EarPPG, a new biometric modality that takes advantage of the unique in-ear photoplethysmography (PPG) signals, altered by a user’s unique speaking behaviors. When the user is speaking, muscle movements cause changes in the blood vessel geometry, inducing unique PPG signal variations. As speaking behaviors and PPG signals are unique, the EarPPG combines both biometric traits and presents a secure and obscure authentication solution. The system first detects and segments EarPPG signals and proceeds to extract effective features to construct a user authentication model with the 1D ReGRU network. We conducted comprehensive real-world evaluations with 25 human participants and achieved 94.84% accuracy, 0.95 precision, recall, and f1-score, respectively. Moreover, considering the practical implications, we conducted several extensive in-the-wild experiments, including body motions, occlusions, lighting, and permanence. Overall outcomes of this study possess the potential to be embedded in future smart earable devices.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133786523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Decision Support Systems (DSS) based on Machine Learning (ML) often aim to assist lay decision-makers, who are not math-savvy, in making high-stakes decisions. However, existing ML-based DSS are not always transparent about the probabilistic nature of ML predictions and how uncertain each prediction is. This lack of transparency could give lay decision-makers a false sense of reliability. Growing calls for AI transparency have led to increasing efforts to quantify and communicate model uncertainty. However, there are still gaps in knowledge regarding how and why the decision-makers utilize ML uncertainty information in their decision process. Here, we conducted a qualitative, think-aloud user study with 17 lay decision-makers who interacted with three different DSS: 1) interactive visualization, 2) DSS based on an ML model that provides predictions without uncertainty information, and 3) the same DSS with uncertainty information. Our qualitative analysis found that communicating uncertainty about ML predictions forced participants to slow down and think analytically about their decisions. This in turn made participants more vigilant, resulting in reduction in over-reliance on ML-based DSS. Our work contributes empirical knowledge on how lay decision-makers perceive, interpret, and make use of uncertainty information when interacting with DSS. Such foundational knowledge informs the design of future ML-based DSS that embrace transparent uncertainty communication.
{"title":"Understanding Uncertainty: How Lay Decision-makers Perceive and Interpret Uncertainty in Human-AI Decision Making","authors":"Snehal Prabhudesai, Leyao Yang, Sumit Asthana, Xun Huan, Q. Liao, Nikola Banovic","doi":"10.1145/3581641.3584033","DOIUrl":"https://doi.org/10.1145/3581641.3584033","url":null,"abstract":"Decision Support Systems (DSS) based on Machine Learning (ML) often aim to assist lay decision-makers, who are not math-savvy, in making high-stakes decisions. However, existing ML-based DSS are not always transparent about the probabilistic nature of ML predictions and how uncertain each prediction is. This lack of transparency could give lay decision-makers a false sense of reliability. Growing calls for AI transparency have led to increasing efforts to quantify and communicate model uncertainty. However, there are still gaps in knowledge regarding how and why the decision-makers utilize ML uncertainty information in their decision process. Here, we conducted a qualitative, think-aloud user study with 17 lay decision-makers who interacted with three different DSS: 1) interactive visualization, 2) DSS based on an ML model that provides predictions without uncertainty information, and 3) the same DSS with uncertainty information. Our qualitative analysis found that communicating uncertainty about ML predictions forced participants to slow down and think analytically about their decisions. This in turn made participants more vigilant, resulting in reduction in over-reliance on ML-based DSS. Our work contributes empirical knowledge on how lay decision-makers perceive, interpret, and make use of uncertainty information when interacting with DSS. Such foundational knowledge informs the design of future ML-based DSS that embrace transparent uncertainty communication.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123287326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}