Robert C. Gray, Jennifer Villareale, Thomas Fox, Diane H Dallal, Santiago Ontan'on, D. Arigo, S. Jabbari, Jichen Zhu
Algorithmic fairness is an essential requirement as AI becomes integrated in society. In the case of social applications where AI distributes resources, algorithms often must make decisions that will benefit a subset of users, sometimes repeatedly or exclusively, while attempting to maximize specific outcomes. How should we design such systems to serve users more fairly? This paper explores this question in the case where a group of users works toward a shared goal in a social exergame called Step Heroes. We identify adverse outcomes in traditional multi-armed bandits (MABs) and formalize the Greedy Bandit Problem. We then propose a solution based on a new type of fairness-aware multi-armed bandit, Shapley Bandits. It uses the Shapley Value for increasing overall player participation and intervention adherence rather than the maximization of total group output, which is traditionally achieved by favoring only high-performing participants. We evaluate our approach via a user study (n=46). Our results indicate that our Shapley Bandits effectively mediates the Greedy Bandit Problem and achieves better user retention and motivation across the participants.
{"title":"Improving Fairness in Adaptive Social Exergames via Shapley Bandits","authors":"Robert C. Gray, Jennifer Villareale, Thomas Fox, Diane H Dallal, Santiago Ontan'on, D. Arigo, S. Jabbari, Jichen Zhu","doi":"10.1145/3581641.3584050","DOIUrl":"https://doi.org/10.1145/3581641.3584050","url":null,"abstract":"Algorithmic fairness is an essential requirement as AI becomes integrated in society. In the case of social applications where AI distributes resources, algorithms often must make decisions that will benefit a subset of users, sometimes repeatedly or exclusively, while attempting to maximize specific outcomes. How should we design such systems to serve users more fairly? This paper explores this question in the case where a group of users works toward a shared goal in a social exergame called Step Heroes. We identify adverse outcomes in traditional multi-armed bandits (MABs) and formalize the Greedy Bandit Problem. We then propose a solution based on a new type of fairness-aware multi-armed bandit, Shapley Bandits. It uses the Shapley Value for increasing overall player participation and intervention adherence rather than the maximization of total group output, which is traditionally achieved by favoring only high-performing participants. We evaluate our approach via a user study (n=46). Our results indicate that our Shapley Bandits effectively mediates the Greedy Bandit Problem and achieves better user retention and motivation across the participants.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122712070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Web-based data visualizations have become very popular for exploring data and communicating insights. Newspapers, journals, and reports regularly publish visualizations to tell compelling stories with data. Unfortunately, most visualizations are inaccessible to readers with visual impairments. For many charts on the web, there are no accompanying alternative (alt) texts, and even if such texts exist they do not adequately describe important insights from charts. To address the problem, we first interviewed 15 blind users to understand their challenges and requirements for reading data visualizations. Based on the insights from these interviews, we developed SeeChart, an interactive tool that automatically deconstructs charts from web pages and then converts them to accessible visualizations for blind people by enabling them to hear the chart summary as well as to interact through data points using the keyboard. Our evaluation with 14 blind participants suggests the efficacy of SeeChart in understanding key insights from charts and fulfilling their information needs while reducing their required time and cognitive burden.
{"title":"SeeChart: Enabling Accessible Visualizations Through Interactive Natural Language Interface For People with Visual Impairments","authors":"Md. Zubair Ibne Alam, Shehnaz Islam, Enamul Hoque","doi":"10.1145/3581641.3584099","DOIUrl":"https://doi.org/10.1145/3581641.3584099","url":null,"abstract":"Web-based data visualizations have become very popular for exploring data and communicating insights. Newspapers, journals, and reports regularly publish visualizations to tell compelling stories with data. Unfortunately, most visualizations are inaccessible to readers with visual impairments. For many charts on the web, there are no accompanying alternative (alt) texts, and even if such texts exist they do not adequately describe important insights from charts. To address the problem, we first interviewed 15 blind users to understand their challenges and requirements for reading data visualizations. Based on the insights from these interviews, we developed SeeChart, an interactive tool that automatically deconstructs charts from web pages and then converts them to accessible visualizations for blind people by enabling them to hear the chart summary as well as to interact through data points using the keyboard. Our evaluation with 14 blind participants suggests the efficacy of SeeChart in understanding key insights from charts and fulfilling their information needs while reducing their required time and cognitive burden.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125765651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongshuang Sherry Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, Marco Tulio Ribeiro
The in-context learning capabilities of LLMs like GPT-3 allow annotators to customize an LLM to their specific tasks with a small number of examples. However, users tend to include only the most obvious patterns when crafting examples, resulting in underspecified in-context functions that fall short on unseen cases. Further, it is hard to know when “enough” examples have been included even for known patterns. In this work, we present ScatterShot, an interactive system for building high-quality demonstration sets for in-context learning. ScatterShot iteratively slices unlabeled data into task-specific patterns, samples informative inputs from underexplored or not-yet-saturated slices in an active learning manner, and helps users label more efficiently with the help of an LLM and the current example set. In simulation studies on two text perturbation scenarios, ScatterShot sampling improves the resulting few-shot functions by 4-5 percentage points over random sampling, with less variance as more examples are added. In a user study, ScatterShot greatly helps users in covering different patterns in the input space and labeling in-context examples more efficiently, resulting in better in-context learning and less user effort.
{"title":"ScatterShot: Interactive In-context Example Curation for Text Transformation","authors":"Tongshuang Sherry Wu, Hua Shen, Daniel S. Weld, Jeffrey Heer, Marco Tulio Ribeiro","doi":"10.1145/3581641.3584059","DOIUrl":"https://doi.org/10.1145/3581641.3584059","url":null,"abstract":"The in-context learning capabilities of LLMs like GPT-3 allow annotators to customize an LLM to their specific tasks with a small number of examples. However, users tend to include only the most obvious patterns when crafting examples, resulting in underspecified in-context functions that fall short on unseen cases. Further, it is hard to know when “enough” examples have been included even for known patterns. In this work, we present ScatterShot, an interactive system for building high-quality demonstration sets for in-context learning. ScatterShot iteratively slices unlabeled data into task-specific patterns, samples informative inputs from underexplored or not-yet-saturated slices in an active learning manner, and helps users label more efficiently with the help of an LLM and the current example set. In simulation studies on two text perturbation scenarios, ScatterShot sampling improves the resulting few-shot functions by 4-5 percentage points over random sampling, with less variance as more examples are added. In a user study, ScatterShot greatly helps users in covering different patterns in the input space and labeling in-context examples more efficiently, resulting in better in-context learning and less user effort.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125431184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Austin P. Wright, P. Nemere, A. Galvin, Duen Horng Chau, Scott Davidoff
While anomaly detection stands among the most important and valuable problems across many scientific domains, anomaly detection research often focuses on AI methods that can lack the nuance and interpretability so critical to conducting scientific inquiry. We believe this exclusive focus on algorithms with a fixed framing ultimately blocks scientists from adopting even high-accuracy anomaly detection models in many scientific use cases. In this application paper we present the results of utilizing an alternative approach that situates the mathematical framing of machine learning based anomaly detection within a participatory design framework. In a collaboration with NASA scientists working with the PIXL instrument studying Martian planetary geochemistry as a part of the search for extra-terrestrial life; we report on over 18 months of in-context user research and co-design to define the key problems NASA scientists face when looking to detect and interpret spectral anomalies. We address these problems and develop a novel spectral anomaly detection toolkit for PIXL scientists that is highly accurate (93.4% test accuracy on detecting diffraction anomalies), while maintaining strong transparency to scientific interpretation. We also describe outcomes from a yearlong field deployment of the algorithm and associated interface, now used daily as a core component of the PIXL science team’s workflow, and directly situate the algorithm as a key contributor to discoveries around the potential habitability of Mars. Finally we introduce a new design framework which we developed through the course of this collaboration for co-creating anomaly detection algorithms: Iterative Semantic Heuristic Modeling of Anomalous Phenomena (ISHMAP), which provides a process for scientists and researchers to produce natively interpretable anomaly detection models. This work showcases an example of successfully bridging methodologies from AI and HCI within a scientific domain, and provides a resource in ISHMAP which may be used by other researchers and practitioners looking to partner with other scientific teams to achieve better science through more effective and interpretable anomaly detection tools.
{"title":"Lessons from the Development of an Anomaly Detection Interface on the Mars Perseverance Rover using the ISHMAP Framework","authors":"Austin P. Wright, P. Nemere, A. Galvin, Duen Horng Chau, Scott Davidoff","doi":"10.1145/3581641.3584036","DOIUrl":"https://doi.org/10.1145/3581641.3584036","url":null,"abstract":"While anomaly detection stands among the most important and valuable problems across many scientific domains, anomaly detection research often focuses on AI methods that can lack the nuance and interpretability so critical to conducting scientific inquiry. We believe this exclusive focus on algorithms with a fixed framing ultimately blocks scientists from adopting even high-accuracy anomaly detection models in many scientific use cases. In this application paper we present the results of utilizing an alternative approach that situates the mathematical framing of machine learning based anomaly detection within a participatory design framework. In a collaboration with NASA scientists working with the PIXL instrument studying Martian planetary geochemistry as a part of the search for extra-terrestrial life; we report on over 18 months of in-context user research and co-design to define the key problems NASA scientists face when looking to detect and interpret spectral anomalies. We address these problems and develop a novel spectral anomaly detection toolkit for PIXL scientists that is highly accurate (93.4% test accuracy on detecting diffraction anomalies), while maintaining strong transparency to scientific interpretation. We also describe outcomes from a yearlong field deployment of the algorithm and associated interface, now used daily as a core component of the PIXL science team’s workflow, and directly situate the algorithm as a key contributor to discoveries around the potential habitability of Mars. Finally we introduce a new design framework which we developed through the course of this collaboration for co-creating anomaly detection algorithms: Iterative Semantic Heuristic Modeling of Anomalous Phenomena (ISHMAP), which provides a process for scientists and researchers to produce natively interpretable anomaly detection models. This work showcases an example of successfully bridging methodologies from AI and HCI within a scientific domain, and provides a resource in ISHMAP which may be used by other researchers and practitioners looking to partner with other scientific teams to achieve better science through more effective and interpretable anomaly detection tools.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123218590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, Justin D. Weisz
Large language models (LLMs) have recently been applied in software engineering to perform tasks such as translating code between programming languages, generating code from natural language, and autocompleting code as it is being written. When used within development tools, these systems typically treat each model invocation independently from all previous invocations, and only a specific limited functionality is exposed within the user interface. This approach to user interaction misses an opportunity for users to more deeply engage with the model by having the context of their previous interactions, as well as the context of their code, inform the model’s responses. We developed a prototype system – the Programmer’s Assistant – in order to explore the utility of conversational interactions grounded in code, as well as software engineers’ receptiveness to the idea of conversing with, rather than invoking, a code-fluent LLM. Through an evaluation with 42 participants with varied levels of programming experience, we found that our system was capable of conducting extended, multi-turn discussions, and that it enabled additional knowledge and capabilities beyond code generation to emerge from the LLM. Despite skeptical initial expectations for conversational programming assistance, participants were impressed by the breadth of the assistant’s capabilities, the quality of its responses, and its potential for improving their productivity. Our work demonstrates the unique potential of conversational interactions with LLMs for co-creative processes like software development.
{"title":"The Programmer’s Assistant: Conversational Interaction with a Large Language Model for Software Development","authors":"Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, Justin D. Weisz","doi":"10.1145/3581641.3584037","DOIUrl":"https://doi.org/10.1145/3581641.3584037","url":null,"abstract":"Large language models (LLMs) have recently been applied in software engineering to perform tasks such as translating code between programming languages, generating code from natural language, and autocompleting code as it is being written. When used within development tools, these systems typically treat each model invocation independently from all previous invocations, and only a specific limited functionality is exposed within the user interface. This approach to user interaction misses an opportunity for users to more deeply engage with the model by having the context of their previous interactions, as well as the context of their code, inform the model’s responses. We developed a prototype system – the Programmer’s Assistant – in order to explore the utility of conversational interactions grounded in code, as well as software engineers’ receptiveness to the idea of conversing with, rather than invoking, a code-fluent LLM. Through an evaluation with 42 participants with varied levels of programming experience, we found that our system was capable of conducting extended, multi-turn discussions, and that it enabled additional knowledge and capabilities beyond code generation to emerge from the LLM. Despite skeptical initial expectations for conversational programming assistance, participants were impressed by the breadth of the assistant’s capabilities, the quality of its responses, and its potential for improving their productivity. Our work demonstrates the unique potential of conversational interactions with LLMs for co-creative processes like software development.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126881409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brian Felipe Keith Norambuena, Tanushree Mitra, Chris North
Narrative sensemaking is an essential part of understanding sequential data. Narrative maps are a visual representation model that can assist analysts to understand narratives. In this work, we present a semantic interaction (SI) framework for narrative maps that can support analysts through their sensemaking process. In contrast to traditional SI systems which rely on dimensionality reduction and work on a projection space, our approach has an additional abstraction layer—the structure space—that builds upon the projection space and encodes the narrative in a discrete structure. This extra layer introduces additional challenges that must be addressed when integrating SI with the narrative extraction pipeline. We address these challenges by presenting the general concept of Mixed Multi-Model Semantic Interaction (3MSI)—an SI pipeline, where the highest-level model corresponds to an abstract discrete structure and the lower-level models are continuous. To evaluate the performance of our 3MSI models for narrative maps, we present a quantitative simulation-based evaluation and a qualitative evaluation with case studies and expert feedback. We find that our SI system can model the analysts’ intent and support incremental formalism for narrative maps.
{"title":"Mixed Multi-Model Semantic Interaction for Graph-based Narrative Visualizations","authors":"Brian Felipe Keith Norambuena, Tanushree Mitra, Chris North","doi":"10.1145/3581641.3584076","DOIUrl":"https://doi.org/10.1145/3581641.3584076","url":null,"abstract":"Narrative sensemaking is an essential part of understanding sequential data. Narrative maps are a visual representation model that can assist analysts to understand narratives. In this work, we present a semantic interaction (SI) framework for narrative maps that can support analysts through their sensemaking process. In contrast to traditional SI systems which rely on dimensionality reduction and work on a projection space, our approach has an additional abstraction layer—the structure space—that builds upon the projection space and encodes the narrative in a discrete structure. This extra layer introduces additional challenges that must be addressed when integrating SI with the narrative extraction pipeline. We address these challenges by presenting the general concept of Mixed Multi-Model Semantic Interaction (3MSI)—an SI pipeline, where the highest-level model corresponds to an abstract discrete structure and the lower-level models are continuous. To evaluate the performance of our 3MSI models for narrative maps, we present a quantitative simulation-based evaluation and a qualitative evaluation with case studies and expert feedback. We find that our SI system can model the analysts’ intent and support incremental formalism for narrative maps.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131719319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human-in-the-loop optimization utilizes human expertise to guide machine optimizers iteratively and search for an optimal solution in a solution space. While prior empirical studies mainly investigated novices, we analyzed the impact of the levels of expertise on the outcome quality and corresponding subjective satisfaction. We conducted a study (N=60) in text, photo, and 3D mesh optimization contexts. We found that novices can achieve an expert level of quality performance, but participants with higher expertise led to more optimization iteration with more explicit preference while keeping satisfaction low. In contrast, novices were more easily satisfied and terminated faster. Therefore, we identified that experts seek more diverse outcomes while the machine reaches optimal results, and the observed behavior can be used as a performance indicator for human-in-the-loop system designers to improve underlying models. We inform future research to be cautious about the impact of user expertise when designing human-in-the-loop systems.
{"title":"The Impact of Expertise in the Loop for Exploring Machine Rationality","authors":"Changkun Ou, S. Mayer, A. Butz","doi":"10.1145/3581641.3584040","DOIUrl":"https://doi.org/10.1145/3581641.3584040","url":null,"abstract":"Human-in-the-loop optimization utilizes human expertise to guide machine optimizers iteratively and search for an optimal solution in a solution space. While prior empirical studies mainly investigated novices, we analyzed the impact of the levels of expertise on the outcome quality and corresponding subjective satisfaction. We conducted a study (N=60) in text, photo, and 3D mesh optimization contexts. We found that novices can achieve an expert level of quality performance, but participants with higher expertise led to more optimization iteration with more explicit preference while keeping satisfaction low. In contrast, novices were more easily satisfied and terminated faster. Therefore, we identified that experts seek more diverse outcomes while the machine reaches optimal results, and the observed behavior can be used as a performance indicator for human-in-the-loop system designers to improve underlying models. We inform future research to be cautious about the impact of user expertise when designing human-in-the-loop systems.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114633636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Schemmer, Niklas Kühl, Carina Benz, Andrea Bartos, G. Satzger
AI advice is becoming increasingly popular, e.g., in investment and medical treatment decisions. As this advice is typically imperfect, decision-makers have to exert discretion as to whether actually follow that advice: they have to “appropriately” rely on correct and turn down incorrect advice. However, current research on appropriate reliance still lacks a common definition as well as an operational measurement concept. Additionally, no in-depth behavioral experiments have been conducted that help understand the factors influencing this behavior. In this paper, we propose Appropriateness of Reliance (AoR) as an underlying, quantifiable two-dimensional measurement concept. We develop a research model that analyzes the effect of providing explanations for AI advice. In an experiment with 200 participants, we demonstrate how these explanations influence the AoR, and, thus, the effectiveness of AI advice. Our work contributes fundamental concepts for the analysis of reliance behavior and the purposeful design of AI advisors.
{"title":"Appropriate Reliance on AI Advice: Conceptualization and the Effect of Explanations","authors":"M. Schemmer, Niklas Kühl, Carina Benz, Andrea Bartos, G. Satzger","doi":"10.1145/3581641.3584066","DOIUrl":"https://doi.org/10.1145/3581641.3584066","url":null,"abstract":"AI advice is becoming increasingly popular, e.g., in investment and medical treatment decisions. As this advice is typically imperfect, decision-makers have to exert discretion as to whether actually follow that advice: they have to “appropriately” rely on correct and turn down incorrect advice. However, current research on appropriate reliance still lacks a common definition as well as an operational measurement concept. Additionally, no in-depth behavioral experiments have been conducted that help understand the factors influencing this behavior. In this paper, we propose Appropriateness of Reliance (AoR) as an underlying, quantifiable two-dimensional measurement concept. We develop a research model that analyzes the effect of providing explanations for AI advice. In an experiment with 200 participants, we demonstrate how these explanations influence the AoR, and, thus, the effectiveness of AI advice. Our work contributes fundamental concepts for the analysis of reliance behavior and the purposeful design of AI advisors.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"121 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123455260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ripan Kumar Kundu, Osama Yahia Elsaid, P. Calyam, K. A. Hoque
Virtual reality (VR) systems are known for their susceptibility to cybersickness, which can seriously hinder users’ experience. Therefore, a plethora of recent research has proposed several automated methods based on machine learning (ML) and deep learning (DL) to detect cybersickness. However, these detection methods are perceived as computationally intensive and black-box methods. Thus, those techniques are neither trustworthy nor practical for deploying on standalone VR head-mounted displays (HMDs). This work presents an explainable artificial intelligence (XAI)-based framework VR-LENS for developing cybersickness detection ML models, explaining them, reducing their size, and deploying them in a Qualcomm Snapdragon 750G processor-based Samsung A52 device. Specifically, we first develop a novel super learning-based ensemble ML model for cybersickness detection. Next, we employ a post-hoc explanation method, such as SHapley Additive exPlanations (SHAP), Morris Sensitivity Analysis (MSA), Local Interpretable Model-Agnostic Explanations (LIME), and Partial Dependence Plot (PDP) to explain the expected results and identify the most dominant features. The super learner cybersickness model is then retrained using the identified dominant features. Our proposed method identified eye tracking, player position, and galvanic skin/heart rate response as the most dominant features for the integrated sensor, gameplay, and bio-physiological datasets. We also show that the proposed XAI-guided feature reduction significantly reduces the model training and inference time by 1.91X and 2.15X while maintaining baseline accuracy. For instance, using the integrated sensor dataset, our reduced super learner model outperforms the state-of-the-art works by classifying cybersickness into 4 classes (none, low, medium, and high) with an accuracy of and regressing (FMS 1–10) with a Root Mean Square Error (RMSE) of 0.03. Our proposed method can help researchers analyze, detect, and mitigate cybersickness in real time and deploy the super learner-based cybersickness detection model in standalone VR headsets.
{"title":"VR-LENS: Super Learning-based Cybersickness Detection and Explainable AI-Guided Deployment in Virtual Reality","authors":"Ripan Kumar Kundu, Osama Yahia Elsaid, P. Calyam, K. A. Hoque","doi":"10.1145/3581641.3584044","DOIUrl":"https://doi.org/10.1145/3581641.3584044","url":null,"abstract":"Virtual reality (VR) systems are known for their susceptibility to cybersickness, which can seriously hinder users’ experience. Therefore, a plethora of recent research has proposed several automated methods based on machine learning (ML) and deep learning (DL) to detect cybersickness. However, these detection methods are perceived as computationally intensive and black-box methods. Thus, those techniques are neither trustworthy nor practical for deploying on standalone VR head-mounted displays (HMDs). This work presents an explainable artificial intelligence (XAI)-based framework VR-LENS for developing cybersickness detection ML models, explaining them, reducing their size, and deploying them in a Qualcomm Snapdragon 750G processor-based Samsung A52 device. Specifically, we first develop a novel super learning-based ensemble ML model for cybersickness detection. Next, we employ a post-hoc explanation method, such as SHapley Additive exPlanations (SHAP), Morris Sensitivity Analysis (MSA), Local Interpretable Model-Agnostic Explanations (LIME), and Partial Dependence Plot (PDP) to explain the expected results and identify the most dominant features. The super learner cybersickness model is then retrained using the identified dominant features. Our proposed method identified eye tracking, player position, and galvanic skin/heart rate response as the most dominant features for the integrated sensor, gameplay, and bio-physiological datasets. We also show that the proposed XAI-guided feature reduction significantly reduces the model training and inference time by 1.91X and 2.15X while maintaining baseline accuracy. For instance, using the integrated sensor dataset, our reduced super learner model outperforms the state-of-the-art works by classifying cybersickness into 4 classes (none, low, medium, and high) with an accuracy of and regressing (FMS 1–10) with a Root Mean Square Error (RMSE) of 0.03. Our proposed method can help researchers analyze, detect, and mitigate cybersickness in real time and deploy the super learner-based cybersickness detection model in standalone VR headsets.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125116702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During a public health crisis like the COVID-19 pandemic, a credible and easy-to-access information portal is highly desirable. It helps with disease prevention, public health planning, and misinformation mitigation. However, creating such an information portal is challenging because 1) domain expertise is required to identify and curate credible and intelligible content, 2) the information needs to be updated promptly in response to the fast-changing environment, and 3) the information should be easily accessible by the general public; which is particularly difficult when most people do not have the domain expertise about the crisis. In this paper, we presented an expert-sourcing framework and created Jennifer, an AI chatbot, which serves as a credible and easy-to-access information portal for individuals during the COVID-19 pandemic. Jennifer was created by a team of over 150 scientists and health professionals around the world, deployed in the real world and answered thousands of user questions about COVID-19. We evaluated Jennifer from two key stakeholders’ perspectives, expert volunteers and information seekers. We first interviewed experts who contributed to the collaborative creation of Jennifer to learn about the challenges in the process and opportunities for future improvement. We then conducted an online experiment that examined Jennifer’s effectiveness in supporting information seekers in locating COVID-19 information and gaining their trust. We share the key lessons learned and discuss design implications for building expert-sourced and AI-powered information portals, along with the risks and opportunities of misinformation mitigation and beyond.
{"title":"Powering an AI Chatbot with Expert Sourcing to Support Credible Health Information Access","authors":"Ziang Xiao, Q. Liao, Michelle X. Zhou, Tyrone Grandison, Yunyao Li","doi":"10.1145/3581641.3584031","DOIUrl":"https://doi.org/10.1145/3581641.3584031","url":null,"abstract":"During a public health crisis like the COVID-19 pandemic, a credible and easy-to-access information portal is highly desirable. It helps with disease prevention, public health planning, and misinformation mitigation. However, creating such an information portal is challenging because 1) domain expertise is required to identify and curate credible and intelligible content, 2) the information needs to be updated promptly in response to the fast-changing environment, and 3) the information should be easily accessible by the general public; which is particularly difficult when most people do not have the domain expertise about the crisis. In this paper, we presented an expert-sourcing framework and created Jennifer, an AI chatbot, which serves as a credible and easy-to-access information portal for individuals during the COVID-19 pandemic. Jennifer was created by a team of over 150 scientists and health professionals around the world, deployed in the real world and answered thousands of user questions about COVID-19. We evaluated Jennifer from two key stakeholders’ perspectives, expert volunteers and information seekers. We first interviewed experts who contributed to the collaborative creation of Jennifer to learn about the challenges in the process and opportunities for future improvement. We then conducted an online experiment that examined Jennifer’s effectiveness in supporting information seekers in locating COVID-19 information and gaining their trust. We share the key lessons learned and discuss design implications for building expert-sourced and AI-powered information portals, along with the risks and opportunities of misinformation mitigation and beyond.","PeriodicalId":118159,"journal":{"name":"Proceedings of the 28th International Conference on Intelligent User Interfaces","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122432511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}