It is crucial for the police department to automatically determine if suspects are present in the criminal database, sometimes based on the informant's visual memory alone. FaceFetch [15] is a state-of-the-art face retrieval system capable of retrieving an envisioned face from a large-scale database. Although FaceFetch can retrieve images effectively, it lacks sophisticated techniques to produce results efficiently. To this end, we propose SeekSuspect, a faster interactive suspect retrieval framework, which introduces several optimization algorithms to FaceFetch's framework. We train and test our system on a real-world dataset curated in collaboration with a metropolitan police department in India. Results reveal that SeekSuspect beats FaceFetch and can be employed by law enforcement agencies to retrieve suspects.
{"title":"SeekSuspect","authors":"Aayush Jain, Meet Shah, Suraj Pandey, Mansi Agarwal, R. Shah, Yifang Yin","doi":"10.1145/3444685.3446252","DOIUrl":"https://doi.org/10.1145/3444685.3446252","url":null,"abstract":"It is crucial for the police department to automatically determine if suspects are present in the criminal database, sometimes based on the informant's visual memory alone. FaceFetch [15] is a state-of-the-art face retrieval system capable of retrieving an envisioned face from a large-scale database. Although FaceFetch can retrieve images effectively, it lacks sophisticated techniques to produce results efficiently. To this end, we propose SeekSuspect, a faster interactive suspect retrieval framework, which introduces several optimization algorithms to FaceFetch's framework. We train and test our system on a real-world dataset curated in collaboration with a metropolitan police department in India. Results reveal that SeekSuspect beats FaceFetch and can be employed by law enforcement agencies to retrieve suspects.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121045015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Khan, Saifullah Tumrani, Chunlin Jiang, Jie Shao
The field of broadcast sports video analysis requires attention from the research community. Identifying the semantic actions within a broadcast sports video aids better video analysis and highlight generation. One of the key challenges posed to sports video analysis is the availability of relevant datasets. In this paper, we introduce a new dataset SP-2 related to broadcast sports video (available at https://github.com/abdkhanstd/Sports2). SP-2 is a large dataset with several annotations such as sports category (class), playfield scenario, and game action. Along with the introduction of this dataset, we focus on accurately classifying the broadcast sports video category and propose a simple yet elegant method for the classification of broadcast sports video. Broadcast sports video classification plays an important role in sports video analysis as different sports games follow a different set of rules and situations. Our method exploits and explores the true potential of capsule network with dynamic routing, which was introduced recently. First, we extract features using a residual convolutional neural network and build temporal feature sequences. Further, a cascaded capsule network is trained using the extracted feature sequence. Residual inception cascaded capsule network (RICAPS) significantly improves the performance of broadcast sports video classification as deeper features are captured by the cascaded capsule network. We conduct extensive experiments on SP-2 dataset and compare the results with previously proposed methods, and the results show that RICAPS outperforms the previously proposed methods.
{"title":"RICAPS","authors":"A. Khan, Saifullah Tumrani, Chunlin Jiang, Jie Shao","doi":"10.1145/3444685.3446296","DOIUrl":"https://doi.org/10.1145/3444685.3446296","url":null,"abstract":"The field of broadcast sports video analysis requires attention from the research community. Identifying the semantic actions within a broadcast sports video aids better video analysis and highlight generation. One of the key challenges posed to sports video analysis is the availability of relevant datasets. In this paper, we introduce a new dataset SP-2 related to broadcast sports video (available at https://github.com/abdkhanstd/Sports2). SP-2 is a large dataset with several annotations such as sports category (class), playfield scenario, and game action. Along with the introduction of this dataset, we focus on accurately classifying the broadcast sports video category and propose a simple yet elegant method for the classification of broadcast sports video. Broadcast sports video classification plays an important role in sports video analysis as different sports games follow a different set of rules and situations. Our method exploits and explores the true potential of capsule network with dynamic routing, which was introduced recently. First, we extract features using a residual convolutional neural network and build temporal feature sequences. Further, a cascaded capsule network is trained using the extracted feature sequence. Residual inception cascaded capsule network (RICAPS) significantly improves the performance of broadcast sports video classification as deeper features are captured by the cascaded capsule network. We conduct extensive experiments on SP-2 dataset and compare the results with previously proposed methods, and the results show that RICAPS outperforms the previously proposed methods.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123976120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In biology, evolution is the gradual change in the characteristics of a species over several generations. It has two properties: 1) The change is gradual, and 2) long-term changes are relied on short-term changes. Face aging/rejuvenation, which renders younger or elder facial images, follows the principles of evolution. Inspired by this, we propose an Evolutionary GANs (EvoGAN) for face aging/rejuvenation by making each age transformation smooth and decomposing a long-term transformation into several short-terms. Specifically, since short-term facial changes are gradual and relatively easy to render, we first divide the ages into several groups (i.e., chronologically from child, adult to elder). Then, for each pair of adjacent groups, we design two age transforms for face aging and rejuvenation, which are supposed to preserve personal identify information and predict age-specific characteristics. Compared with the mainstream for face aging/rejuvenation, i.e., conditional GANs based methods utilizing one-hot age vector as an age transformation condition, our smooth EvoGAN abandons this condition and can better predict age-specific factors (e.g., the drastic shape and appearance change from an adult to a child). To evaluate our EvoGAN, we construct a challenging dataset FFHQ_Age. Extensive experiments conducted on the dataset demonstrate that our model is able to generate significantly better results than the state-of-the-art methods qualitatively and quantitatively.
{"title":"EvoGAN","authors":"Lianli Gao, Jingqiu Zhang, Jingkuan Song, Hengtao Shen","doi":"10.1145/3444685.3446323","DOIUrl":"https://doi.org/10.1145/3444685.3446323","url":null,"abstract":"In biology, evolution is the gradual change in the characteristics of a species over several generations. It has two properties: 1) The change is gradual, and 2) long-term changes are relied on short-term changes. Face aging/rejuvenation, which renders younger or elder facial images, follows the principles of evolution. Inspired by this, we propose an Evolutionary GANs (EvoGAN) for face aging/rejuvenation by making each age transformation smooth and decomposing a long-term transformation into several short-terms. Specifically, since short-term facial changes are gradual and relatively easy to render, we first divide the ages into several groups (i.e., chronologically from child, adult to elder). Then, for each pair of adjacent groups, we design two age transforms for face aging and rejuvenation, which are supposed to preserve personal identify information and predict age-specific characteristics. Compared with the mainstream for face aging/rejuvenation, i.e., conditional GANs based methods utilizing one-hot age vector as an age transformation condition, our smooth EvoGAN abandons this condition and can better predict age-specific factors (e.g., the drastic shape and appearance change from an adult to a child). To evaluate our EvoGAN, we construct a challenging dataset FFHQ_Age. Extensive experiments conducted on the dataset demonstrate that our model is able to generate significantly better results than the state-of-the-art methods qualitatively and quantitatively.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"202 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121087682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}