Pub Date : 2015-09-20DOI: 10.18495/COMENGAPP.V4I3.155
Lidong Wang, Guanghui Wang
Data mining is a process of extracting hidden, unknown, but potentially useful information from massive data. Big Data has great impacts on scientific discoveries and value creation. This paper introduces methods in data mining and technologies in Big Data. Challenges of data mining and data mining with big data are discussed. Some technology progress of data mining and data mining with big data are also presented.
{"title":"Data Mining Applications in Big Data","authors":"Lidong Wang, Guanghui Wang","doi":"10.18495/COMENGAPP.V4I3.155","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I3.155","url":null,"abstract":"Data mining is a process of extracting hidden, unknown, but potentially useful information from massive data. Big Data has great impacts on scientific discoveries and value creation. This paper introduces methods in data mining and technologies in Big Data. Challenges of data mining and data mining with big data are discussed. Some technology progress of data mining and data mining with big data are also presented.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131531032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-09-20DOI: 10.18495/COMENGAPP.V4I3.151
Prisila Ishabakaki, S. Kaijage
Radio frequency Identification (RFID) is an automatic identification technology that enables tracking of people and objects. Recently, RFID technology has been deployed in hospital environment for patient and equipment tracking, surgical equipment monitoring, medication monitoring and improving health record access in emergency cases. The main advantages RFID technology are to provide resource optimization, quality customers’ care, enhanced accuracy, efficient and effective business processes and healthcare processes. The pharmacy department undergoes challenges such as complex manual work of record keeping and inventory management. The RFID technology can be deployed in pharmacy hospital unit to automate pharmacy process. In this work we present a review on current pharmacy management practices in the case study of public hospital in Tanzania, review on different research work to address the pharmacy challenges and finally proposed a system to overcome the limitation identified in the current systems.
{"title":"RFID-based Drug Management and Monitoring System, Case of Public Hospitals in Tanzania, A Review Paper","authors":"Prisila Ishabakaki, S. Kaijage","doi":"10.18495/COMENGAPP.V4I3.151","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I3.151","url":null,"abstract":"Radio frequency Identification (RFID) is an automatic identification technology that enables tracking of people and objects. Recently, RFID technology has been deployed in hospital environment for patient and equipment tracking, surgical equipment monitoring, medication monitoring and improving health record access in emergency cases. The main advantages RFID technology are to provide resource optimization, quality customers’ care, enhanced accuracy, efficient and effective business processes and healthcare processes. The pharmacy department undergoes challenges such as complex manual work of record keeping and inventory management. The RFID technology can be deployed in pharmacy hospital unit to automate pharmacy process. In this work we present a review on current pharmacy management practices in the case study of public hospital in Tanzania, review on different research work to address the pharmacy challenges and finally proposed a system to overcome the limitation identified in the current systems.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121560772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-09-20DOI: 10.18495/COMENGAPP.V4I3.141
Salih Ozsoy, Gökhan Gümüş, Savriddin Khalilov
In this study, Data Mining, one of the latest technologies of the Information Systems, was introduced and Classification a Data Mining method and the Classification algorithms were discussed. A classification was applied by using C4.5 decision tree algorithm on a dataset about Labor Relations from http://archive.ics.uci.edu/ml/datasets.html . Finally, C4.5 algorithm was compared to some other decision tree algorithms. C4.5 was the one of the successful classifier.
{"title":"C4.5 Versus Other Decision Trees: A Review","authors":"Salih Ozsoy, Gökhan Gümüş, Savriddin Khalilov","doi":"10.18495/COMENGAPP.V4I3.141","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I3.141","url":null,"abstract":"In this study, Data Mining, one of the latest technologies of the Information Systems, was introduced and Classification a Data Mining method and the Classification algorithms were discussed. A classification was applied by using C4.5 decision tree algorithm on a dataset about Labor Relations from http://archive.ics.uci.edu/ml/datasets.html . Finally, C4.5 algorithm was compared to some other decision tree algorithms. C4.5 was the one of the successful classifier.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131200630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-26DOI: 10.18495/COMENGAPP.V4I2.154
Saparudin Saparudin, G. Sulong
An accurate estimation of fingerprint orientation fields is an important step in the fingerprint classification process. Gradient-based approaches are often used for estimating orientation fields of ridge structures but this method is susceptible to noise. Enhancement of fingerprint images improves the ridge-valley structure and increases the number of correct features thereby conducing the overall performance of the classification process. In this paper, we propose an algorithm to improve ridge orientation textures using gradient magnitude. That algorithm has four steps; firstly, normalization of fingerprint image, secondly, foreground extraction, thirdly, noise areas identification and marking using gradient coherence and finally, enhancement of grey level. We have used standard fingerprint database NIST-DB14 for testing of proposed algorithm to verify the degree of efficiency of algorithm. The experiment results suggest that our enhanced algorithm achieves visibly better noise resistance with other methods.
{"title":"Fingerprint Enhancement Algorithm Based-on Gradient Magnitude for the Estimation of Orientation Fields","authors":"Saparudin Saparudin, G. Sulong","doi":"10.18495/COMENGAPP.V4I2.154","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I2.154","url":null,"abstract":"An accurate estimation of fingerprint orientation fields is an important step in the fingerprint classification process. Gradient-based approaches are often used for estimating orientation fields of ridge structures but this method is susceptible to noise. Enhancement of fingerprint images improves the ridge-valley structure and increases the number of correct features thereby conducing the overall performance of the classification process. In this paper, we propose an algorithm to improve ridge orientation textures using gradient magnitude. That algorithm has four steps; firstly, normalization of fingerprint image, secondly, foreground extraction, thirdly, noise areas identification and marking using gradient coherence and finally, enhancement of grey level. We have used standard fingerprint database NIST-DB14 for testing of proposed algorithm to verify the degree of efficiency of algorithm. The experiment results suggest that our enhanced algorithm achieves visibly better noise resistance with other methods.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125800807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-20DOI: 10.18495/COMENGAPP.V4I2.125
Nima Farajian, Hossein Ebrahim pour-komleh
Cloud Computing is a service oriented architecture in which every computing resources is delivered to users as a service. Nowadays market-oriented approach has attracted a lot of researchers because of its great ability to manage Cloud services efficiently and dynamically. Each service consists of various resources which all should be allocated to utilize the service. In this paper a parallel continuous double auction method for efficient service allocation in cloud computing is presented in which by using a novel parallel sorting algorithm at auctioneer, enables consumers to order various resources as workflow for utilizing requested services efficiently. Also in the presented method consumers and providers make bid and offer prices based on time factor. Experimental results show that proposed method is efficient in success rate, resource utilization and average connection time and also overall performance of system is improved by parallel approach.
{"title":"Parallel Continuous Double Auction for Service Allocation in Cloud Computing","authors":"Nima Farajian, Hossein Ebrahim pour-komleh","doi":"10.18495/COMENGAPP.V4I2.125","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I2.125","url":null,"abstract":"Cloud Computing is a service oriented architecture in which every computing resources is delivered to users as a service. Nowadays market-oriented approach has attracted a lot of researchers because of its great ability to manage Cloud services efficiently and dynamically. Each service consists of various resources which all should be allocated to utilize the service. In this paper a parallel continuous double auction method for efficient service allocation in cloud computing is presented in which by using a novel parallel sorting algorithm at auctioneer, enables consumers to order various resources as workflow for utilizing requested services efficiently. Also in the presented method consumers and providers make bid and offer prices based on time factor. Experimental results show that proposed method is efficient in success rate, resource utilization and average connection time and also overall performance of system is improved by parallel approach.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129472446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-20DOI: 10.18495/COMENGAPP.V4I2.137
Seyed Kazem Kazeminezhad, S. Babaie, Amir Shiri
Wireless sensor networks (WSNs) of spatially distributed autonomous sensors are used to monitor physical or environmental conditions such as temperature, sound, pressure, etc. They are also used to cooperatively pass the collected data through the network to a main location. Due to the application of wireless sensor networks as a monitoring device in the real world, the physical time of the occurrence of events is important. Since WSNs have particular constraints and limitations, synchronizing the physical times for these networks is considered to be a complex task. Although many algorithms have been proposed for synchronizing time in the network, there are two main error factors in all the proposed algorithms. The first factor is the clock drift which might be caused by the influence of different environmental factors such as temperature, ambient temperature, humidity, it might be generated on crystal oscillator which is inevitable The second error factor is indeterminacy which is attributed to the existence of non-deterministic delays in sending and receiving messages between sensor nodes. These two factors together reduce the precision of synchronization algorithms. In this paper, the researchers proposed a new approach for dealing with the above-mentioned two problems and achieving better synchronization. The proposed approach is a combination of flooding time synchronization protocol (FTSP) and reference broadcast synchronization (RBS).This approach is intended to increase synchronization accuracy and network lifetime by reducing the number of synchronization messages sent between nodes and eliminating the most of non-deterministic errors in sending messages. The results of simulations conducted in the study indicated that the proposed approach is significantly more efficient than the FTSP and RBS methods in terms of parameters such as accurate synchronization, amount of sent packets and power consumption.
{"title":"Proposing a novel method for clock synchronization in WSN","authors":"Seyed Kazem Kazeminezhad, S. Babaie, Amir Shiri","doi":"10.18495/COMENGAPP.V4I2.137","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I2.137","url":null,"abstract":"Wireless sensor networks (WSNs) of spatially distributed autonomous sensors are used to monitor physical or environmental conditions such as temperature, sound, pressure, etc. They are also used to cooperatively pass the collected data through the network to a main location. Due to the application of wireless sensor networks as a monitoring device in the real world, the physical time of the occurrence of events is important. Since WSNs have particular constraints and limitations, synchronizing the physical times for these networks is considered to be a complex task. Although many algorithms have been proposed for synchronizing time in the network, there are two main error factors in all the proposed algorithms. The first factor is the clock drift which might be caused by the influence of different environmental factors such as temperature, ambient temperature, humidity, it might be generated on crystal oscillator which is inevitable The second error factor is indeterminacy which is attributed to the existence of non-deterministic delays in sending and receiving messages between sensor nodes. These two factors together reduce the precision of synchronization algorithms. In this paper, the researchers proposed a new approach for dealing with the above-mentioned two problems and achieving better synchronization. The proposed approach is a combination of flooding time synchronization protocol (FTSP) and reference broadcast synchronization (RBS).This approach is intended to increase synchronization accuracy and network lifetime by reducing the number of synchronization messages sent between nodes and eliminating the most of non-deterministic errors in sending messages. The results of simulations conducted in the study indicated that the proposed approach is significantly more efficient than the FTSP and RBS methods in terms of parameters such as accurate synchronization, amount of sent packets and power consumption.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122102270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-20DOI: 10.18495/COMENGAPP.V4I2.134
Amin Rahimi, L. M. Khanli, S. Pashazadeh
The increasing energy consumption has become a major concern in cloud computing due to its cost and environmental damage. Virtual Machine placement algorithms have been proven to be very effective in increasing energy efficiency and thus reducing the costs. In this paper we have introduced a new priority routing VM placement algorithm and have compared it with PABFD (power-aware best fit decreasing) on CoMon dataset using CloudSim for simulation. Our experiments show the superiority of our new method with regards to energy consumption and level of SLA violations measures and prove that priority routing VM placement algorithm can be effectively utilized to increase energy efficiency in the clouds.
{"title":"Energy efficient virtual machine placement algorithm with balanced resource utilization based on priority of resources","authors":"Amin Rahimi, L. M. Khanli, S. Pashazadeh","doi":"10.18495/COMENGAPP.V4I2.134","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I2.134","url":null,"abstract":"The increasing energy consumption has become a major concern in cloud computing due to its cost and environmental damage. Virtual Machine placement algorithms have been proven to be very effective in increasing energy efficiency and thus reducing the costs. In this paper we have introduced a new priority routing VM placement algorithm and have compared it with PABFD (power-aware best fit decreasing) on CoMon dataset using CloudSim for simulation. Our experiments show the superiority of our new method with regards to energy consumption and level of SLA violations measures and prove that priority routing VM placement algorithm can be effectively utilized to increase energy efficiency in the clouds.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131404208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-06-18DOI: 10.18495/COMENGAPP.V4I2.108
M. Javidi
Intrusion detection is an emerging area of research in the computer security and net-works with the growing usage of internet in everyday life. Most intrusion detection systems (IDSs) mostly use a single classifier algorithm to classify the network traffic data as normal behavior or anomalous. However, these single classifier systems fail to provide the best possible attack detection rate with low false alarm rate. In this paper,we propose to use a hybrid intelligent approach using a combination of classifiers in order to make the decision intelligently, so that the overall performance of the resul-tant model is enhanced. The general procedure in this is to follow the supervised or un-supervised data filtering with classifier or cluster first on the whole training dataset and then the output are applied to another classifier to classify the data. In this re- search, we applied Neural Network with Supervised and Unsupervised Learning in order to implement the intrusion detection system. Moreover, in this project, we used the method of Parallelization with real time application of the system processors to detect the systems intrusions.Using this method enhanced the speed of the intrusion detection. In order to train and test the neural network, NSLKDD database was used. Creating some different intrusion detection systems, each of which considered as a single agent, we precisely proceeded with the signature-based intrusion detection of the network.In the proposed design, the attacks have been classified into 4 groups and each group is detected by an Agent equipped with intrusion detection system (IDS).These agents act independently and report the intrusion or non-intrusion in the system; the results achieved by the agents will be studied in the Final Analyst and at last the analyst reports that whether there has been an intrusion in the system or not. Keywords: Intrusion Detection, Multi-layer Perceptron, False Positives, Signature- based intrusion detection, Decision tree, Nave Bayes Classifier
{"title":"Network Attacks Detection by Hierarchical Neural Network","authors":"M. Javidi","doi":"10.18495/COMENGAPP.V4I2.108","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I2.108","url":null,"abstract":"Intrusion detection is an emerging area of research in the computer security and net-works with the growing usage of internet in everyday life. Most intrusion detection systems (IDSs) mostly use a single classifier algorithm to classify the network traffic data as normal behavior or anomalous. However, these single classifier systems fail to provide the best possible attack detection rate with low false alarm rate. In this paper,we propose to use a hybrid intelligent approach using a combination of classifiers in order to make the decision intelligently, so that the overall performance of the resul-tant model is enhanced. The general procedure in this is to follow the supervised or un-supervised data filtering with classifier or cluster first on the whole training dataset and then the output are applied to another classifier to classify the data. In this re- search, we applied Neural Network with Supervised and Unsupervised Learning in order to implement the intrusion detection system. Moreover, in this project, we used the method of Parallelization with real time application of the system processors to detect the systems intrusions.Using this method enhanced the speed of the intrusion detection. In order to train and test the neural network, NSLKDD database was used. Creating some different intrusion detection systems, each of which considered as a single agent, we precisely proceeded with the signature-based intrusion detection of the network.In the proposed design, the attacks have been classified into 4 groups and each group is detected by an Agent equipped with intrusion detection system (IDS).These agents act independently and report the intrusion or non-intrusion in the system; the results achieved by the agents will be studied in the Final Analyst and at last the analyst reports that whether there has been an intrusion in the system or not. Keywords: Intrusion Detection, Multi-layer Perceptron, False Positives, Signature- based intrusion detection, Decision tree, Nave Bayes Classifier","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116207401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-02-18DOI: 10.18495/COMENGAPP.V4I1.116
A. Sasi, P. Santhiya
Mobile communication system is designed to provide reliable communication with more number of services and with low cost among multiple users. Due to limited frequency spectrum and resources, mobile communication requires more development in case of both establishing communication and maintenance in service quality. To fulfill these requirements, 5G mobile communication is being developed to provide high quality reliable communication and quality of service, by using beamforming model. As the trend of next generation mobile communication, 3D directional transmission is considered to give enhanced coverage model and reusability of frequency. Phase arrayed antenna is used in this beamforming model to give orthogonal communication among users. In this paper, a new modeling of beamforming is applied to give a new dimension by considering altitude with potential field strategy. Here phase arrayed antenna is replaced by 3-D smart antenna to improve the performance of 5G mobile communications. Performance evaluation outcomes 3D beamforming leads 2D beamforming in terms of communication delay, and uplink downlink throughput.
{"title":"Dynamic Location Modelling in 3D Beamforming for 5G Mobile Communications","authors":"A. Sasi, P. Santhiya","doi":"10.18495/COMENGAPP.V4I1.116","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I1.116","url":null,"abstract":"Mobile communication system is designed to provide reliable communication with more number of services and with low cost among multiple users. Due to limited frequency spectrum and resources, mobile communication requires more development in case of both establishing communication and maintenance in service quality. To fulfill these requirements, 5G mobile communication is being developed to provide high quality reliable communication and quality of service, by using beamforming model. As the trend of next generation mobile communication, 3D directional transmission is considered to give enhanced coverage model and reusability of frequency. Phase arrayed antenna is used in this beamforming model to give orthogonal communication among users. In this paper, a new modeling of beamforming is applied to give a new dimension by considering altitude with potential field strategy. Here phase arrayed antenna is replaced by 3-D smart antenna to improve the performance of 5G mobile communications. Performance evaluation outcomes 3D beamforming leads 2D beamforming in terms of communication delay, and uplink downlink throughput.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123924924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-02-18DOI: 10.18495/COMENGAPP.V4I1.131
V. Mohanan, I. Aldmour
In network selection problem (NSP), there are now two schools of thought. There are those who think using QoE (Quality of Experience) is the best yardstick to measure the suitability of a Candidate Network (CN) to handover to. On the other hand, Quality of Service (QoS) is also advocated as the solution for network selection problems. In this article, a comprehensive framework that supports effective and efficient network selection is presented. The framework attempts to provide a holistic solution to network selection problem that is achieved by combining both of the QoS and QoE measures. Using this hybrid solution the best qualities in both methods are combined to overcome issues of the network selection problem According to ITU-R (International Telecommunications Union – Radio Standardization Sector), a 4G network is defined as having peak data rates of 100Mb/s for mobile nodes with speed up to 250 km/hr and 1Gb/s for mobile nodes moving at pedestrian speed. Based on this definition, it is safe to say that mobile nodes that can go from pedestrian speed to speed of up to 250 km/hr will be the norm in future. This indicates that the MN’s mobility will be highly dynamic. In particular, this article addresses the issue of network selection for high speed Mobile Nodes (MN) in 4G networks. The framework presented in this article also discusses how the QoS value collected from CNs can be fine-tuned to better reflect an MN’s current mobility scenario.
{"title":"Network Selection Problems - QoE vs QoS Who is the Winner?","authors":"V. Mohanan, I. Aldmour","doi":"10.18495/COMENGAPP.V4I1.131","DOIUrl":"https://doi.org/10.18495/COMENGAPP.V4I1.131","url":null,"abstract":"In network selection problem (NSP), there are now two schools of thought. There are those who think using QoE (Quality of Experience) is the best yardstick to measure the suitability of a Candidate Network (CN) to handover to. On the other hand, Quality of Service (QoS) is also advocated as the solution for network selection problems. In this article, a comprehensive framework that supports effective and efficient network selection is presented. The framework attempts to provide a holistic solution to network selection problem that is achieved by combining both of the QoS and QoE measures. Using this hybrid solution the best qualities in both methods are combined to overcome issues of the network selection problem According to ITU-R (International Telecommunications Union – Radio Standardization Sector), a 4G network is defined as having peak data rates of 100Mb/s for mobile nodes with speed up to 250 km/hr and 1Gb/s for mobile nodes moving at pedestrian speed. Based on this definition, it is safe to say that mobile nodes that can go from pedestrian speed to speed of up to 250 km/hr will be the norm in future. This indicates that the MN’s mobility will be highly dynamic. In particular, this article addresses the issue of network selection for high speed Mobile Nodes (MN) in 4G networks. The framework presented in this article also discusses how the QoS value collected from CNs can be fine-tuned to better reflect an MN’s current mobility scenario.","PeriodicalId":120500,"journal":{"name":"Computer Engineering and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127608154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}