Pub Date : 2026-02-05DOI: 10.1007/s00330-026-12359-0
Thomas Lehnen, Doris Polenske, Barbara Daria Wichtmann, Nils Christian Lehnen
Objective: Despite advances in mammography screening, some cancers remain undetected, prompting the evaluation of artificial intelligence (AI) as an independent third reader to reduce missed cancers.
Materials and methods: In this prospective study, women eligible for the German Mammography Screening were enrolled at six sites belonging to one screening unit between August 2023 and February 2024. Each mammogram underwent double reading and was independently analyzed using Transpara, an AI-based detection software. Cases rated BI-RADS 4 or 5 by any reader or given a risk score of 10 by the software were reviewed in a consensus conference. Endpoints included: primary-cancer detection rate (CDR) and positive predictive values (PPV); secondary-analysis of cancers detected only by the software or missed by it.
Results: 15,356 female participants (mean age 58.6 ± 5.6 years) were included. Overall, 115 breast cancers were detected (CDR triple reading: 0.75%; 95% CI: 0.62%, 0.90%). CDR of double reading and standalone AI was 0.68% (95% CI: 0.56, 0.83%) and 0.66% (95% CI: 0.54, 0.81%). Using Transpara as a third reader increased the detection rate by 9.5% (95% CI: 4.7%, 16.8%) compared to double reading (p = 0.002). The PPV for consensus-conference referrals was 5.1% (95% CI: 4.2%, 6.1%), lower than double reading 7.5%(95% CI: 6.2%, 9.0%; p < 0.001). For recalled cases, the PPV was 13.7%(95% CI: 11.5%, 16.2%) versus 15.2% (95% CI: 12.6%, 18.1%; p < 0.001). All nine invasive cancers detected solely by AI were Luminal-A-like cancers. Among 13 cancers missed by the software, four were triple-negative.
Conclusion: Adding Transpara as an independent third reader improved detection rates, mainly by identifying additional Luminal-A-like cancers, and increased the workload to the consensus conference and the number of recalled cases.
Key points: Question Does the integration of AI software as an independent third reader improve cancer detection rates in mammography screening without increasing false-positive findings and recall rates? Findings AI as an independent third reader increased cancer detection by 9.5%, mainly identifying Luminal-A-like cancers, significantly decreasing the positive predictive values of cases referred to at the consensus conference and increasing the number of recalled cases. Clinical relevance Using AI as an independent third reader enhances mammographic cancer detection by offering radiologists complementary sensitivity, especially for low-risk lesions. However, maintaining human readers is essential, as AI may miss aggressive subtypes like triple-negative breast cancers.
{"title":"AI software as a third reader in breast cancer screening-a prospective diagnostic observational study.","authors":"Thomas Lehnen, Doris Polenske, Barbara Daria Wichtmann, Nils Christian Lehnen","doi":"10.1007/s00330-026-12359-0","DOIUrl":"https://doi.org/10.1007/s00330-026-12359-0","url":null,"abstract":"<p><strong>Objective: </strong>Despite advances in mammography screening, some cancers remain undetected, prompting the evaluation of artificial intelligence (AI) as an independent third reader to reduce missed cancers.</p><p><strong>Materials and methods: </strong>In this prospective study, women eligible for the German Mammography Screening were enrolled at six sites belonging to one screening unit between August 2023 and February 2024. Each mammogram underwent double reading and was independently analyzed using Transpara, an AI-based detection software. Cases rated BI-RADS 4 or 5 by any reader or given a risk score of 10 by the software were reviewed in a consensus conference. Endpoints included: primary-cancer detection rate (CDR) and positive predictive values (PPV); secondary-analysis of cancers detected only by the software or missed by it.</p><p><strong>Results: </strong>15,356 female participants (mean age 58.6 ± 5.6 years) were included. Overall, 115 breast cancers were detected (CDR triple reading: 0.75%; 95% CI: 0.62%, 0.90%). CDR of double reading and standalone AI was 0.68% (95% CI: 0.56, 0.83%) and 0.66% (95% CI: 0.54, 0.81%). Using Transpara as a third reader increased the detection rate by 9.5% (95% CI: 4.7%, 16.8%) compared to double reading (p = 0.002). The PPV for consensus-conference referrals was 5.1% (95% CI: 4.2%, 6.1%), lower than double reading 7.5%(95% CI: 6.2%, 9.0%; p < 0.001). For recalled cases, the PPV was 13.7%(95% CI: 11.5%, 16.2%) versus 15.2% (95% CI: 12.6%, 18.1%; p < 0.001). All nine invasive cancers detected solely by AI were Luminal-A-like cancers. Among 13 cancers missed by the software, four were triple-negative.</p><p><strong>Conclusion: </strong>Adding Transpara as an independent third reader improved detection rates, mainly by identifying additional Luminal-A-like cancers, and increased the workload to the consensus conference and the number of recalled cases.</p><p><strong>Key points: </strong>Question Does the integration of AI software as an independent third reader improve cancer detection rates in mammography screening without increasing false-positive findings and recall rates? Findings AI as an independent third reader increased cancer detection by 9.5%, mainly identifying Luminal-A-like cancers, significantly decreasing the positive predictive values of cases referred to at the consensus conference and increasing the number of recalled cases. Clinical relevance Using AI as an independent third reader enhances mammographic cancer detection by offering radiologists complementary sensitivity, especially for low-risk lesions. However, maintaining human readers is essential, as AI may miss aggressive subtypes like triple-negative breast cancers.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146124421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-04DOI: 10.1007/s00330-026-12351-8
Guihan Lin, Weiyue Chen, Weiming Hu, Jianhua Wu, Lei Xu, Yongjun Chen, Ting Zhao, Jinhong Sun, Min Xu, Chenying Lu, Shuiwei Xia, Minjiang Chen, Jiansong Ji, Weiqian Chen
Objectives: Early recognition of individuals at elevated risk for new ipsilateral ischemic lesions (NIILs) after carotid artery stenting (CAS) is vital for planning effective preventive interventions. The aim of this study was to develop a deep learning (DL) radiomics model to predict NIILs post-CAS from dual-energy CT (DECT) images.
Materials and methods: This study retrospectively enrolled patients from three centers. Carotid plaques were delineated on multiparametric DECT images. A combined model integrating clinical-radiological, handcrafted radiomics (HCR), and DL features was constructed using a support vector machine algorithm to predict NIILs. The model's performance was assessed through the area under the receiver operating characteristic curve (AUC). To improve the interpretability of the model, SHapley Additive exPlanations (SHAP) analysis was applied.
Results: This study involved 336 patients divided into the training (n = 135), internal validation (n = 58), and external test (n = 143) cohorts. NIILs were present in 38.5%, 37.9%, and 39.9% of the subjects, respectively. Symptomatic events and plaque ulceration were identified as independent risk factors for NIILs. The combined model incorporating 2 clinical-radiological risk factors, 9 HCR features, and 15 DL features demonstrated satisfactory performance in predicting NIILs, with AUCs of 0.908, 0.842, and 0.856 in the three cohorts, respectively. The predictions of the combined model were explained both locally and globally by SHAP analysis.
Conclusion: The combined model demonstrated high accuracy in identifying patients at elevated risk for NIILs post-CAS and can serve as an interpretable tool for optimizing treatment strategies.
Key points: Question Early prediction of new ipsilateral ischemic lesions (NIILs) after carotid artery stenting (CAS) is crucial for timely interventions, but no effective, interpretable predictive method exists. Findings The combined model incorporating deep learning radiomics features extracted from multiparametric dual-energy CT images and clinical-radiological features demonstrated high accuracy in predicting NIILs after CAS. Clinical relevance The combined model offers an interpretable tool for identifying patients at high risk for NIILs post-CAS, potentially improving personalized treatment strategies and patient outcomes by enabling targeted preventive care.
{"title":"Development and interpretation of a dual-energy CT-based deep learning radiomics model for predicting new cerebral ischemic lesions after carotid artery stenting: a multicenter study.","authors":"Guihan Lin, Weiyue Chen, Weiming Hu, Jianhua Wu, Lei Xu, Yongjun Chen, Ting Zhao, Jinhong Sun, Min Xu, Chenying Lu, Shuiwei Xia, Minjiang Chen, Jiansong Ji, Weiqian Chen","doi":"10.1007/s00330-026-12351-8","DOIUrl":"https://doi.org/10.1007/s00330-026-12351-8","url":null,"abstract":"<p><strong>Objectives: </strong>Early recognition of individuals at elevated risk for new ipsilateral ischemic lesions (NIILs) after carotid artery stenting (CAS) is vital for planning effective preventive interventions. The aim of this study was to develop a deep learning (DL) radiomics model to predict NIILs post-CAS from dual-energy CT (DECT) images.</p><p><strong>Materials and methods: </strong>This study retrospectively enrolled patients from three centers. Carotid plaques were delineated on multiparametric DECT images. A combined model integrating clinical-radiological, handcrafted radiomics (HCR), and DL features was constructed using a support vector machine algorithm to predict NIILs. The model's performance was assessed through the area under the receiver operating characteristic curve (AUC). To improve the interpretability of the model, SHapley Additive exPlanations (SHAP) analysis was applied.</p><p><strong>Results: </strong>This study involved 336 patients divided into the training (n = 135), internal validation (n = 58), and external test (n = 143) cohorts. NIILs were present in 38.5%, 37.9%, and 39.9% of the subjects, respectively. Symptomatic events and plaque ulceration were identified as independent risk factors for NIILs. The combined model incorporating 2 clinical-radiological risk factors, 9 HCR features, and 15 DL features demonstrated satisfactory performance in predicting NIILs, with AUCs of 0.908, 0.842, and 0.856 in the three cohorts, respectively. The predictions of the combined model were explained both locally and globally by SHAP analysis.</p><p><strong>Conclusion: </strong>The combined model demonstrated high accuracy in identifying patients at elevated risk for NIILs post-CAS and can serve as an interpretable tool for optimizing treatment strategies.</p><p><strong>Key points: </strong>Question Early prediction of new ipsilateral ischemic lesions (NIILs) after carotid artery stenting (CAS) is crucial for timely interventions, but no effective, interpretable predictive method exists. Findings The combined model incorporating deep learning radiomics features extracted from multiparametric dual-energy CT images and clinical-radiological features demonstrated high accuracy in predicting NIILs after CAS. Clinical relevance The combined model offers an interpretable tool for identifying patients at high risk for NIILs post-CAS, potentially improving personalized treatment strategies and patient outcomes by enabling targeted preventive care.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146118359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-04DOI: 10.1007/s00330-025-12216-6
Goswin O Croes, Ingrid M Nijholt, Martijn F Boomsma, Gitta Bleeker, Marcel J W Greuter, Cécile R L P N Jeukens, Carola van Pul, Jenny E Siegersma, Geert J Streekstra, Alie Vegter, Alida J Dam-Vervloet
{"title":"Correction: Diagnostic reference level curves for paediatric fluoroscopic imaging in the Netherlands.","authors":"Goswin O Croes, Ingrid M Nijholt, Martijn F Boomsma, Gitta Bleeker, Marcel J W Greuter, Cécile R L P N Jeukens, Carola van Pul, Jenny E Siegersma, Geert J Streekstra, Alie Vegter, Alida J Dam-Vervloet","doi":"10.1007/s00330-025-12216-6","DOIUrl":"https://doi.org/10.1007/s00330-025-12216-6","url":null,"abstract":"","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146118396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-04DOI: 10.1007/s00330-026-12332-x
Ankita Ghatak, Isabella Newbury-Chaet, Sarah F Mercaldo, John K Chin, Madeleine A Halle, Eric L'Italien, Ashley L MacDonald, Alex S Schultz, Karen Buch, John Conklin, William A Mehan, Stuart Pomerantz, Sandra Rincon, Bernardo C Bizzo, James M Hillis
Objective: Obstructive hydrocephalus is a critical radiographic finding requiring emergent treatment. Its identification on head CT by an AI model could facilitate sooner life-saving interventions, although there are common co-occurring findings, including intracranial hemorrhage, that can confound this interpretation. This external validation assessed the accuracy of an AI model at identifying obstructive hydrocephalus, including in the presence or absence of other findings.
Materials and methods: This retrospective cohort included 177 thin (≤ 1.5 mm) series and 194 thick (> 1.5 and ≤ 5 mm) series from 200 non-contrast head CT cases. These cases were obtained from patients aged ≥ 18 years at 5 hospitals in the United States. Each case was interpreted independently by up to three neuroradiologists. Each series was then interpreted by the AI model.
Results: The AI model performed with an area under the curve of 0.988 (95% confidence interval (CI): 0.971-0.998) on thin series and 0.986 (95% CI: 0.969-0.997) on thick series. These results were broadly maintained in subgroups for the presence or absence of intracranial hemorrhage, parenchymal abnormality, and ventricular drain, and across demographic and scanner manufacturer subgroups.
Conclusions: The AI model accurately identified obstructive hydrocephalus in this dataset. Its performance in subgroup analyses reflected its robustness.
Key points: Question Can an artificial intelligence model accurately identify obstructive hydrocephalus on head computed tomography, including in the presence or absence of common co-occurring imaging findings? Findings This model accurately identified obstructive hydrocephalus on thin and thick series, including in the presence or absence of intracranial hemorrhage, parenchymal abnormality, and ventricular drain. Clinical relevance This model could assist with triaging abnormal cases, enabling earlier identification and management of obstructive hydrocephalus. Its maintained performance with or without co-occurring findings suggests it specifically identifies obstructive hydrocephalus rather than these findings.
{"title":"Evaluation of an artificial intelligence model for the identification of obstructive hydrocephalus on computed tomography of the head.","authors":"Ankita Ghatak, Isabella Newbury-Chaet, Sarah F Mercaldo, John K Chin, Madeleine A Halle, Eric L'Italien, Ashley L MacDonald, Alex S Schultz, Karen Buch, John Conklin, William A Mehan, Stuart Pomerantz, Sandra Rincon, Bernardo C Bizzo, James M Hillis","doi":"10.1007/s00330-026-12332-x","DOIUrl":"https://doi.org/10.1007/s00330-026-12332-x","url":null,"abstract":"<p><strong>Objective: </strong>Obstructive hydrocephalus is a critical radiographic finding requiring emergent treatment. Its identification on head CT by an AI model could facilitate sooner life-saving interventions, although there are common co-occurring findings, including intracranial hemorrhage, that can confound this interpretation. This external validation assessed the accuracy of an AI model at identifying obstructive hydrocephalus, including in the presence or absence of other findings.</p><p><strong>Materials and methods: </strong>This retrospective cohort included 177 thin (≤ 1.5 mm) series and 194 thick (> 1.5 and ≤ 5 mm) series from 200 non-contrast head CT cases. These cases were obtained from patients aged ≥ 18 years at 5 hospitals in the United States. Each case was interpreted independently by up to three neuroradiologists. Each series was then interpreted by the AI model.</p><p><strong>Results: </strong>The AI model performed with an area under the curve of 0.988 (95% confidence interval (CI): 0.971-0.998) on thin series and 0.986 (95% CI: 0.969-0.997) on thick series. These results were broadly maintained in subgroups for the presence or absence of intracranial hemorrhage, parenchymal abnormality, and ventricular drain, and across demographic and scanner manufacturer subgroups.</p><p><strong>Conclusions: </strong>The AI model accurately identified obstructive hydrocephalus in this dataset. Its performance in subgroup analyses reflected its robustness.</p><p><strong>Key points: </strong>Question Can an artificial intelligence model accurately identify obstructive hydrocephalus on head computed tomography, including in the presence or absence of common co-occurring imaging findings? Findings This model accurately identified obstructive hydrocephalus on thin and thick series, including in the presence or absence of intracranial hemorrhage, parenchymal abnormality, and ventricular drain. Clinical relevance This model could assist with triaging abnormal cases, enabling earlier identification and management of obstructive hydrocephalus. Its maintained performance with or without co-occurring findings suggests it specifically identifies obstructive hydrocephalus rather than these findings.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146118392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-04DOI: 10.1007/s00330-026-12337-6
Xuping Zhang, Peipei Zhang
{"title":"Letter to the Editor: GPT-4o in radiology-a review of label extraction accuracy and clinical applications in upper extremity imaging.","authors":"Xuping Zhang, Peipei Zhang","doi":"10.1007/s00330-026-12337-6","DOIUrl":"https://doi.org/10.1007/s00330-026-12337-6","url":null,"abstract":"","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146118401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-04DOI: 10.1007/s00330-026-12350-9
Hanna Kreutzer, Sven Nebelung
{"title":"Reply to the Letter to the Editor: GPT-4o in radiology-a review of label extraction accuracy and clinical applications in upper extremity imaging.","authors":"Hanna Kreutzer, Sven Nebelung","doi":"10.1007/s00330-026-12350-9","DOIUrl":"https://doi.org/10.1007/s00330-026-12350-9","url":null,"abstract":"","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146118347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-01DOI: 10.1007/s00330-025-12164-1
Gwenaël Pagé, Philippe Garteiser, Valérie Paradis, Riccardo Sartoris, Estelle Marcault, Ralph Sinkus, Valérie Vilgrain, Bernard E Van Beers
Objectives: Microvascular invasion is a strong prognostic factor in hepatocellular carcinomas. The aim of our study was to assess the diagnostic value of mechanical parameters measured with compression MR elastography to detect microvascular invasion in hepatocellular carcinomas.
Materials and methods: In this prospective preoperative MR elastographic study, consecutive patients with hepatocellular carcinomas, scheduled for tumor surgical resection, were included. The tumor parameters assessed with MR elastography were the basal visco-elastic parameters (storage modulus, loss modulus, and phase angle, reflecting elasticity, viscosity and visco-elastic ratio) during expiration and inspiration, and the tumor stiffening slope during compression induced by respiration, reflecting non-linear elasticity. Microvascular invasion was determined with histopathological examination of resected tumors. Diagnostic performance of MR elastography was assessed with area under the receiver operating curve (AUC) analysis.
Results: The final study group consisted of 53 patients with complete surgical resection, MR elastography and histological data, including 31 patients with microvascular invasion. Compression stiffening slope and storage modulus difference between inspiration and expiration were significantly higher in hepatocellular carcinomas without than with microvascular invasion (p < 0.001 and p = 0.03, respectively). Among clinical, morphological and biomechanical imaging features, the MR elastography compression stiffening slope (p = 0.004) and histological WHO differentiation (p = 0.02-0.03) were the only independent determinants of hepatocellular carcinoma microvascular invasion. In contrast to basal biomechanical parameters, the compression stiffening slope had high diagnostic performance for detecting microvascular invasion (AUCcompression stiffening = 0.83, p < 0.001).
Conclusion: Our results suggest that the compression stiffening slope at MR elastography is useful to diagnose microvascular invasion in patients with hepatocellular carcinomas.
Key points: Question Because non-invasive imaging markers of hepatocellular microvascular invasion are lacking, the development of new MRI markers is advisable. Findings In our MR elastography study, respiration-induced tumor stiffening, in contrast to basal visco-elastic parameters, had good accuracy for diagnosing hepatocellular carcinoma microvascular invasion. Clinical relevance Our results in patients with hepatocellular carcinomas suggest that the non-invasive measurement of MR elastography tumor compression stiffening slope may assess microvascular invasion.
目的:微血管浸润是影响肝细胞癌预后的重要因素。我们研究的目的是评估用压缩磁共振弹性成像测量的力学参数在检测肝细胞癌微血管侵犯中的诊断价值。材料和方法:在这项前瞻性术前MR弹性成像研究中,纳入了计划进行肿瘤手术切除的连续肝细胞癌患者。磁共振弹性成像评估的肿瘤参数为呼气和吸气时的基础粘弹性参数(储存模量、损失模量和相位角,反映弹性、粘度和粘弹性比),呼吸引起的压缩过程中肿瘤的硬化斜率,反映非线性弹性。通过切除肿瘤的组织病理学检查确定微血管浸润。用受者工作曲线下面积(AUC)分析评估MR弹性成像的诊断性能。结果:最终研究组包括53例手术完全切除、MR弹性成像和组织学资料的患者,其中31例微血管侵犯。肝细胞癌无微血管浸润时,压缩硬化斜率和吸入、呼气时存储模量差异显著高于无微血管浸润时(p < 0.83, p >)。结论:磁共振弹性成像压缩硬化斜率可用于肝细胞癌微血管浸润的诊断。由于缺乏肝细胞微血管侵袭的无创成像标志物,因此开发新的MRI标志物是可取的。在我们的MR弹性成像研究中,与基础粘弹性参数相比,呼吸诱导的肿瘤硬化在诊断肝细胞癌微血管侵犯方面具有良好的准确性。我们在肝细胞癌患者中的研究结果表明,磁共振弹性成像肿瘤压缩硬化斜率的无创测量可以评估微血管的侵犯。
{"title":"MR elastography in patients with hepatocellular carcinoma: tumor stiffening during compression induced by respiration to assess microvascular invasion.","authors":"Gwenaël Pagé, Philippe Garteiser, Valérie Paradis, Riccardo Sartoris, Estelle Marcault, Ralph Sinkus, Valérie Vilgrain, Bernard E Van Beers","doi":"10.1007/s00330-025-12164-1","DOIUrl":"https://doi.org/10.1007/s00330-025-12164-1","url":null,"abstract":"<p><strong>Objectives: </strong>Microvascular invasion is a strong prognostic factor in hepatocellular carcinomas. The aim of our study was to assess the diagnostic value of mechanical parameters measured with compression MR elastography to detect microvascular invasion in hepatocellular carcinomas.</p><p><strong>Materials and methods: </strong>In this prospective preoperative MR elastographic study, consecutive patients with hepatocellular carcinomas, scheduled for tumor surgical resection, were included. The tumor parameters assessed with MR elastography were the basal visco-elastic parameters (storage modulus, loss modulus, and phase angle, reflecting elasticity, viscosity and visco-elastic ratio) during expiration and inspiration, and the tumor stiffening slope during compression induced by respiration, reflecting non-linear elasticity. Microvascular invasion was determined with histopathological examination of resected tumors. Diagnostic performance of MR elastography was assessed with area under the receiver operating curve (AUC) analysis.</p><p><strong>Results: </strong>The final study group consisted of 53 patients with complete surgical resection, MR elastography and histological data, including 31 patients with microvascular invasion. Compression stiffening slope and storage modulus difference between inspiration and expiration were significantly higher in hepatocellular carcinomas without than with microvascular invasion (p < 0.001 and p = 0.03, respectively). Among clinical, morphological and biomechanical imaging features, the MR elastography compression stiffening slope (p = 0.004) and histological WHO differentiation (p = 0.02-0.03) were the only independent determinants of hepatocellular carcinoma microvascular invasion. In contrast to basal biomechanical parameters, the compression stiffening slope had high diagnostic performance for detecting microvascular invasion (AUC<sub>compression stiffening</sub> = 0.83, p < 0.001).</p><p><strong>Conclusion: </strong>Our results suggest that the compression stiffening slope at MR elastography is useful to diagnose microvascular invasion in patients with hepatocellular carcinomas.</p><p><strong>Key points: </strong>Question Because non-invasive imaging markers of hepatocellular microvascular invasion are lacking, the development of new MRI markers is advisable. Findings In our MR elastography study, respiration-induced tumor stiffening, in contrast to basal visco-elastic parameters, had good accuracy for diagnosing hepatocellular carcinoma microvascular invasion. Clinical relevance Our results in patients with hepatocellular carcinomas suggest that the non-invasive measurement of MR elastography tumor compression stiffening slope may assess microvascular invasion.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146100019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-31DOI: 10.1007/s00330-026-12347-4
Fan Fu, Zengping Lin, Xiong Yang, Xinyun Huang, Xiaoyue Chen, Hongping Meng, Biao Li
Objectives: This study developed an automated AI-based method for accurate image reconstruction, stenosis detection and plaque calculation in high-resolution magnetic resonance vessel wall imaging (HR-MRVWI) and compared its performance with radiologists.
Materials and methods: A deep learning algorithm trained on HR-MRVWI was collected retrospectively from three tertiary hospitals. An independent test set was collected prospectively at another hospital. Model performance was evaluated via the Dice similarity coefficient, average centerline distance and average surface distance in centerline extraction and vessel wall segmentation. Two radiologists reviewed the reconstructed images in randomized order to determine whether the quality matched the clinical diagnosis. The stenosis diagnosis and plaque calculation of the algorithm were compared with the ground truth of the consensus by two radiologists. The relationships of the calculated parameters with plaque vulnerability were also analyzed.
Results: 476 patients (mean age 61 years ± 15 [SD], 286 men) were evaluated. The accuracy of image reconstruction in the independent test set was 92.3%. The consistency between the radiologists and the deep learning-assisted algorithm for stenosis detection was 0.89 (95% CI: 85.4, 90.2) in ≥ 50% stenosis. The accuracies of algorithm in normalized wall index, eccentricity and remodeling indices were 0.94, 0.83 and 0.87. The normalized wall index was highly related to plaque vulnerability. The AI-assisted in diagnosis and vessel wall analysis, which reduced the time from 32.0 ± 11.8 to 12.9 ± 4.3 min (p < 0.001).
Conclusion: A deep learning algorithm for HR-MRVWI interpretation could achieve image reconstruction, vessel stenosis and plaque calculation, which has satisfactory diagnostic performance.
Key points: Question Can a deep learning system achieve image reconstruction, stenosis diagnosis and plaque calculation in high-resolution MR vessel wall imaging (HR-MRVWI)? Findings The overall time reduced from 32.0 ± 11.8 to 12.9 ± 4.3 min (p < 0.001) with the aid of the system. Clinical relevance This effective deep learning system has great potential for processing head and neck HR-MRVWI images; it assists radiologists' workloads and saves considerable time in hospitals. Additionally, it provides plaque-related parameters automatically for the evaluation of atherosclerosis patients.
目的:本研究开发了一种基于人工智能的自动化方法,用于高分辨率磁共振血管壁成像(HR-MRVWI)的精确图像重建、狭窄检测和斑块计算,并与放射科医生进行了比较。材料与方法:回顾性收集三家三级医院的HR-MRVWI深度学习算法。在另一家医院前瞻性地收集了一个独立的测试集。通过Dice相似系数、中心线提取和血管壁分割的平均中心线距离和平均表面距离来评价模型的性能。两名放射科医生随机检查重建图像,以确定质量是否符合临床诊断。将该算法的狭窄诊断和斑块计算结果与两位放射科医师共识的基础真值进行比较。分析了计算参数与斑块易损性的关系。结果:共纳入476例患者(平均年龄61岁±15 [SD],男性286例)。独立测试集的图像重建准确率为92.3%。对于≥50%的狭窄,放射科医生与深度学习辅助算法的一致性为0.89 (95% CI: 85.4, 90.2)。算法在归一化壁指数、偏心率和重塑指数上的准确率分别为0.94、0.83和0.87。归一化壁指数与斑块易损性高度相关。人工智能辅助诊断和血管壁分析,将时间从32.0±11.8 min缩短至12.9±4.3 min (p)结论:深度学习HR-MRVWI解译算法可以实现图像重建、血管狭窄和斑块计算,具有满意的诊断性能。深度学习系统能否在高分辨率MR血管壁成像(HR-MRVWI)中实现图像重建、狭窄诊断和斑块计算?结果总时间由32.0±11.8 min缩短至12.9±4.3 min (p < 0.05)
{"title":"Deep learning for high-resolution magnetic resonance vessel wall imaging: image reconstruction, stenosis diagnosis and plaque calculation.","authors":"Fan Fu, Zengping Lin, Xiong Yang, Xinyun Huang, Xiaoyue Chen, Hongping Meng, Biao Li","doi":"10.1007/s00330-026-12347-4","DOIUrl":"https://doi.org/10.1007/s00330-026-12347-4","url":null,"abstract":"<p><strong>Objectives: </strong>This study developed an automated AI-based method for accurate image reconstruction, stenosis detection and plaque calculation in high-resolution magnetic resonance vessel wall imaging (HR-MRVWI) and compared its performance with radiologists.</p><p><strong>Materials and methods: </strong>A deep learning algorithm trained on HR-MRVWI was collected retrospectively from three tertiary hospitals. An independent test set was collected prospectively at another hospital. Model performance was evaluated via the Dice similarity coefficient, average centerline distance and average surface distance in centerline extraction and vessel wall segmentation. Two radiologists reviewed the reconstructed images in randomized order to determine whether the quality matched the clinical diagnosis. The stenosis diagnosis and plaque calculation of the algorithm were compared with the ground truth of the consensus by two radiologists. The relationships of the calculated parameters with plaque vulnerability were also analyzed.</p><p><strong>Results: </strong>476 patients (mean age 61 years ± 15 [SD], 286 men) were evaluated. The accuracy of image reconstruction in the independent test set was 92.3%. The consistency between the radiologists and the deep learning-assisted algorithm for stenosis detection was 0.89 (95% CI: 85.4, 90.2) in ≥ 50% stenosis. The accuracies of algorithm in normalized wall index, eccentricity and remodeling indices were 0.94, 0.83 and 0.87. The normalized wall index was highly related to plaque vulnerability. The AI-assisted in diagnosis and vessel wall analysis, which reduced the time from 32.0 ± 11.8 to 12.9 ± 4.3 min (p < 0.001).</p><p><strong>Conclusion: </strong>A deep learning algorithm for HR-MRVWI interpretation could achieve image reconstruction, vessel stenosis and plaque calculation, which has satisfactory diagnostic performance.</p><p><strong>Key points: </strong>Question Can a deep learning system achieve image reconstruction, stenosis diagnosis and plaque calculation in high-resolution MR vessel wall imaging (HR-MRVWI)? Findings The overall time reduced from 32.0 ± 11.8 to 12.9 ± 4.3 min (p < 0.001) with the aid of the system. Clinical relevance This effective deep learning system has great potential for processing head and neck HR-MRVWI images; it assists radiologists' workloads and saves considerable time in hospitals. Additionally, it provides plaque-related parameters automatically for the evaluation of atherosclerosis patients.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-31DOI: 10.1007/s00330-026-12330-z
Nasser M Alzahrani, Michael Paddock, Annmarie Jeanes, Alan S Rigby, Anuradha Dawani, Joanna Fairhurst, Charlotte de Lange, Susan C Shelmerdine, Rick R van Rijn, Samantha Negus, Karen Rosendahl, Louise Hattingh, Lil-Sofie Ording Müller, Angel M Lancharro, Eman Marie, Fiammetta Sertorio, Goran Djuricic, Håkan Caisander, Martin Kyncl, Målfrid Tveiterås, Matthias Waginger, Rui Santos, Ola Kvist, Amaka C Offiah
Objectives: To assess the diagnostic accuracy of chest CT for rib fractures in live children investigated for suspected physical abuse (SPA), using initial and follow-up chest radiographs (CXRs) as the reference standard.
Materials and methods: A retrospective 10-year (September 2011-2021) multicentre search was performed for children less than two years of age who received CXRs and chest CT for SPA. Nineteen consultant radiologists independently read the images: Round 1 (initial CXRs only), Round 2 (CTs only) and Round 3 (initial and follow-up CXRs). No reporter performed Round 3 before Round 1 or 2. Radiologists reported the presence of rib fractures, fracture age, fracture location and confidence level. CT diagnostic accuracy (sensitivity, specificity, and accuracy) was calculated per patient, per rib and per specific location along the rib arc.
Results: A total of 64 patients (36 boys) with a median age of 2 months were included and assessed by 19 independent consultant radiologists. Patient level analysis: CT sensitivity = 90.6% (95% confidence interval [CI]: 88.2-92.6), specificity = 74.2% (95% CI: 70.2-78.0). Rib level analysis: CT sensitivity = 85.6% (95% CI: 84.1-87.0), specificity = 94.16% (95% CI: 93.8-94.4). Location level analysis: CT sensitivity = 75.7% (95% CI: 74.0-77.4), specificity = 97.09% (95% CI: 96.9-97.2).
Conclusion: Chest CT confers accurate rib fracture detection in live children with SPA, with the potential to replace the current standard of performing six CXRs as part of initial and follow-up imaging for SPA.
Key points: Question What is the diagnostic performance of chest CT in detecting rib fractures in live children with SPA, using CXR as a reference standard? Findings Chest CT showed 90.6% sensitivity and 74.2% specificity for detecting rib fractures on patient-based analysis, with 79.7% sensitivity for posterior rib fractures. Clinical relevance Chest CT accurately detects rib fractures in children investigated for SPA and may serve as an alternative to initial and follow-up CXR, supporting timely clinical assessment and management.
{"title":"Rib fracture diagnosis in suspected abuse: Computed tomography or radiographs (RECEPTOR)? A multicentre diagnostic accuracy observational study.","authors":"Nasser M Alzahrani, Michael Paddock, Annmarie Jeanes, Alan S Rigby, Anuradha Dawani, Joanna Fairhurst, Charlotte de Lange, Susan C Shelmerdine, Rick R van Rijn, Samantha Negus, Karen Rosendahl, Louise Hattingh, Lil-Sofie Ording Müller, Angel M Lancharro, Eman Marie, Fiammetta Sertorio, Goran Djuricic, Håkan Caisander, Martin Kyncl, Målfrid Tveiterås, Matthias Waginger, Rui Santos, Ola Kvist, Amaka C Offiah","doi":"10.1007/s00330-026-12330-z","DOIUrl":"https://doi.org/10.1007/s00330-026-12330-z","url":null,"abstract":"<p><strong>Objectives: </strong>To assess the diagnostic accuracy of chest CT for rib fractures in live children investigated for suspected physical abuse (SPA), using initial and follow-up chest radiographs (CXRs) as the reference standard.</p><p><strong>Materials and methods: </strong>A retrospective 10-year (September 2011-2021) multicentre search was performed for children less than two years of age who received CXRs and chest CT for SPA. Nineteen consultant radiologists independently read the images: Round 1 (initial CXRs only), Round 2 (CTs only) and Round 3 (initial and follow-up CXRs). No reporter performed Round 3 before Round 1 or 2. Radiologists reported the presence of rib fractures, fracture age, fracture location and confidence level. CT diagnostic accuracy (sensitivity, specificity, and accuracy) was calculated per patient, per rib and per specific location along the rib arc.</p><p><strong>Results: </strong>A total of 64 patients (36 boys) with a median age of 2 months were included and assessed by 19 independent consultant radiologists. Patient level analysis: CT sensitivity = 90.6% (95% confidence interval [CI]: 88.2-92.6), specificity = 74.2% (95% CI: 70.2-78.0). Rib level analysis: CT sensitivity = 85.6% (95% CI: 84.1-87.0), specificity = 94.16% (95% CI: 93.8-94.4). Location level analysis: CT sensitivity = 75.7% (95% CI: 74.0-77.4), specificity = 97.09% (95% CI: 96.9-97.2).</p><p><strong>Conclusion: </strong>Chest CT confers accurate rib fracture detection in live children with SPA, with the potential to replace the current standard of performing six CXRs as part of initial and follow-up imaging for SPA.</p><p><strong>Key points: </strong>Question What is the diagnostic performance of chest CT in detecting rib fractures in live children with SPA, using CXR as a reference standard? Findings Chest CT showed 90.6% sensitivity and 74.2% specificity for detecting rib fractures on patient-based analysis, with 79.7% sensitivity for posterior rib fractures. Clinical relevance Chest CT accurately detects rib fractures in children investigated for SPA and may serve as an alternative to initial and follow-up CXR, supporting timely clinical assessment and management.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-30DOI: 10.1007/s00330-025-12310-9
Annette Thurner, Dominik Peter, Sven Lichthardt, Anne Marie Augustin, Sven Flemming, Ralph Kickuth
Objective: To evaluate the safety and efficacy of intravascular lithotripsy (IVL)-assisted endovascular revascularisation in patients with chronic mesenteric ischaemia (CMI) and heavily calcified mesenteric artery stenoses.
Materials and methods: In this single-centre retrospective study (May 2020-June 2025), consecutive patients with symptomatic CMI, ≥ 50% mesenteric artery stenosis, and moderate-to-severe calcification on CT angiography underwent IVL-assisted endovascular revascularisation. Outcomes included technical success (successful IVL with ≤ 30% residual stenosis after any adjunctive therapy), moderate-to-severe adverse events (AEs), symptom recurrence, clinically driven target vessel revascularisation (CD-TVR), patency, and survival. Kaplan-Meier analysis assessed patency and survival at 6 and 12 months.
Results: Fifty-one patients (median age, 71.5 years; 51% women) underwent treatment of 57 arteries (median stenosis, 72.0%; 96.5% moderate-to-severe calcification). IVL was followed by stenting in 53 de-novo lesions (47 bare-metal, 6 covered), and balloon angioplasty in 4 lesions (3 de-novo, 1 in-stent restenosis). Technical success was 93.0%, with predilatation required in 45.6% of vessels. Median residual stenosis was 16.7% (IQR 11.7), and median lumen gain was 3.5 mm (IQR 2.1). Moderate-to-severe AEs occurred in 27.5% of patients. Two patients were lost to follow-up. During a median follow-up of 578.0 days (IQR 529.5), symptom recurrence occurred in 18.4% of patients, and CD-TVR was required in 16.3%. Primary clinical patency was 93.4% at 6 months and 91.0% at 12 months. Survival rates were 91.7% and 89.4% at 6 and 12 months, respectively; mesenteric ischaemia-related mortality was 2.0%.
Conclusion: IVL is a safe and effective vessel preparation strategy for heavily calcified mesenteric arteries, facilitating endovascular revascularisation in CMI.
Key points: Question Can vessel preparation with intravascular lithotripsy reduce the rate of endovascular treatment failure associated with moderate-to-severe calcification in mesenteric artery stenosis without amplifying procedural risks? Findings Calcium modification with intravascular lithotripsy prior to stenting yielded high technical and clinical success with favourable lumen gain, safety profile, and durable patency. Clinical relevance Adjunctive intravascular lithotripsy is a valuable strategy to mitigate the challenges of calcification in mesenteric artery stenosis, achieving high technical and clinical success while preserving procedural safety, thereby broadening treatment feasibility and improving outcomes in complex disease.
目的:评价血管内碎石术(IVL)辅助血管内重建术治疗慢性肠系膜缺血(CMI)和重度钙化肠系膜动脉狭窄的安全性和有效性。材料和方法:在这项单中心回顾性研究(2020年5月- 2025年6月)中,连续有症状性CMI、肠系膜动脉狭窄≥50%、CT血管造影显示中重度钙化的患者接受了ivl辅助的血管内重建术。结果包括技术成功(IVL成功,任何辅助治疗后残余狭窄≤30%),中重度不良事件(ae),症状复发,临床驱动靶血管重建术(CD-TVR),通畅和生存。Kaplan-Meier分析评估6个月和12个月的通畅度和生存率。结果:51例患者(中位年龄71.5岁,女性占51%)接受了57条动脉的治疗(中位狭窄占72.0%,中重度钙化占96.5%)。在IVL之后,对53个新生病变(47个裸金属,6个覆盖)进行支架置入术,对4个病变(3个新生,1个支架内再狭窄)进行球囊血管成形术。技术成功率为93.0%,45.6%的血管需要预扩张。中位残留狭窄为16.7% (IQR为11.7),中位管腔增益为3.5 mm (IQR为2.1)。27.5%的患者发生中度至重度不良事件。2例患者未随访。在中位随访578.0天(IQR 529.5)期间,18.4%的患者出现症状复发,16.3%的患者需要CD-TVR。6个月和12个月的初步临床通畅率分别为93.4%和91.0%。6个月和12个月生存率分别为91.7%和89.4%;肠系膜缺血相关死亡率为2.0%。结论:IVL对于重度钙化的肠系膜动脉是一种安全有效的血管准备策略,有利于CMI的血管内血运重建。血管内碎石血管准备术能否在不增加手术风险的情况下降低肠系膜动脉狭窄中至重度钙化相关的血管内治疗失败率?结果:支架植入前血管内碎石钙修饰术获得了很高的技术和临床成功,具有良好的管腔增益、安全性和持久的通畅性。辅助血管内碎石术是缓解肠系膜动脉狭窄钙化挑战的一种有价值的策略,在保证手术安全性的同时取得了很高的技术和临床成功,从而扩大了治疗的可行性,改善了复杂疾病的预后。
{"title":"Endovascular revascularisation in chronic occlusive mesenteric ischaemia: safety and efficacy of intravascular lithotripsy.","authors":"Annette Thurner, Dominik Peter, Sven Lichthardt, Anne Marie Augustin, Sven Flemming, Ralph Kickuth","doi":"10.1007/s00330-025-12310-9","DOIUrl":"https://doi.org/10.1007/s00330-025-12310-9","url":null,"abstract":"<p><strong>Objective: </strong>To evaluate the safety and efficacy of intravascular lithotripsy (IVL)-assisted endovascular revascularisation in patients with chronic mesenteric ischaemia (CMI) and heavily calcified mesenteric artery stenoses.</p><p><strong>Materials and methods: </strong>In this single-centre retrospective study (May 2020-June 2025), consecutive patients with symptomatic CMI, ≥ 50% mesenteric artery stenosis, and moderate-to-severe calcification on CT angiography underwent IVL-assisted endovascular revascularisation. Outcomes included technical success (successful IVL with ≤ 30% residual stenosis after any adjunctive therapy), moderate-to-severe adverse events (AEs), symptom recurrence, clinically driven target vessel revascularisation (CD-TVR), patency, and survival. Kaplan-Meier analysis assessed patency and survival at 6 and 12 months.</p><p><strong>Results: </strong>Fifty-one patients (median age, 71.5 years; 51% women) underwent treatment of 57 arteries (median stenosis, 72.0%; 96.5% moderate-to-severe calcification). IVL was followed by stenting in 53 de-novo lesions (47 bare-metal, 6 covered), and balloon angioplasty in 4 lesions (3 de-novo, 1 in-stent restenosis). Technical success was 93.0%, with predilatation required in 45.6% of vessels. Median residual stenosis was 16.7% (IQR 11.7), and median lumen gain was 3.5 mm (IQR 2.1). Moderate-to-severe AEs occurred in 27.5% of patients. Two patients were lost to follow-up. During a median follow-up of 578.0 days (IQR 529.5), symptom recurrence occurred in 18.4% of patients, and CD-TVR was required in 16.3%. Primary clinical patency was 93.4% at 6 months and 91.0% at 12 months. Survival rates were 91.7% and 89.4% at 6 and 12 months, respectively; mesenteric ischaemia-related mortality was 2.0%.</p><p><strong>Conclusion: </strong>IVL is a safe and effective vessel preparation strategy for heavily calcified mesenteric arteries, facilitating endovascular revascularisation in CMI.</p><p><strong>Key points: </strong>Question Can vessel preparation with intravascular lithotripsy reduce the rate of endovascular treatment failure associated with moderate-to-severe calcification in mesenteric artery stenosis without amplifying procedural risks? Findings Calcium modification with intravascular lithotripsy prior to stenting yielded high technical and clinical success with favourable lumen gain, safety profile, and durable patency. Clinical relevance Adjunctive intravascular lithotripsy is a valuable strategy to mitigate the challenges of calcification in mesenteric artery stenosis, achieving high technical and clinical success while preserving procedural safety, thereby broadening treatment feasibility and improving outcomes in complex disease.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146092590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}