A. Meyer‐Plath, D. Kehren, A. Große, Romy Naumann, Marcel Hofmann, Tanja Schneck, A. Ota, F. Hermanutz, N. Dziurowitz, C. Thim, S. Plitzko, Daphne Bäger
Recent reports of the release of large numbers of respirable and critically long fiber-shaped fragments from mesophase pitch-based carbon fiber polymer composites during machining and tensile testing have raised inhalation toxicological concerns. As carbon fibers and their fragments are to be considered as inherently biodurable, the fiber pathogenicity paradigm motivated the development of a laboratory test method to assess the propensity of different types of carbon fibers to form such fragments. It uses spallation testing of carbon fibers by impact grinding in an oscillating ball mill. The resulting fragments were dispersed on track-etched membrane filters and morphologically analyzed by scanning electron microscopy. The method was applied to nine different carbon fiber types synthesized from polyacrylonitrile, mesophase or isotropic pitch, covering a broad range of material properties. Significant differences in the morphology of formed fragments were observed between the materials studied. These were statistically analyzed to relate disintegration characteristics to material properties and to rank the carbon fiber types according to their propensity to form respirable fiber fragments. This tendency was found to be lower for polyacrylonitrile-based and isotropic pitch-based carbon fibers than for mesophase pitch-based carbon fibers, but still significant. Although there are currently only few reports in the literature of increased respirable fiber dust concentrations during the machining of polyacrylonitrile-based carbon fiber composites, we conclude that such materials have the potential to form critical fiber morphologies of WHO dimensions. For safe-and-sustainable carbon fiber-reinforced composites, a better understanding of the material properties that control the carbon fiber fragmentation is imperative.
{"title":"Investigation of the Tendency of Carbon Fibers to Disintegrate into Respirable Fiber-Shaped Fragments","authors":"A. Meyer‐Plath, D. Kehren, A. Große, Romy Naumann, Marcel Hofmann, Tanja Schneck, A. Ota, F. Hermanutz, N. Dziurowitz, C. Thim, S. Plitzko, Daphne Bäger","doi":"10.3390/fib11060050","DOIUrl":"https://doi.org/10.3390/fib11060050","url":null,"abstract":"Recent reports of the release of large numbers of respirable and critically long fiber-shaped fragments from mesophase pitch-based carbon fiber polymer composites during machining and tensile testing have raised inhalation toxicological concerns. As carbon fibers and their fragments are to be considered as inherently biodurable, the fiber pathogenicity paradigm motivated the development of a laboratory test method to assess the propensity of different types of carbon fibers to form such fragments. It uses spallation testing of carbon fibers by impact grinding in an oscillating ball mill. The resulting fragments were dispersed on track-etched membrane filters and morphologically analyzed by scanning electron microscopy. The method was applied to nine different carbon fiber types synthesized from polyacrylonitrile, mesophase or isotropic pitch, covering a broad range of material properties. Significant differences in the morphology of formed fragments were observed between the materials studied. These were statistically analyzed to relate disintegration characteristics to material properties and to rank the carbon fiber types according to their propensity to form respirable fiber fragments. This tendency was found to be lower for polyacrylonitrile-based and isotropic pitch-based carbon fibers than for mesophase pitch-based carbon fibers, but still significant. Although there are currently only few reports in the literature of increased respirable fiber dust concentrations during the machining of polyacrylonitrile-based carbon fiber composites, we conclude that such materials have the potential to form critical fiber morphologies of WHO dimensions. For safe-and-sustainable carbon fiber-reinforced composites, a better understanding of the material properties that control the carbon fiber fragmentation is imperative.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48390006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polymers in nanofibrous forms offer new opportunities for achieving triggered polymer degradation, which is important for functional and environmental reasons. The polycaprolactone (PCL) nanofibrous nonwoven polymer webs developed in this work by solution blow spinning with entrapped enzymes were completely, rapidly and controllably degraded when triggered by exposure to water. Lipase (CALB) from Candida antarctica was successfully entrapped in the PCL webs via an enzyme-compatible water-in-oil emulsion in the PCL–chloroform spinning solution with added surfactant. Protein (enzyme) in the nanofibrous webs was detected by Fourier Transform Infrared Spectroscopy (FTIR), while time of flight-secondary ion mass spectroscopy (ToF-SIMS) and laser confocal microscopy indicated that enzymes were immobilized within solid fibers as well as within microbead structures distributed throughout the webs. Degradation studies of CALB-enzyme functionalized solution-blown nonwoven (EFSBN)-PCL webs at 40 °C or ambient temperature showed that EFSBN-PCL webs degraded rapidly when exposed to aqueous pH 8 buffer. Scanning electron microscopy (SEM) images of partially degraded webs showed that thinner fibers disappeared first, thus, controlling fiber dimensions could control degradation rates. Rapid degradation was attributed to the combination of nanofibrous web structure and the distribution of enzymes throughout the webs. CALB immobilized in the solid dry webs exhibited long storage stability at room temperature or when refrigerated, with around 60% catalytic activity being retained after 120 days compared to the initial activity. Dry storage stability at ambient conditions and rapid degradation upon exposure to water demonstrated that EFSBN-PCL could be used as fibers or binders in degradable textile or paper products, as components in packaging, for tissue engineering and for controlled-release drug or controlled-release industrial and consumer product applications.
{"title":"Controllable Water-Triggered Degradation of PCL Solution-Blown Nanofibrous Webs Made Possible by Lipase Enzyme Entrapment","authors":"Fnu Asaduzzaman, S. Salmon","doi":"10.3390/fib11060049","DOIUrl":"https://doi.org/10.3390/fib11060049","url":null,"abstract":"Polymers in nanofibrous forms offer new opportunities for achieving triggered polymer degradation, which is important for functional and environmental reasons. The polycaprolactone (PCL) nanofibrous nonwoven polymer webs developed in this work by solution blow spinning with entrapped enzymes were completely, rapidly and controllably degraded when triggered by exposure to water. Lipase (CALB) from Candida antarctica was successfully entrapped in the PCL webs via an enzyme-compatible water-in-oil emulsion in the PCL–chloroform spinning solution with added surfactant. Protein (enzyme) in the nanofibrous webs was detected by Fourier Transform Infrared Spectroscopy (FTIR), while time of flight-secondary ion mass spectroscopy (ToF-SIMS) and laser confocal microscopy indicated that enzymes were immobilized within solid fibers as well as within microbead structures distributed throughout the webs. Degradation studies of CALB-enzyme functionalized solution-blown nonwoven (EFSBN)-PCL webs at 40 °C or ambient temperature showed that EFSBN-PCL webs degraded rapidly when exposed to aqueous pH 8 buffer. Scanning electron microscopy (SEM) images of partially degraded webs showed that thinner fibers disappeared first, thus, controlling fiber dimensions could control degradation rates. Rapid degradation was attributed to the combination of nanofibrous web structure and the distribution of enzymes throughout the webs. CALB immobilized in the solid dry webs exhibited long storage stability at room temperature or when refrigerated, with around 60% catalytic activity being retained after 120 days compared to the initial activity. Dry storage stability at ambient conditions and rapid degradation upon exposure to water demonstrated that EFSBN-PCL could be used as fibers or binders in degradable textile or paper products, as components in packaging, for tissue engineering and for controlled-release drug or controlled-release industrial and consumer product applications.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47924786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Kuznetsov, A. Wolf, Zh.E. Munkueva, A. Dostovalov, S. Babin
Light propagation in multimode fibers is known to experience various nonlinear effects, which are being actively studied. One of the interesting effects is the brightness enhancement at the Raman conversion of the multimode beam in graded index (GRIN) fiber due to beam cleanup at Raman amplification and mode selective feedback in the Raman laser cavity based on fiber Bragg gratings (FBGs) with special transverse structure. It is also possible to explore random distributed feedback based on Rayleigh backscattering on natural refractive index fluctuations in GRIN fibers, but it is rather weak, requiring very high power multimode pumping for random lasing. Here, we report on the first realization of femtosecond pulse-inscribed arrays of weak randomly spaced FBGs in GRIN fibers and study Raman lasing at its direct pumping by highly multimode (M2~34) 940-nm laser diodes. The fabricated 1D–3D FBG arrays are used as a complex output mirror, together with the highly reflective input FBG in 1-km fiber. Above threshold pump power (~100 W), random lasing of the Stokes beam at 976 nm is obtained with output power exceeding 28 W at 174 W pumping. The beam quality parameter varies for different arrays, reaching M2~2 at the linewidth narrowing to 0.1–0.2 nm due to the interference effects, with the best characteristics for the 2D array.
{"title":"Multimode Graded Index Fiber with Random Array of Bragg Gratings and Its Raman Lasing Properties","authors":"A. Kuznetsov, A. Wolf, Zh.E. Munkueva, A. Dostovalov, S. Babin","doi":"10.3390/fib11060048","DOIUrl":"https://doi.org/10.3390/fib11060048","url":null,"abstract":"Light propagation in multimode fibers is known to experience various nonlinear effects, which are being actively studied. One of the interesting effects is the brightness enhancement at the Raman conversion of the multimode beam in graded index (GRIN) fiber due to beam cleanup at Raman amplification and mode selective feedback in the Raman laser cavity based on fiber Bragg gratings (FBGs) with special transverse structure. It is also possible to explore random distributed feedback based on Rayleigh backscattering on natural refractive index fluctuations in GRIN fibers, but it is rather weak, requiring very high power multimode pumping for random lasing. Here, we report on the first realization of femtosecond pulse-inscribed arrays of weak randomly spaced FBGs in GRIN fibers and study Raman lasing at its direct pumping by highly multimode (M2~34) 940-nm laser diodes. The fabricated 1D–3D FBG arrays are used as a complex output mirror, together with the highly reflective input FBG in 1-km fiber. Above threshold pump power (~100 W), random lasing of the Stokes beam at 976 nm is obtained with output power exceeding 28 W at 174 W pumping. The beam quality parameter varies for different arrays, reaching M2~2 at the linewidth narrowing to 0.1–0.2 nm due to the interference effects, with the best characteristics for the 2D array.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48904844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The exothermic effects of high regain fiber types have been described before; yet, there have not been reliable tests to demonstrate these effects on the human body. Most test methods focus on steady-state measurements; therefore, these exothermic effects during changes in environmental humidity are typically not analyzed or quantified. We have conducted a set of fabric tests that shows the connection between the exothermic effect of water vapor uptake and its consequence for heat loss through the fabric in transient conditions. We have performed the ISO:16533 standard test, a dynamic hot plate test developed by Naylor to measure the exothermic property of the fabric, and dynamic regain tests to connect the dots between these tests and the water vapor uptake phenomenon. Although the ISO:16533 test method tends to show the temperature increase in fibers, it cannot differentiate between the hygroscopic fiber (wool, viscose, cotton) types (p > 0.001). In addition, sensor size and sample folding techniques could impact the temperature increase. On the other hand, the Naylor hot plate test showed a greater difference in heat release among the fiber types (wool showed 20% higher heat release than viscose, 50% more than cotton), although the relative humidity changes in the chamber take time, which might not reflect a step-wise change in humidity. So far, these test methods have proven to be the most reliable for determining the exothermic behavior of textile fiber. However, these test methods still have limitations and cannot simulate realistic environmental conditions considering an instantaneous change in the environment. This paper reflects the comparison between the two test methods and recommends directions to accurately address the theory of water vapor uptake under dynamic conditions.
{"title":"The Exothermic Effects of Textile Fibers during Changes in Environmental Humidity: A Comparison between ISO:16533 and Dynamic Hot Plate Test Method","authors":"Faisal Abedin, E. DenHartog","doi":"10.3390/fib11050047","DOIUrl":"https://doi.org/10.3390/fib11050047","url":null,"abstract":"The exothermic effects of high regain fiber types have been described before; yet, there have not been reliable tests to demonstrate these effects on the human body. Most test methods focus on steady-state measurements; therefore, these exothermic effects during changes in environmental humidity are typically not analyzed or quantified. We have conducted a set of fabric tests that shows the connection between the exothermic effect of water vapor uptake and its consequence for heat loss through the fabric in transient conditions. We have performed the ISO:16533 standard test, a dynamic hot plate test developed by Naylor to measure the exothermic property of the fabric, and dynamic regain tests to connect the dots between these tests and the water vapor uptake phenomenon. Although the ISO:16533 test method tends to show the temperature increase in fibers, it cannot differentiate between the hygroscopic fiber (wool, viscose, cotton) types (p > 0.001). In addition, sensor size and sample folding techniques could impact the temperature increase. On the other hand, the Naylor hot plate test showed a greater difference in heat release among the fiber types (wool showed 20% higher heat release than viscose, 50% more than cotton), although the relative humidity changes in the chamber take time, which might not reflect a step-wise change in humidity. So far, these test methods have proven to be the most reliable for determining the exothermic behavior of textile fiber. However, these test methods still have limitations and cannot simulate realistic environmental conditions considering an instantaneous change in the environment. This paper reflects the comparison between the two test methods and recommends directions to accurately address the theory of water vapor uptake under dynamic conditions.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48353533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Benzerara, Y. Biskri, M. Saidani, Fayçal Slimani, R. Belouettar
At ambient temperature, concrete exhibits excellent mechanical properties. However, understanding the behavior of concrete under high-temperature conditions is crucial, especially for civil engineering applications during fire incidents. The growing use of plastic-based products has led to a significant increase in polymer waste, posing environmental challenges. The valorization of this plastic waste in the form of fibers presents both economic and environmental advantages. This study focuses on the study of the behavior of sand concrete incorporating polyethylene terephthalate (PET) fibers with percentages of 1% and 2% at high temperatures (100, 300, 500 and 700 °C). Specimens are tested for residual mass loss, residual compressive and tensile strength. A complementary analysis of SEM makes it possible to confirm and better clarify the morphology of the concretes of sand before and after the rise in temperature. The results obtained from this study indicate that the residual resistance is reduced with the rise in temperature for all the concretes studied, except in the temperature range of 300 °C, in which a slight improvement in resistance is noticed. The incorporation of PET fibers in the test concretes does not enhance their residual behavior significantly. However, it does serve as an effective solution by reducing the susceptibility to spalling, by preventing cracking and by fulfilling a similar role to that of polypropylene fibers.
{"title":"High-Temperature Behavior of Polyethylene-Terephthalate-Fiber-Reinforced Sand Concrete: Experimental Investigation","authors":"M. Benzerara, Y. Biskri, M. Saidani, Fayçal Slimani, R. Belouettar","doi":"10.3390/fib11050046","DOIUrl":"https://doi.org/10.3390/fib11050046","url":null,"abstract":"At ambient temperature, concrete exhibits excellent mechanical properties. However, understanding the behavior of concrete under high-temperature conditions is crucial, especially for civil engineering applications during fire incidents. The growing use of plastic-based products has led to a significant increase in polymer waste, posing environmental challenges. The valorization of this plastic waste in the form of fibers presents both economic and environmental advantages. This study focuses on the study of the behavior of sand concrete incorporating polyethylene terephthalate (PET) fibers with percentages of 1% and 2% at high temperatures (100, 300, 500 and 700 °C). Specimens are tested for residual mass loss, residual compressive and tensile strength. A complementary analysis of SEM makes it possible to confirm and better clarify the morphology of the concretes of sand before and after the rise in temperature. The results obtained from this study indicate that the residual resistance is reduced with the rise in temperature for all the concretes studied, except in the temperature range of 300 °C, in which a slight improvement in resistance is noticed. The incorporation of PET fibers in the test concretes does not enhance their residual behavior significantly. However, it does serve as an effective solution by reducing the susceptibility to spalling, by preventing cracking and by fulfilling a similar role to that of polypropylene fibers.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42900547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, we investigate the influence of noncircularity along with cross-sectional area evolution on the measurement of the mechanical properties of elementary fibres. First, we focus on the cross-sectional area measurement and compare the circular assumption with the elliptical one using an ombroscopic device that allows the measurement of the projected diameters along the fibre as the fibre rotates around its axis, the fibre dimensional analysis system (FDAS). The results highlight important approximations to the cross-sectional area evaluation for fibres with noncircular cross sections, leading to reduced elastic modulus and stress at failure evaluated by the standard method. Additionally, results from the FDAS are used to evaluate the twist inside an individual fibre when the cross sections are sufficiently elliptical. A numerical model based on the real measured dimensions of the fibres is developed to illustrate and visualize this nonuniformity and to more accurately identify the elastic modulus. The results obtained lead us to an analytical approach that takes into account the evolution of the cross-sectional area along the fibre for a better identification of the stiffness and modulus of elasticity, which maximizes the identified mechanical properties on average by 12% for the modulus and 200% for the stress at failure. Finally, recommendations are formulated to better account for the variability along a fibre in order to evaluate the cross-sectional area.
{"title":"Elementary Liber Fibres Characterisation: Bias from the Noncylindricity and Morphological Evolution along the Fibre","authors":"M. Grégoire, E. De Luycker, P. Ouagne","doi":"10.3390/fib11050045","DOIUrl":"https://doi.org/10.3390/fib11050045","url":null,"abstract":"In this work, we investigate the influence of noncircularity along with cross-sectional area evolution on the measurement of the mechanical properties of elementary fibres. First, we focus on the cross-sectional area measurement and compare the circular assumption with the elliptical one using an ombroscopic device that allows the measurement of the projected diameters along the fibre as the fibre rotates around its axis, the fibre dimensional analysis system (FDAS). The results highlight important approximations to the cross-sectional area evaluation for fibres with noncircular cross sections, leading to reduced elastic modulus and stress at failure evaluated by the standard method. Additionally, results from the FDAS are used to evaluate the twist inside an individual fibre when the cross sections are sufficiently elliptical. A numerical model based on the real measured dimensions of the fibres is developed to illustrate and visualize this nonuniformity and to more accurately identify the elastic modulus. The results obtained lead us to an analytical approach that takes into account the evolution of the cross-sectional area along the fibre for a better identification of the stiffness and modulus of elasticity, which maximizes the identified mechanical properties on average by 12% for the modulus and 200% for the stress at failure. Finally, recommendations are formulated to better account for the variability along a fibre in order to evaluate the cross-sectional area.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49448156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The need for concrete with ‘super’ strength and ‘super’ ductility for greater sustainability has been answered by the existence of ultra-high-performance concrete (UHPC) and ultra-high-performance fiber-reinforced concrete (UHPFRC). Over the last decades, UHPFRC has been implemented in actual concrete structures, as well as used to retrofit structural elements, including columns. However, the use of UHPC and UHPFRC confinement to strengthen normal concrete columns is still limited. Therefore, this research aims to investigate the advanced performance of columns using UHPC and UHPFRC confinement in the context of the strength and ductility of such columns, such as load capacity, stress–strain behavior, and the crack pattern in the failure mode. This research is an advanced study of several investigations previously carried out by other authors on the characteristics of UHPC and UHPFRC, as well as columns confined by UHPC and UHPFRC. The methods used in this research are experimental and analytical. The experimental results were compared to analytical calculations for validation. This research produced 12 short-column specimens confined by UHPC (CF0 series) and UHPFRC (CF1 and CF2 series) that contained 0%, 1%, and 2% fiber and were also tested for axial loading and various eccentricities as follows: e = 0, 35, and 70 mm. The results found that the normal strength concrete (NSC) columns confined by UHPC and UHPFRC could sustain a higher maximum load and stress, and also sustain greater vertical deformation and strain compared to the control specimens. It was noted that specimen CF2-35 had the highest load capacity, vertical deformation, maximum stress, and maximum vertical strain compared to specimen C-0 (control column with no confinement). The specimen CF2-35 (column confined by UHPC with a 2% fiber volume with an eccentricity of 35 mm) also exhibited a ductile failure mode and very minor cracks. It was also found that 75% of the specimens had 0–39% errors and 25% had 0–13% errors. The research proved that the addition of a volume of 2% fiber to the UHPFRC minimizes the crack of the failure mode and prevents confinement spalling of the column. This research has led to the conclusion that UHPC and UHPFRC confinements will increase the strength and ductility of columns.
{"title":"Advanced Study of Columns Confined by Ultra-High-Performance Concrete and Ultra-High-Performance Fiber-Reinforced Concrete Confinements","authors":"R. M. R. Susilorini, Y. Kusumawardaningsih","doi":"10.3390/fib11050044","DOIUrl":"https://doi.org/10.3390/fib11050044","url":null,"abstract":"The need for concrete with ‘super’ strength and ‘super’ ductility for greater sustainability has been answered by the existence of ultra-high-performance concrete (UHPC) and ultra-high-performance fiber-reinforced concrete (UHPFRC). Over the last decades, UHPFRC has been implemented in actual concrete structures, as well as used to retrofit structural elements, including columns. However, the use of UHPC and UHPFRC confinement to strengthen normal concrete columns is still limited. Therefore, this research aims to investigate the advanced performance of columns using UHPC and UHPFRC confinement in the context of the strength and ductility of such columns, such as load capacity, stress–strain behavior, and the crack pattern in the failure mode. This research is an advanced study of several investigations previously carried out by other authors on the characteristics of UHPC and UHPFRC, as well as columns confined by UHPC and UHPFRC. The methods used in this research are experimental and analytical. The experimental results were compared to analytical calculations for validation. This research produced 12 short-column specimens confined by UHPC (CF0 series) and UHPFRC (CF1 and CF2 series) that contained 0%, 1%, and 2% fiber and were also tested for axial loading and various eccentricities as follows: e = 0, 35, and 70 mm. The results found that the normal strength concrete (NSC) columns confined by UHPC and UHPFRC could sustain a higher maximum load and stress, and also sustain greater vertical deformation and strain compared to the control specimens. It was noted that specimen CF2-35 had the highest load capacity, vertical deformation, maximum stress, and maximum vertical strain compared to specimen C-0 (control column with no confinement). The specimen CF2-35 (column confined by UHPC with a 2% fiber volume with an eccentricity of 35 mm) also exhibited a ductile failure mode and very minor cracks. It was also found that 75% of the specimens had 0–39% errors and 25% had 0–13% errors. The research proved that the addition of a volume of 2% fiber to the UHPFRC minimizes the crack of the failure mode and prevents confinement spalling of the column. This research has led to the conclusion that UHPC and UHPFRC confinements will increase the strength and ductility of columns.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47784548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Palanikumar, Elango Natarajan, K. Markandan, C. Ang, G. Franz
Research on plant-fiber-reinforced composites has gained significant research interest since it generates composites with exceptional mechanical properties; however, the potential of hemp fibers can only be fully exploited if the fibers are well separated from the bundle to achieve cellulose-rich fibers. This is because well-separated bast fibers that are long and exhibit higher fiber aspect ratio enhance the mechanical properties of the composite by influencing property translations upon loading. A key feature for successful implementation of natural fibers is to selectively remove non-cellulosic components of hemp fiber to yield cellulose-rich fibers with minimal defects. Targeted pre-treatment techniques have been commonly used to address the aforementioned concerns by optimizing properties on the fiber’s surface. This in turn improves interfacial bonding between the fibers and the hydrophobic polymer, enhances the robustness of hemp fibers by improving their thermal stability and increases resistance to microbial degradation. In this study, we comprehensively review the targeted pre-treatment techniques of hemp fiber and the effect of hemp fiber as a reinforcement on the mechanical properties of polymeric composites.
{"title":"Targeted Pre-Treatment of Hemp Fibers and the Effect on Mechanical Properties of Polymer Composites","authors":"K. Palanikumar, Elango Natarajan, K. Markandan, C. Ang, G. Franz","doi":"10.3390/fib11050043","DOIUrl":"https://doi.org/10.3390/fib11050043","url":null,"abstract":"Research on plant-fiber-reinforced composites has gained significant research interest since it generates composites with exceptional mechanical properties; however, the potential of hemp fibers can only be fully exploited if the fibers are well separated from the bundle to achieve cellulose-rich fibers. This is because well-separated bast fibers that are long and exhibit higher fiber aspect ratio enhance the mechanical properties of the composite by influencing property translations upon loading. A key feature for successful implementation of natural fibers is to selectively remove non-cellulosic components of hemp fiber to yield cellulose-rich fibers with minimal defects. Targeted pre-treatment techniques have been commonly used to address the aforementioned concerns by optimizing properties on the fiber’s surface. This in turn improves interfacial bonding between the fibers and the hydrophobic polymer, enhances the robustness of hemp fibers by improving their thermal stability and increases resistance to microbial degradation. In this study, we comprehensively review the targeted pre-treatment techniques of hemp fiber and the effect of hemp fiber as a reinforcement on the mechanical properties of polymeric composites.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46027029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Mahdy, S. Mahfouz, A. Tawfic, Mohamed A. E. M. Ali
Concrete is an essential artificial building material in modern society. However, because concrete structures have brittle characteristics, they have a limited service life when subjected to dynamic loads. Nuclear emissions and explosions threaten human lives and structures’ safety due to harmful radiation and dynamic effects. Since agriculture has revealed a large amount of by-products that require disposal, the use of such by-products in many sectors is a challenge for contemporary studies. One of the most important areas for the disposal of such waste is construction, and concrete in particular. The utilization of the agricultural by-product rice straw fiber was chosen in this study to replace the usage of artificial fibers in concrete production and present an eco-friendly prospective contender with enhanced static/dynamic performance and gamma shielding characteristics. Different concrete mixtures were proposed in this study to evaluate the aforementioned characteristics. The designed concrete mixtures were conventional concrete with variations in the volume fraction of rice straw fibers (RSF) of 0%, 0.25%, 0.5%, and 0.75%. The desired static properties were compressive strength, splitting tensile strength, and flexural strength. Additionally, the drop weight impact test was used in this study to investigate the impact resistance of RSF-reinforced concrete. Finally, the radiation-shielding characteristic of the produced concrete was tested using the linear attenuation test. The results show that adding agricultural by-products of RSF in concrete production slightly enhanced the compressive strength by up to 7.0%, while it significantly improved the tensile and flexural properties by up to 17.1% and 25.8%, respectively. Additionally, a superior impact resistance of concrete was achieved by up to 48.6% owing to RSF addition. Furthermore, it enhanced the gamma shielding capability of concrete by up to 7.9%. The achievements in this study pave the way for utilizing RSF-reinforced concrete in various non-traditional applications.
{"title":"Performance of Rice Straw Fibers on Hardened Concrete Properties under Effect of Impact Load and Gamma Radiation","authors":"M. Mahdy, S. Mahfouz, A. Tawfic, Mohamed A. E. M. Ali","doi":"10.3390/fib11050042","DOIUrl":"https://doi.org/10.3390/fib11050042","url":null,"abstract":"Concrete is an essential artificial building material in modern society. However, because concrete structures have brittle characteristics, they have a limited service life when subjected to dynamic loads. Nuclear emissions and explosions threaten human lives and structures’ safety due to harmful radiation and dynamic effects. Since agriculture has revealed a large amount of by-products that require disposal, the use of such by-products in many sectors is a challenge for contemporary studies. One of the most important areas for the disposal of such waste is construction, and concrete in particular. The utilization of the agricultural by-product rice straw fiber was chosen in this study to replace the usage of artificial fibers in concrete production and present an eco-friendly prospective contender with enhanced static/dynamic performance and gamma shielding characteristics. Different concrete mixtures were proposed in this study to evaluate the aforementioned characteristics. The designed concrete mixtures were conventional concrete with variations in the volume fraction of rice straw fibers (RSF) of 0%, 0.25%, 0.5%, and 0.75%. The desired static properties were compressive strength, splitting tensile strength, and flexural strength. Additionally, the drop weight impact test was used in this study to investigate the impact resistance of RSF-reinforced concrete. Finally, the radiation-shielding characteristic of the produced concrete was tested using the linear attenuation test. The results show that adding agricultural by-products of RSF in concrete production slightly enhanced the compressive strength by up to 7.0%, while it significantly improved the tensile and flexural properties by up to 17.1% and 25.8%, respectively. Additionally, a superior impact resistance of concrete was achieved by up to 48.6% owing to RSF addition. Furthermore, it enhanced the gamma shielding capability of concrete by up to 7.9%. The achievements in this study pave the way for utilizing RSF-reinforced concrete in various non-traditional applications.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46933838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of the infiltration time of a carbon fiber yarn in the range of 6 to 13.6 s on the infiltrated volume under the cavitation of an aluminum melt has been studied. When the infiltration time was more than 10 s, the carbon fiber was completely infiltrated with the matrix melt, and a decrease in the infiltration time led to a monotonous decrease in the fraction of the infiltrated volume. Based on the experimental data, the infiltration rate and the pressure necessary to infiltrate a carbon fiber yarn with an aluminum melt were estimated. The infiltration rate was 20.9 cm3/s and was independent of the infiltration depth. The calculated pressure necessary for the complete infiltration of a carbon fiber yarn at this rate was about 270 Pa. A comparison of the pressure values calculated according to Darcy’s and Forchheimer’s laws showed that the difference between them did not exceed 0.01%. This indicates that a simpler Darcy’s law could be used to estimate pressure.
{"title":"On the Pressure and Rate of Infiltration Made by a Carbon Fiber Yarn with an Aluminum Melt during Ultrasonic Treatment","authors":"S. Galyshev, B. Atanov, V. Orlov","doi":"10.3390/fib11050041","DOIUrl":"https://doi.org/10.3390/fib11050041","url":null,"abstract":"The effect of the infiltration time of a carbon fiber yarn in the range of 6 to 13.6 s on the infiltrated volume under the cavitation of an aluminum melt has been studied. When the infiltration time was more than 10 s, the carbon fiber was completely infiltrated with the matrix melt, and a decrease in the infiltration time led to a monotonous decrease in the fraction of the infiltrated volume. Based on the experimental data, the infiltration rate and the pressure necessary to infiltrate a carbon fiber yarn with an aluminum melt were estimated. The infiltration rate was 20.9 cm3/s and was independent of the infiltration depth. The calculated pressure necessary for the complete infiltration of a carbon fiber yarn at this rate was about 270 Pa. A comparison of the pressure values calculated according to Darcy’s and Forchheimer’s laws showed that the difference between them did not exceed 0.01%. This indicates that a simpler Darcy’s law could be used to estimate pressure.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47804177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}