首页 > 最新文献

Evolving Systems最新文献

英文 中文
Modified remora optimization based matching pursuit with density peak clustering for localization of epileptic seizure onset zones 基于密度峰聚类的改进remoa优化匹配追踪定位癫痫发作区
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-02-14 DOI: 10.1007/s12530-023-09488-y
B. Priyadarshini, D. Reddy
{"title":"Modified remora optimization based matching pursuit with density peak clustering for localization of epileptic seizure onset zones","authors":"B. Priyadarshini, D. Reddy","doi":"10.1007/s12530-023-09488-y","DOIUrl":"https://doi.org/10.1007/s12530-023-09488-y","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"6 1","pages":"1-17"},"PeriodicalIF":3.2,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88226739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive deep Runge Kutta Garson’s network with node disjoint local repair protocol based multipath routing in MANET 基于节点不相交局部修复协议的自适应深度Runge - Kutta - Garson网络在MANET中的多路径路由
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-02-11 DOI: 10.1007/s12530-023-09487-z
Sangamesh C. Jalade, Nagaraj B. Patil
{"title":"Adaptive deep Runge Kutta Garson’s network with node disjoint local repair protocol based multipath routing in MANET","authors":"Sangamesh C. Jalade, Nagaraj B. Patil","doi":"10.1007/s12530-023-09487-z","DOIUrl":"https://doi.org/10.1007/s12530-023-09487-z","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"12 1","pages":"1-25"},"PeriodicalIF":3.2,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79901963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
High gain circular slot MIMO antenna for Wi-Max and WLAN application with minimum ECC value 用于Wi-Max和WLAN应用的高增益圆槽MIMO天线,具有最小的ECC值
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-31 DOI: 10.1007/s12530-023-09486-0
P. Sushmachowdary, Sampath Kumar Panda, V. Naidu
{"title":"High gain circular slot MIMO antenna for Wi-Max and WLAN application with minimum ECC value","authors":"P. Sushmachowdary, Sampath Kumar Panda, V. Naidu","doi":"10.1007/s12530-023-09486-0","DOIUrl":"https://doi.org/10.1007/s12530-023-09486-0","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"12 1","pages":"1-10"},"PeriodicalIF":3.2,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83515658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A league-knock-out tournament quantum particle swarm optimization algorithm for nonlinear constrained optimization problems and applications 联赛淘汰赛量子粒子群优化算法求解非线性约束优化问题及应用
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-28 DOI: 10.1007/s12530-023-09485-1
Goutam Mandal, N. Kumar, Avijit Duary, A. Shaikh, A. K. Bhunia
{"title":"A league-knock-out tournament quantum particle swarm optimization algorithm for nonlinear constrained optimization problems and applications","authors":"Goutam Mandal, N. Kumar, Avijit Duary, A. Shaikh, A. K. Bhunia","doi":"10.1007/s12530-023-09485-1","DOIUrl":"https://doi.org/10.1007/s12530-023-09485-1","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"22 9","pages":"1-27"},"PeriodicalIF":3.2,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72402753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and efficient exception tolerant ensemble for limited training 用于有限训练的快速有效的容错集成
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-18 DOI: 10.1007/s12530-022-09483-9
Sayan Sikder, Pankaj Dadure, Sanjeev K. Metya
{"title":"Fast and efficient exception tolerant ensemble for limited training","authors":"Sayan Sikder, Pankaj Dadure, Sanjeev K. Metya","doi":"10.1007/s12530-022-09483-9","DOIUrl":"https://doi.org/10.1007/s12530-022-09483-9","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"7 1","pages":"1-10"},"PeriodicalIF":3.2,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85217854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Autonomous acquisition of arbitrarily complex skills using locality based graph theoretic features: a syntactic approach to hierarchical reinforcement learning 基于局部性图论特征的任意复杂技能的自主获取:层次强化学习的句法方法
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-04 DOI: 10.1007/s12530-022-09478-6
Zeynep Kumralbaş, Semiha Hazel Çavuş, Kutalmış Coşkun, Borahan Tümer
{"title":"Autonomous acquisition of arbitrarily complex skills using locality based graph theoretic features: a syntactic approach to hierarchical reinforcement learning","authors":"Zeynep Kumralbaş, Semiha Hazel Çavuş, Kutalmış Coşkun, Borahan Tümer","doi":"10.1007/s12530-022-09478-6","DOIUrl":"https://doi.org/10.1007/s12530-022-09478-6","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"90 1","pages":"1-24"},"PeriodicalIF":3.2,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78552682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A human activity recognition method using wearable sensors based on convtransformer model 一种基于变压器模型的可穿戴传感器人体活动识别方法
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-03 DOI: 10.1007/s12530-022-09480-y
Zhanpeng Zhang, Wenting Wang, Aimin An, Yuwei Qin, F. Yang
{"title":"A human activity recognition method using wearable sensors based on convtransformer model","authors":"Zhanpeng Zhang, Wenting Wang, Aimin An, Yuwei Qin, F. Yang","doi":"10.1007/s12530-022-09480-y","DOIUrl":"https://doi.org/10.1007/s12530-022-09480-y","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"27 6 1","pages":"1-17"},"PeriodicalIF":3.2,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79584477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
EGPIECLMAC: efficient grayscale privacy image encryption with chaos logistics maps and Arnold Cat EGPIECLMAC:高效的灰度隐私图像加密与混沌物流地图和阿诺德猫
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-02 DOI: 10.1007/s12530-022-09482-w
Delavar Zareai, M. Balafar, Mohammadreza FeiziDerakhshi
{"title":"EGPIECLMAC: efficient grayscale privacy image encryption with chaos logistics maps and Arnold Cat","authors":"Delavar Zareai, M. Balafar, Mohammadreza FeiziDerakhshi","doi":"10.1007/s12530-022-09482-w","DOIUrl":"https://doi.org/10.1007/s12530-022-09482-w","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"32 1","pages":"1-31"},"PeriodicalIF":3.2,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74826345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Vaccination and isolation based control design of the COVID-19 pandemic based on adaptive neuro fuzzy inference system optimized with the genetic algorithm. 基于遗传算法优化的自适应神经模糊推理系统的新冠肺炎疫苗接种和隔离控制设计。
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-01 Epub Date: 2022-09-15 DOI: 10.1007/s12530-022-09459-9
Zohreh Abbasi, Mohsen Shafieirad, Amir Hossein Amiri Mehra, Iman Zamani

The study of the COVID-19 pandemic is of pivotal importance due to its tremendous global impacts. This paper aims to control this disease using an optimal strategy comprising two methods: isolation and vaccination. In this regard, an optimized Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed using the Genetic Algorithm (GA) to control the dynamic model of the COVID-19 termed SIDARTHE (Susceptible, Infected, Diagnosed, Ailing, Recognized, Threatened, Healed, and Extinct). The number of diagnosed and recognized people is reduced by isolation, and the number of susceptible people is reduced by vaccination. The GA generates optimal control efforts related to the random initial number of each chosen group as the input data for ANFIS to train Takagi-Sugeno (T-S) fuzzy structure coefficients. Also, three theorems are presented to indicate the positivity, boundedness, and existence of the solutions in the presence of the controller. The performance of the proposed system is evaluated through the mean squared error (MSE) and the root-mean-square error (RMSE). The simulation results show a significant decrease in the number of diagnosed, recognized, and susceptible individuals by employing the proposed controller, even with a 70% increase in transmissibility caused by various variants.

对新冠肺炎大流行的研究至关重要,因为它具有巨大的全球影响。本文旨在使用一种最佳策略来控制这种疾病,该策略包括两种方法:隔离和疫苗接种。在这方面,使用遗传算法(GA)开发了一种优化的自适应神经模糊推理系统(ANFIS),以控制被称为SIDARTHE(易感、感染、诊断、患病、识别、威胁、治愈和灭绝)的新冠肺炎的动态模型。隔离减少了确诊和识别人数,接种疫苗减少了易感人群。GA生成与每个所选组的随机初始数相关的最优控制努力,作为ANFIS训练Takagi-Sugeno(T-S)模糊结构系数的输入数据。同时,给出了三个定理来证明控制器存在时解的正性、有界性和存在性。通过均方误差(MSE)和均方根误差(RMSE)来评估所提出的系统的性能。模拟结果显示,通过使用所提出的控制器,诊断、识别和易感个体的数量显著减少,即使各种变体导致的传播性增加了70%。
{"title":"Vaccination and isolation based control design of the COVID-19 pandemic based on adaptive neuro fuzzy inference system optimized with the genetic algorithm.","authors":"Zohreh Abbasi,&nbsp;Mohsen Shafieirad,&nbsp;Amir Hossein Amiri Mehra,&nbsp;Iman Zamani","doi":"10.1007/s12530-022-09459-9","DOIUrl":"10.1007/s12530-022-09459-9","url":null,"abstract":"<p><p>The study of the COVID-19 pandemic is of pivotal importance due to its tremendous global impacts. This paper aims to control this disease using an optimal strategy comprising two methods: isolation and vaccination. In this regard, an optimized Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed using the Genetic Algorithm (GA) to control the dynamic model of the COVID-19 termed SIDARTHE (Susceptible, Infected, Diagnosed, Ailing, Recognized, Threatened, Healed, and Extinct). The number of diagnosed and recognized people is reduced by isolation, and the number of susceptible people is reduced by vaccination. The GA generates optimal control efforts related to the random initial number of each chosen group as the input data for ANFIS to train Takagi-Sugeno (T-S) fuzzy structure coefficients. Also, three theorems are presented to indicate the positivity, boundedness, and existence of the solutions in the presence of the controller. The performance of the proposed system is evaluated through the mean squared error (MSE) and the root-mean-square error (RMSE). The simulation results show a significant decrease in the number of diagnosed, recognized, and susceptible individuals by employing the proposed controller, even with a 70% increase in transmissibility caused by various variants.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"14 3","pages":"413-435"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9479569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
DBF-Net: a semi-supervised dual-task balanced fusion network for segmenting infected regions from lung CT images. DBF-Net:一种用于从肺部CT图像中分割感染区域的半监督双任务平衡融合网络。
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-01-01 Epub Date: 2022-09-19 DOI: 10.1007/s12530-022-09466-w
Xiaoyan Lu, Yang Xu, Wenhao Yuan

Accurate segmentation of infected regions in lung computed tomography (CT) images is essential to improve the timeliness and effectiveness of treatment for coronavirus disease 2019 (COVID-19). However, the main difficulties in developing of lung lesion segmentation in COVID-19 are still the fuzzy boundary of the lung-infected region, the low contrast between the infected region and the normal trend region, and the difficulty in obtaining labeled data. To this end, we propose a novel dual-task consistent network framework that uses multiple inputs to continuously learn and extract lung infection region features, which is used to generate reliable label images (pseudo-labels) and expand the dataset. Specifically, we periodically feed multiple sets of raw and data-enhanced images into two trunk branches of the network; the characteristics of the lung infection region are extracted by a lightweight double convolution (LDC) module and fusiform equilibrium fusion pyramid (FEFP) convolution in the backbone. According to the learned features, the infected regions are segmented, and pseudo-labels are made based on the semi-supervised learning strategy, which effectively alleviates the semi-supervised problem of unlabeled data. Our proposed semi-supervised dual-task balanced fusion network (DBF-Net) creates pseudo-labels on the COVID-SemiSeg dataset and the COVID-19 CT segmentation dataset. Furthermore, we perform lung infection segmentation on the DBF-Net model, with a segmentation sensitivity of 70.6% and specificity of 92.8%. The results of the investigation indicate that the proposed network greatly enhances the segmentation ability of COVID-19 infection.

肺部计算机断层扫描(CT)图像中感染区域的准确分割对于提高2019冠状病毒病(新冠肺炎)治疗的及时性和有效性至关重要。然而,新冠肺炎肺部病变分割发展的主要困难仍然是肺部感染区域的模糊边界、感染区域与正常趋势区域之间的低对比度以及难以获得标记数据。为此,我们提出了一种新的双任务一致性网络框架,该框架使用多个输入来连续学习和提取肺部感染区域特征,用于生成可靠的标签图像(伪标签)并扩展数据集。具体来说,我们周期性地将多组原始图像和数据增强图像馈送到网络的两个主干分支中;肺部感染区域的特征通过骨干中的轻量级双卷积(LDC)模块和纺锤形平衡融合金字塔(FEFP)卷积来提取。根据学习到的特征,对感染区域进行分割,并基于半监督学习策略制作伪标签,有效缓解了未标记数据的半监督问题。我们提出的半监督双任务平衡融合网络(DBF-Net)在COVID-SemiSeg数据集和新冠肺炎CT分割数据集上创建伪拉贝尔。此外,我们在DBF-Net模型上进行了肺部感染的分割,分割灵敏度为70.6%,特异性为92.8%。研究结果表明,所提出的网络大大提高了新冠肺炎感染的分割能力。
{"title":"DBF-Net: a semi-supervised dual-task balanced fusion network for segmenting infected regions from lung CT images.","authors":"Xiaoyan Lu,&nbsp;Yang Xu,&nbsp;Wenhao Yuan","doi":"10.1007/s12530-022-09466-w","DOIUrl":"10.1007/s12530-022-09466-w","url":null,"abstract":"<p><p>Accurate segmentation of infected regions in lung computed tomography (CT) images is essential to improve the timeliness and effectiveness of treatment for coronavirus disease 2019 (COVID-19). However, the main difficulties in developing of lung lesion segmentation in COVID-19 are still the fuzzy boundary of the lung-infected region, the low contrast between the infected region and the normal trend region, and the difficulty in obtaining labeled data. To this end, we propose a novel dual-task consistent network framework that uses multiple inputs to continuously learn and extract lung infection region features, which is used to generate reliable label images (pseudo-labels) and expand the dataset. Specifically, we periodically feed multiple sets of raw and data-enhanced images into two trunk branches of the network; the characteristics of the lung infection region are extracted by a lightweight double convolution (LDC) module and fusiform equilibrium fusion pyramid (FEFP) convolution in the backbone. According to the learned features, the infected regions are segmented, and pseudo-labels are made based on the semi-supervised learning strategy, which effectively alleviates the semi-supervised problem of unlabeled data. Our proposed semi-supervised dual-task balanced fusion network (DBF-Net) creates pseudo-labels on the COVID-SemiSeg dataset and the COVID-19 CT segmentation dataset. Furthermore, we perform lung infection segmentation on the DBF-Net model, with a segmentation sensitivity of 70.6% and specificity of 92.8%. The results of the investigation indicate that the proposed network greatly enhances the segmentation ability of COVID-19 infection.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"14 3","pages":"519-532"},"PeriodicalIF":3.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9491207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Evolving Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1