Frailty, a reversible clinical geriatric syndrome, impairs the ability to maintain homeostasis, leading to severe consequences such as hospitalization and death. Cognitive frailty, characterized by the co-occurrence of physical frailty and cognitive impairment, has garnered increasing attention in recent years. Preclinical models, especially rodent studies, are essential for understanding frailty and developing interventions to mitigate associated conditions. Traditionally, animal studies have focused solely on physical frailty. We have pioneered the inclusion of cognitive parameters by developing a novel physical-cognitive frailty score (FS) in animal research, in order to assess the effectiveness of anti-aging interventions. Here, we provide a detailed example of the FS calculation at the group level, which can serve as a guide for other studies. This dual-focus approach also helps in understanding how physical frailty and cognitive impairment interact to exacerbate adverse health outcomes and provides an opportunity to evaluate potential interventions that target both physical and cognitive dimensions of frailty more reliably.
{"title":"Evaluating frailty scores across experimental groups in rodent models: bridging physical and cognitive domains.","authors":"Aleksandra Mladenovic, Smilja Pracer","doi":"10.1002/2211-5463.13955","DOIUrl":"https://doi.org/10.1002/2211-5463.13955","url":null,"abstract":"<p><p>Frailty, a reversible clinical geriatric syndrome, impairs the ability to maintain homeostasis, leading to severe consequences such as hospitalization and death. Cognitive frailty, characterized by the co-occurrence of physical frailty and cognitive impairment, has garnered increasing attention in recent years. Preclinical models, especially rodent studies, are essential for understanding frailty and developing interventions to mitigate associated conditions. Traditionally, animal studies have focused solely on physical frailty. We have pioneered the inclusion of cognitive parameters by developing a novel physical-cognitive frailty score (FS) in animal research, in order to assess the effectiveness of anti-aging interventions. Here, we provide a detailed example of the FS calculation at the group level, which can serve as a guide for other studies. This dual-focus approach also helps in understanding how physical frailty and cognitive impairment interact to exacerbate adverse health outcomes and provides an opportunity to evaluate potential interventions that target both physical and cognitive dimensions of frailty more reliably.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Meng, Mengna Kang, Zhiyun Yu, Changyou Li, Yang Chen, Taicheng Jin, Kai Wang, Haiyong Guo
Methicillin-resistant Staphylococcus aureus (MRSA) poses a challenge for clinical treatment and combining antibiotics with other agents might be a promising strategy to overcome this challenge. This study explored the synergistic antibacterial activity of baicalin (traditional Chinese medicine extract) and the narrow-spectrum beta-lactam antibiotic oxacillin sodium, both of which are poorly active against MRSA in vitro. The combination of baicalin and oxacillin sodium showed a synergistic effect with a fractional inhibitory concentration index of 0.5. Mechanistically, the supplementation of baicalin increased the permeability of bacterial cell walls and cell membranes, enhancing oxacillin sodium entry and bactericidal action. The combination of baicalin and oxacillin sodium also significantly inhibited MRSA USA300 biofilm formation by further reducing polysaccharide intercellular adhesion production. Therefore, the combination of baicalin and oxacillin sodium offers a new therapeutic option for addressing clinical MRSA resistance. Further studies, including clinical trials, will be required to validate the observed in vitro results.
{"title":"Synergistic antibacterial activity of baicalin in combination with oxacillin sodium against methicillin-resistant Staphylococcus aureus.","authors":"Xin Meng, Mengna Kang, Zhiyun Yu, Changyou Li, Yang Chen, Taicheng Jin, Kai Wang, Haiyong Guo","doi":"10.1002/2211-5463.13952","DOIUrl":"https://doi.org/10.1002/2211-5463.13952","url":null,"abstract":"<p><p>Methicillin-resistant Staphylococcus aureus (MRSA) poses a challenge for clinical treatment and combining antibiotics with other agents might be a promising strategy to overcome this challenge. This study explored the synergistic antibacterial activity of baicalin (traditional Chinese medicine extract) and the narrow-spectrum beta-lactam antibiotic oxacillin sodium, both of which are poorly active against MRSA in vitro. The combination of baicalin and oxacillin sodium showed a synergistic effect with a fractional inhibitory concentration index of 0.5. Mechanistically, the supplementation of baicalin increased the permeability of bacterial cell walls and cell membranes, enhancing oxacillin sodium entry and bactericidal action. The combination of baicalin and oxacillin sodium also significantly inhibited MRSA USA300 biofilm formation by further reducing polysaccharide intercellular adhesion production. Therefore, the combination of baicalin and oxacillin sodium offers a new therapeutic option for addressing clinical MRSA resistance. Further studies, including clinical trials, will be required to validate the observed in vitro results.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengyue You, Di Wang, Zheng Liu, Shuzhen Guan, Ning Xiao, Haotian Chen, Xin Zhang, Lichuan Wu, Guizhen Wang, Haitao Dong
Oral squamous cell carcinoma (OSCC) is the one of the most common types of malignant tumor found in the head and neck area. Replication factor C subunit 4 (RFC4), an oncogene active in various human cancers, has been rarely studied in OSCC. In the present study, bioinformatics analysis identified RFC4 as a potential key target in OSCC progression. Additional experiments showed that RFC4 expression was significantly higher in OSCC tumor tissues than in normal tissues. Knockdown of RFC4 led to G2/M phase cell cycle arrest and inhibited the proliferation of OSCC cells both in vitro and in vivo. High RFC4 expression in OSCC tumors was linked to increased levels of MET, along with reduced levels of CD274 and CD160. Overall, the present study reveals that RFC4 may play a pivotal role in OSCC tumorigenesis and could serve as a potential predictive marker for the efficacy of immunotherapy.
{"title":"Knockdown of RFC4 inhibits cell proliferation of oral squamous cell carcinoma in vitro and in vivo","authors":"Pengyue You, Di Wang, Zheng Liu, Shuzhen Guan, Ning Xiao, Haotian Chen, Xin Zhang, Lichuan Wu, Guizhen Wang, Haitao Dong","doi":"10.1002/2211-5463.13929","DOIUrl":"10.1002/2211-5463.13929","url":null,"abstract":"<p>Oral squamous cell carcinoma (OSCC) is the one of the most common types of malignant tumor found in the head and neck area. Replication factor C subunit 4 (RFC4), an oncogene active in various human cancers, has been rarely studied in OSCC. In the present study, bioinformatics analysis identified RFC4 as a potential key target in OSCC progression. Additional experiments showed that RFC4 expression was significantly higher in OSCC tumor tissues than in normal tissues. Knockdown of RFC4 led to G2/M phase cell cycle arrest and inhibited the proliferation of OSCC cells both <i>in vitro</i> and <i>in vivo</i>. High RFC4 expression in OSCC tumors was linked to increased levels of MET, along with reduced levels of CD274 and CD160. Overall, the present study reveals that RFC4 may play a pivotal role in OSCC tumorigenesis and could serve as a potential predictive marker for the efficacy of immunotherapy.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":"15 2","pages":"346-358"},"PeriodicalIF":2.8,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/2211-5463.13929","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Igor R M Silva, Maria B Takahashi, Aline F Teixeira, Ana L T O Nascimento
Pathogenic Leptospira is the etiological cause of the zoonotic life-threatening infection called leptospirosis. The disease is spread worldwide with higher risk in tropical regions. Although leptospirosis represents a burden to the health of humans and animals, the pathogenic mechanisms of Leptospira infection are yet to be clarified. Leptospirosis infection is multifactorial, involving functionally redundant proteins with the capability to invade, disseminate, and escape the host's immune response. In this work, we describe a putative lipoprotein encoded by the gene LIC_13355, genome annotated as hypothetical of unknown function. The coding sequence is conserved among pathogenic Leptospira spp. with high percentage of coverage and identity. The recombinant protein, rLIC_13355, was expressed in Escherichia coli host system in its insoluble form. The circular dichroism spectrum of the refolded protein showed it containing a mixture of secondary structures. rLIC_13355 interacts with extracellular matrix (ECM) component laminin and binds plasminogen (PLG), generating plasmin (PLA), thus possibly participating during the adhesion and dissemination processes. The rLIC_13355 has the ability to interact with Ea.hy926 and HMEC-1 endothelial cells either in monolayer or suspension. The binding of rLIC_13355 with monolayer cells is dose-dependent on protein concentration. Taken together, our data suggest that this is presumably an adhesion lipoprotein that may play diverse roles in host-Leptospira interactions by mediating the interaction with host components and with endothelial cell.
{"title":"Evaluation of binding activities of a putative lipoprotein LIC_13355 of Leptospira spp.","authors":"Igor R M Silva, Maria B Takahashi, Aline F Teixeira, Ana L T O Nascimento","doi":"10.1002/2211-5463.13942","DOIUrl":"https://doi.org/10.1002/2211-5463.13942","url":null,"abstract":"<p><p>Pathogenic Leptospira is the etiological cause of the zoonotic life-threatening infection called leptospirosis. The disease is spread worldwide with higher risk in tropical regions. Although leptospirosis represents a burden to the health of humans and animals, the pathogenic mechanisms of Leptospira infection are yet to be clarified. Leptospirosis infection is multifactorial, involving functionally redundant proteins with the capability to invade, disseminate, and escape the host's immune response. In this work, we describe a putative lipoprotein encoded by the gene LIC_13355, genome annotated as hypothetical of unknown function. The coding sequence is conserved among pathogenic Leptospira spp. with high percentage of coverage and identity. The recombinant protein, rLIC_13355, was expressed in Escherichia coli host system in its insoluble form. The circular dichroism spectrum of the refolded protein showed it containing a mixture of secondary structures. rLIC_13355 interacts with extracellular matrix (ECM) component laminin and binds plasminogen (PLG), generating plasmin (PLA), thus possibly participating during the adhesion and dissemination processes. The rLIC_13355 has the ability to interact with Ea.hy926 and HMEC-1 endothelial cells either in monolayer or suspension. The binding of rLIC_13355 with monolayer cells is dose-dependent on protein concentration. Taken together, our data suggest that this is presumably an adhesion lipoprotein that may play diverse roles in host-Leptospira interactions by mediating the interaction with host components and with endothelial cell.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomedical research is currently benefiting from a technological revolution in which multiple forms of omics are permitting unprecedented characterization of molecular pathways. Likewise, medical device and Ai-assisted technologies now make diagnoses and medical imaging more accurate. The field of education is also starting to embrace how technology can promote pedagogical development and student learning. But how will this landscape look like in 2050? With the premise that collaboration will be central to teaching and learning practices, that Together, Everything Can Happen (TECH), we examine the emerging trends and innovations in biomedical education, exploring how they will influence the field's evolution and shape future teaching practices in the coming years.
{"title":"Using TECHnology to predict the future of biomedical education","authors":"Robert A. Harris, Hasan Kazdağlı","doi":"10.1002/2211-5463.13953","DOIUrl":"10.1002/2211-5463.13953","url":null,"abstract":"<p>Biomedical research is currently benefiting from a technological revolution in which multiple forms of omics are permitting unprecedented characterization of molecular pathways. Likewise, medical device and Ai-assisted technologies now make diagnoses and medical imaging more accurate. The field of education is also starting to embrace how technology can promote pedagogical development and student learning. But how will this landscape look like in 2050? With the premise that collaboration will be central to teaching and learning practices, that Together, Everything Can Happen (TECH), we examine the emerging trends and innovations in biomedical education, exploring how they will influence the field's evolution and shape future teaching practices in the coming years.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":"15 1","pages":"48-55"},"PeriodicalIF":2.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ly Villo, Nino Sincic, Luciane V. Mello, Manuel Joao Costa, Didier Picard, Francesco Malatesta, Jerka Dumic, Ferhan G. Sagin
The inaugural FEBS Education and Training Conference (ETC) was held in Türkiye, in 2024. This first-ever Molecular Life Sciences Education Conference in Europe was organized by the FEBS Education and Training Committee and it was a groundbreaking event that brought together educators and scientists to explore how to enhance education and training in molecular life sciences. The conference explored a wide range of critical themes, for example—digital revolution, active learning and student engagement, multidisciplinary teaching and learning, transitions and inclusivity in education, students' self-assessment, and self-regulated learning. The discussions and presentations underscored the pressing need for transformation in how academics and researchers approach teaching and learning. Such shift is driven by rapid technological advancements, societal shifts, and the evolving demands of the scientific landscape. This document synthesizes key insights, discussions, and recommendations from the conference and proposes actionable strategies for all stakeholders in the field—institutions, educators and students—to address current challenges in education and training in molecular life sciences.
{"title":"A white paper from the FEBS Education and Training Conference: challenges, opportunities, and action plans for transforming molecular life sciences education","authors":"Ly Villo, Nino Sincic, Luciane V. Mello, Manuel Joao Costa, Didier Picard, Francesco Malatesta, Jerka Dumic, Ferhan G. Sagin","doi":"10.1002/2211-5463.13916","DOIUrl":"10.1002/2211-5463.13916","url":null,"abstract":"<p>The inaugural FEBS Education and Training Conference (ETC) was held in Türkiye, in 2024. This first-ever Molecular Life Sciences Education Conference in Europe was organized by the FEBS Education and Training Committee and it was a groundbreaking event that brought together educators and scientists to explore how to enhance education and training in molecular life sciences. The conference explored a wide range of critical themes, for example—digital revolution, active learning and student engagement, multidisciplinary teaching and learning, transitions and inclusivity in education, students' self-assessment, and self-regulated learning. The discussions and presentations underscored the pressing need for transformation in how academics and researchers approach teaching and learning. Such shift is driven by rapid technological advancements, societal shifts, and the evolving demands of the scientific landscape. This document synthesizes key insights, discussions, and recommendations from the conference and proposes actionable strategies for all stakeholders in the field—institutions, educators and students—to address current challenges in education and training in molecular life sciences.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":"15 1","pages":"11-20"},"PeriodicalIF":2.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentina De Nunzio, Emanuela Aloisio Caruso, Matteo Centonze, Giuliano Pinto, Miriam Cofano, Ilenia Saponara, Maria Notarnicola
The condition of cellular senescence has specific features, including an altered lipid metabolism. Delta-9 desaturase (Δ9) catalyzes the conversion of saturated fatty acids, such as palmitic acid and stearic acid, into their monounsaturated forms, palmitoleic and oleic acid, respectively. Δ9 activity is important for most lipid functions, such as membrane fluidity, lipoprotein metabolism and energy storage. The present study aimed to investigate differences in the expression of Δ9 in senescence-induced pancreatic (MIA-PaCa-2 and PANC-1) and hepatic (Hepa-RG and HLF) cancer cell lines. Cellular senescence was induced by growing cells in the presence of the chemotherapic drug doxorubicin. Senescence status was determined by the senescence-associated beta-galactosidase activity assay kit combined with the p21 and senescence associated secretory phenotype protein assay. Δ9 was downregulated in all senescence-induced cell lines compared to control cells, in both the lipidomic analysis and when measuring protein levels via western blotting. Hence, our findings demonstrate that the study of membrane lipid composition and the expression levels of Δ9 could potentially form the basis for future applications investigating the state of cellular senescence.
{"title":"Delta-9 desaturase reduction in gastrointestinal cells induced to senescence by doxorubicin.","authors":"Valentina De Nunzio, Emanuela Aloisio Caruso, Matteo Centonze, Giuliano Pinto, Miriam Cofano, Ilenia Saponara, Maria Notarnicola","doi":"10.1002/2211-5463.13945","DOIUrl":"https://doi.org/10.1002/2211-5463.13945","url":null,"abstract":"<p><p>The condition of cellular senescence has specific features, including an altered lipid metabolism. Delta-9 desaturase (Δ9) catalyzes the conversion of saturated fatty acids, such as palmitic acid and stearic acid, into their monounsaturated forms, palmitoleic and oleic acid, respectively. Δ9 activity is important for most lipid functions, such as membrane fluidity, lipoprotein metabolism and energy storage. The present study aimed to investigate differences in the expression of Δ9 in senescence-induced pancreatic (MIA-PaCa-2 and PANC-1) and hepatic (Hepa-RG and HLF) cancer cell lines. Cellular senescence was induced by growing cells in the presence of the chemotherapic drug doxorubicin. Senescence status was determined by the senescence-associated beta-galactosidase activity assay kit combined with the p21 and senescence associated secretory phenotype protein assay. Δ9 was downregulated in all senescence-induced cell lines compared to control cells, in both the lipidomic analysis and when measuring protein levels via western blotting. Hence, our findings demonstrate that the study of membrane lipid composition and the expression levels of Δ9 could potentially form the basis for future applications investigating the state of cellular senescence.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Several studies have suggested a potential antitumor effect of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD). To further understand the mechanism of action of this compound, we investigated its effect on the phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. We show that DMDD application significantly inhibited the proliferation of breast cancer cell lines MDA-MB-231 and ER-α positive MCF-7. Furthermore, DMDD application resulted in increased intracellular reactive oxygen species (ROS) levels, apoptosis and autophagy, whereas it downregulated the expression of PI3K, Akt and mTOR mRNA and proteins, and increased the expression of LC3II/I and p62 proteins. In a mouse breast cancer xenograft model, DMDD inhibited tumor growth. Expression analyses suggest that ROS levels were higher in DMDD treated tumor tissues, whereas immunohistochemical analyses suggest that apoptotic cells were more prevalent in the DMDD treated group compared to the control group. Taken together, our results suggest that the molecular mechanism of action of DMDD may involve the enhancement of breast cancer autophagy through the PI3K/Akt/mTOR signaling pathway by mediating ROS expression.
{"title":"2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione mediates the effect of ROS-enhanced PI3K/Akt/mTOR pathway on autophagy in breast cancer.","authors":"Linqian Chen, Meifeng Chen, Yan Xie, Yuyan Zhang, Shutian Mo, Yongfei He, Tianyi Liang, Yuan Liao, Renbin Huang, Guodong Huang, Chuangye Han, Thi Thai Hoa Pham","doi":"10.1002/2211-5463.13940","DOIUrl":"https://doi.org/10.1002/2211-5463.13940","url":null,"abstract":"<p><p>Several studies have suggested a potential antitumor effect of 2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD). To further understand the mechanism of action of this compound, we investigated its effect on the phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. We show that DMDD application significantly inhibited the proliferation of breast cancer cell lines MDA-MB-231 and ER-α positive MCF-7. Furthermore, DMDD application resulted in increased intracellular reactive oxygen species (ROS) levels, apoptosis and autophagy, whereas it downregulated the expression of PI3K, Akt and mTOR mRNA and proteins, and increased the expression of LC3II/I and p62 proteins. In a mouse breast cancer xenograft model, DMDD inhibited tumor growth. Expression analyses suggest that ROS levels were higher in DMDD treated tumor tissues, whereas immunohistochemical analyses suggest that apoptotic cells were more prevalent in the DMDD treated group compared to the control group. Taken together, our results suggest that the molecular mechanism of action of DMDD may involve the enhancement of breast cancer autophagy through the PI3K/Akt/mTOR signaling pathway by mediating ROS expression.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retraction: R. Su, W. Su, and Q. Jiao, "NGF Protects Neuroblastoma Cells Against β-Amyloid-Induced Apoptosis via the Nrf2/HO-1 pathway," FEBS Open Bio 9, no. 12 (2019): 2063-2071, https://doi.org/10.1002/2211-5463.12742. The above article, published online on 01 November 2019, in Wiley Online Library (wileyonlinelibrary.com), and its correction (https://doi.org/10.1002/2211-5463.12782) has been retracted by agreement between the journal Editor-in-Chief, Miguel A. De la Rosa; FEBS Press; and John Wiley and Sons Ltd. The retraction has been agreed upon following an investigation into concerns raised by a third party, which revealed inappropriate image duplications between this (Figure 2A, 3A, 5A and 6E) and other articles that were previously published or published in the same or following year. Given the extent of the identified issues, the editors have lost confidence in the data presented and consider the conclusions of this manuscript substantially compromised.
引用本文:苏仁,苏伟,焦强,“NGF对β-淀粉样蛋白诱导的神经母细胞瘤细胞凋亡的保护作用:通过Nrf2/HO-1途径,”中华医学杂志,第9期。12 (2019): 2063-2071, https://doi.org/10.1002/2211-5463.12742。上述文章于2019年11月1日在线发表在Wiley在线图书馆(wileyonlinelibrary.com),其更正(https://doi.org/10.1002/2211-5463.12782)已经期刊主编Miguel A. De la Rosa同意撤回;2月出版社;及约翰威利父子有限公司。在对第三方提出的问题进行调查后,我们同意撤回这篇文章(图2A、3A、5A和6E)与之前发表或同年或次年发表的其他文章之间存在不适当的图像重复。鉴于已确定问题的程度,编辑对所提供的数据失去了信心,并认为这篇手稿的结论在很大程度上受到了损害。
{"title":"RETRACTION: NGF Protects Neuroblastoma Cells Against β-Amyloid-Induced Apoptosis via the Nrf2/HO-1 pathway.","authors":"","doi":"10.1002/2211-5463.13950","DOIUrl":"https://doi.org/10.1002/2211-5463.13950","url":null,"abstract":"<p><strong>Retraction: </strong>R. Su, W. Su, and Q. Jiao, \"NGF Protects Neuroblastoma Cells Against β-Amyloid-Induced Apoptosis via the Nrf2/HO-1 pathway,\" FEBS Open Bio 9, no. 12 (2019): 2063-2071, https://doi.org/10.1002/2211-5463.12742. The above article, published online on 01 November 2019, in Wiley Online Library (wileyonlinelibrary.com), and its correction (https://doi.org/10.1002/2211-5463.12782) has been retracted by agreement between the journal Editor-in-Chief, Miguel A. De la Rosa; FEBS Press; and John Wiley and Sons Ltd. The retraction has been agreed upon following an investigation into concerns raised by a third party, which revealed inappropriate image duplications between this (Figure 2A, 3A, 5A and 6E) and other articles that were previously published or published in the same or following year. Given the extent of the identified issues, the editors have lost confidence in the data presented and consider the conclusions of this manuscript substantially compromised.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retraction: Y. Xu, Y. Gao, Z. Huang, Y. Zheng, W. Teng, D. Zheng, and X. Zheng, "LKB1 Suppresses Androgen Synthesis in a Mouse Model of Hyperandrogenism via IGF-1 Signaling," FEBS Open Bio 9, no. 10 (2019): 1817-1825, https://doi.org/10.1002/2211-5463.12723. The above article, published online on 12 September 2019, in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Miguel A. De la Rosa; FEBS Press; and John Wiley and Sons Ltd. The retraction has been agreed upon following an investigation into concerns raised by a third party, which revealed inappropriate image duplications between this (Figure 1C, 1H) and other articles that were previously published or published in the same or following year. Given the extent of the identified issues, the editors have lost confidence in the data presented and consider the conclusions of this manuscript substantially compromised.
引用本文:徐艳,黄志明,郑艳,滕伟,郑东,郑晓霞,“LKB1通过IGF-1信号抑制雄激素合成的小鼠模型”,中国生物医学工程学报,第9期,第1 - 4期。10 (2019): 1817-1825, https://doi.org/10.1002/2211-5463.12723。上述文章于2019年9月12日在线发表在Wiley在线图书馆(wileyonlinelibrary.com)上,经期刊主编Miguel A. De la Rosa;2月出版社;及约翰威利父子有限公司。在对第三方提出的问题进行调查后,我们同意撤回这篇文章(图1C, 1H)与之前发表或同年或次年发表的其他文章之间存在不适当的图像重复。鉴于已确定问题的程度,编辑对所提供的数据失去了信心,并认为这篇手稿的结论在很大程度上受到了损害。
{"title":"RETRACTION: LKB1 Suppresses Androgen Synthesis in a Mouse Model of Hyperandrogenism via IGF-1 Signaling.","authors":"","doi":"10.1002/2211-5463.13948","DOIUrl":"https://doi.org/10.1002/2211-5463.13948","url":null,"abstract":"<p><strong>Retraction: </strong>Y. Xu, Y. Gao, Z. Huang, Y. Zheng, W. Teng, D. Zheng, and X. Zheng, \"LKB1 Suppresses Androgen Synthesis in a Mouse Model of Hyperandrogenism via IGF-1 Signaling,\" FEBS Open Bio 9, no. 10 (2019): 1817-1825, https://doi.org/10.1002/2211-5463.12723. The above article, published online on 12 September 2019, in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor-in-Chief, Miguel A. De la Rosa; FEBS Press; and John Wiley and Sons Ltd. The retraction has been agreed upon following an investigation into concerns raised by a third party, which revealed inappropriate image duplications between this (Figure 1C, 1H) and other articles that were previously published or published in the same or following year. Given the extent of the identified issues, the editors have lost confidence in the data presented and consider the conclusions of this manuscript substantially compromised.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}