Pub Date : 2024-10-01DOI: 10.1016/j.exphem.2024.104652
Thomas Köhnke, Yang Feng, Ravindra Majeti
Functional experimentation has laid the foundation for our understanding of hematopoietic and leukemic stem cells. Yet, most recently, a flurry of descriptive studies of primary human cells, fueled by rapid technological advances in sequencing technologies, have emerged. These increasing opportunities to describe at great detail have taken precedence over rigorously interrogating functional mediators of biology, particularly in primary human cells. Here, we argue that an improved toolset of gene editing and stem cell biology technologies will allow the field to expand beyond extensive descriptive studies to more functional studies.
{"title":"A new era of functional experimentation in human hematopoiesis and leukemia research.","authors":"Thomas Köhnke, Yang Feng, Ravindra Majeti","doi":"10.1016/j.exphem.2024.104652","DOIUrl":"10.1016/j.exphem.2024.104652","url":null,"abstract":"<p><p>Functional experimentation has laid the foundation for our understanding of hematopoietic and leukemic stem cells. Yet, most recently, a flurry of descriptive studies of primary human cells, fueled by rapid technological advances in sequencing technologies, have emerged. These increasing opportunities to describe at great detail have taken precedence over rigorously interrogating functional mediators of biology, particularly in primary human cells. Here, we argue that an improved toolset of gene editing and stem cell biology technologies will allow the field to expand beyond extensive descriptive studies to more functional studies.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104652"},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.exphem.2024.104648
Mame P. Diop, Sjoukje J.C. van der Stegen
Adoptive cell therapy (ACT) enhances the patient's own immune cells’ ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells’ inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
采用细胞疗法(ACT)可增强患者自身免疫细胞识别和消灭癌细胞的能力。目前有几种免疫细胞类型被应用于自体细胞疗法,包括 T 细胞、自然杀伤(NK)细胞和巨噬细胞。这些细胞可以利用其固有的抗肿瘤能力,也可以通过表达嵌合抗原受体(CAR)靶向肿瘤相关抗原。虽然基于 CAR 的 ACT 疗法在血液恶性肿瘤中取得了巨大的成果,但这种疗法的自体性质限制了 ACT 的可及性。诱导多能干细胞(iPSCs)为体外生成免疫细胞提供了无限的来源,因此有可能解决这一难题。从 iPSC 中生成的各种免疫亚群已应用于 ACT,包括几种 T 细胞亚群(αβT 细胞、粘膜相关不变 T 细胞、不变 NKT(iNKT)细胞和 γδT 细胞)以及 NK 细胞、巨噬细胞和中性粒细胞。在 iPSC 水平进行(多重)基因编辑并随后分化为效应细胞群的能力,不仅扩大了 ACT 的武器库,而且允许利用无法从外周血中有效获取或在体外设计和扩增的细胞类型开发 ACT。
{"title":"The Pluripotent Path to Immunotherapy","authors":"Mame P. Diop, Sjoukje J.C. van der Stegen","doi":"10.1016/j.exphem.2024.104648","DOIUrl":"10.1016/j.exphem.2024.104648","url":null,"abstract":"<div><div>Adoptive cell therapy (ACT) enhances the patient's own immune cells’ ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells’ inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.</div></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"139 ","pages":"Article 104648"},"PeriodicalIF":2.5,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to determine the expression levels of the autophagy markers Beclin-1 and p62 in patients with diffuse large B-cell lymphoma (DLBCL) and explore the association between autophagy and disease prognosis. The expression of Beclin-1 and p62 was investigated in patients with DLBCL and patients with reactive lymphoproliferative disease (RLD) using immunohistochemistry. The association between the clinical characteristics of patients with DLBCL and autophagy status was further analyzed. Beclin-1 levels were increased in RLD patients compared with those with DLBCL, but the difference was not statistically significant (p > 0.05). p62 levels in DLBCL patients were significantly higher than those in RLD patients (p < 0.05). Beclin-1 expression was associated only with the Ann Arbor stage (p < 0.05), whereas p62 expression was associated with the Ann Arbor stage, IPI score, extranodal involvement, and Ki-67 index (p < 0.05). Beclin-1 and p62 levels were not associated with short-term treatment efficacy in DLBCL patients. Survival analysis showed that Beclin-1 expression had no significant effect on 2-year progression-free survival (PFS) or overall survival (OS) (p > 0.05). However, high p62 expression in DLBCL patients was associated with reduced 2-year PFS compared with that of patients with low p62 expression (p < 0.05); the 2-year OS was not affected (p > 0.05). Our results demonstrate that autophagic activity affects the prognosis of DLBCL patients; the lower the autophagic activity, the shorter the PFS. Targeted p62 knockout may be a novel therapeutic strategy for the treatment of DLBCL patients.
{"title":"Downregulation of autophagy is associated with poor clinical outcome after immunochemotherapy in patients with diffuse large B-cell lymphoma","authors":"Ya-Li Zhang , Meng-Xue Ma , Li-Na Xing , Jing-Nan Zhang , Xiao-Nan Guo , Shu-kai Qiao","doi":"10.1016/j.exphem.2024.104638","DOIUrl":"10.1016/j.exphem.2024.104638","url":null,"abstract":"<div><div>This study aimed to determine the expression levels of the autophagy markers Beclin-1 and p62 in patients with diffuse large B-cell lymphoma (DLBCL) and explore the association between autophagy and disease prognosis. The expression of Beclin-1 and p62 was investigated in patients with DLBCL and patients with reactive lymphoproliferative disease (RLD) using immunohistochemistry. The association between the clinical characteristics of patients with DLBCL and autophagy status was further analyzed. Beclin-1 levels were increased in RLD patients compared with those with DLBCL, but the difference was not statistically significant (<em>p</em> > 0.05). p62 levels in DLBCL patients were significantly higher than those in RLD patients (<em>p</em> < 0.05). Beclin-1 expression was associated only with the Ann Arbor stage (<em>p</em> < 0.05), whereas p62 expression was associated with the Ann Arbor stage, IPI score, extranodal involvement, and Ki-67 index (<em>p</em> < 0.05). Beclin-1 and p62 levels were not associated with short-term treatment efficacy in DLBCL patients. Survival analysis showed that Beclin-1 expression had no significant effect on 2-year progression-free survival (PFS) or overall survival (OS) (<em>p</em> > 0.05). However, high p62 expression in DLBCL patients was associated with reduced 2-year PFS compared with that of patients with low p62 expression (<em>p</em> < 0.05); the 2-year OS was not affected (<em>p</em> > 0.05). Our results demonstrate that autophagic activity affects the prognosis of DLBCL patients; the lower the autophagic activity, the shorter the PFS. Targeted p62 knockout may be a novel therapeutic strategy for the treatment of DLBCL patients.</div></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"139 ","pages":"Article 104638"},"PeriodicalIF":2.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CREB3L1, a gene encoding the endoplasmic reticulum stress transducer, is specifically overexpressed in platelet RNA from patients with myeloproliferative neoplasms (MPNs). However, the pathophysiological roles of CREB3L1 overexpression remain unclear. In the present study, we aimed to study CREB3L1 messenger RNA (mRNA) expression in the red blood cells (RBCs) of patients with MPN and its role in erythrocytosis. Elevated expression of CREB3L1 was exclusively observed in the RBCs of patients with polycythemia vera (PV) harboring JAK2 exon 12 mutations, but not in those harboring JAK2 V617F mutation or control subjects. In erythropoiesis, CREB3L1 expression was sharply induced in erythroblasts of bone marrow cells collected from patients with JAK2 exon 12 mutation. This was also evident when erythropoiesis was induced in vitro using hematopoietic stem and progenitor cells (HSPCs) with JAK2 exon 12 mutation. Interestingly, overexpression of CREB3L1 in RBCs was observed in patients with reactive erythrocytosis whose serum erythropoietin (EPO) levels exceeded 100 mIU/mL. Elevated CREB3L1 expression was also observed in the erythroblasts of a patient with acute erythroid leukemia. EPO-dependent induction of CREB3L1 was evident in erythroblasts differentiated from HSPCs in vitro, regardless of driver mutation status or MPN pathogenesis. These data strongly suggest that CREB3L1 overexpression in RBCs is associated with hyperactivation of the EPO receptor and its downstream molecule, JAK2. Short hairpin RNA (shRNA) knockdown of CREB3L1 expression in HSPCs blocked erythroblast formation in vitro. These results suggest that CREB3L1 is required for erythropoiesis in the presence of JAK2 exon 12 mutation or high level of EPO, possibly by antagonizing cellular stress.
{"title":"Involvement of CREB3L1 in erythropoiesis induced by JAK2 exon 12 mutation","authors":"Maho Okuda , Marito Araki , Federico De Marchi , Soji Morishita , Misa Imai , Hanaka Fukada , Miki Ando , Norio Komatsu","doi":"10.1016/j.exphem.2024.104636","DOIUrl":"10.1016/j.exphem.2024.104636","url":null,"abstract":"<div><div><em>CREB3L1</em>, a gene encoding the endoplasmic reticulum stress transducer, is specifically overexpressed in platelet RNA from patients with myeloproliferative neoplasms (MPNs). However, the pathophysiological roles of <em>CREB3L1</em> overexpression remain unclear. In the present study, we aimed to study <em>CREB3L1</em> messenger RNA (mRNA) expression in the red blood cells (RBCs) of patients with MPN and its role in erythrocytosis. Elevated expression of <em>CREB3L1</em> was exclusively observed in the RBCs of patients with polycythemia vera (PV) harboring <em>JAK2</em> exon 12 mutations, but not in those harboring <em>JAK2</em> V617F mutation or control subjects. In erythropoiesis, <em>CREB3L1</em> expression was sharply induced in erythroblasts of bone marrow cells collected from patients with <em>JAK2</em> exon 12 mutation. This was also evident when erythropoiesis was induced in vitro using hematopoietic stem and progenitor cells (HSPCs) with <em>JAK2</em> exon 12 mutation. Interestingly, overexpression of <em>CREB3L1</em> in RBCs was observed in patients with reactive erythrocytosis whose serum erythropoietin (EPO) levels exceeded 100 mIU/mL. Elevated <em>CREB3L1</em> expression was also observed in the erythroblasts of a patient with acute erythroid leukemia. EPO-dependent induction of <em>CREB3L1</em> was evident in erythroblasts differentiated from HSPCs in vitro, regardless of driver mutation status or MPN pathogenesis. These data strongly suggest that <em>CREB3L1</em> overexpression in RBCs is associated with hyperactivation of the EPO receptor and its downstream molecule, JAK2. Short hairpin RNA (shRNA) knockdown of <em>CREB3L1</em> expression in HSPCs blocked erythroblast formation in vitro. These results suggest that <em>CREB3L1</em> is required for erythropoiesis in the presence of <em>JAK2</em> exon 12 mutation or high level of EPO, possibly by antagonizing cellular stress.</div></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"139 ","pages":"Article 104636"},"PeriodicalIF":2.5,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1016/j.exphem.2024.104621
Zhen Liang , Carl R. Walkley , Jacki E. Heraud-Farlow
Adenosine-to-inosine (A-to-I) RNA editing plays essential roles in modulating normal development and homeostasis. This process is catalyzed by adenosine deaminase acting on RNA (ADAR) family proteins. The most well-understood biological processes modulated by A-to-I editing are innate immunity and neurological development, attributed to ADAR1 and ADAR2, respectively. A-to-I editing by ADAR1 is also critical in regulating hematopoiesis. This review will focus on the role of A-to-I RNA editing and ADAR enzymes, particularly ADAR1, during normal hematopoiesis in humans and mice. Furthermore, we will discuss Adar1 mouse models that have been developed to understand the contribution of ADAR1 to hematopoiesis and its role in innate immune pathways.
腺苷转肌苷(A-to-I)RNA 编辑在调节正常发育和稳态中发挥着重要作用。这一过程由作用于 RNA 的腺苷脱氨酶(ADAR)家族蛋白催化。A-I编辑调节的最广为人知的生物过程是先天性免疫和神经系统发育,分别归功于ADAR1和ADAR2。ADAR1 进行的 A 到 I 编辑在调节造血过程中也至关重要。这篇综述将重点讨论 A 到 I RNA 编辑和 ADAR 酶(尤其是 ADAR1)在人类和小鼠正常造血过程中的作用。此外,我们还将讨论为了解 ADAR1 对造血的贡献及其在先天性免疫途径中的作用而开发的 Adar1 小鼠模型。
{"title":"A-to-I RNA editing and hematopoiesis","authors":"Zhen Liang , Carl R. Walkley , Jacki E. Heraud-Farlow","doi":"10.1016/j.exphem.2024.104621","DOIUrl":"10.1016/j.exphem.2024.104621","url":null,"abstract":"<div><p>Adenosine-to-inosine (A-to-I) RNA editing plays essential roles in modulating normal development and homeostasis. This process is catalyzed by adenosine deaminase acting on RNA (ADAR) family proteins. The most well-understood biological processes modulated by A-to-I editing are innate immunity and neurological development, attributed to ADAR1 and ADAR2, respectively. A-to-I editing by ADAR1 is also critical in regulating hematopoiesis. This review will focus on the role of A-to-I RNA editing and ADAR enzymes, particularly ADAR1, during normal hematopoiesis in humans and mice. Furthermore, we will discuss <em>Adar1</em> mouse models that have been developed to understand the contribution of ADAR1 to hematopoiesis and its role in innate immune pathways.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"139 ","pages":"Article 104621"},"PeriodicalIF":2.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301472X24004855/pdfft?md5=9862c030cef87f6a6067e3f78a40054e&pid=1-s2.0-S0301472X24004855-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.exphem.2024.104600
Vithurithra Tharmapalan , Wolfgang Wagner
Aging significantly impacts the hematopoietic system, reducing its regenerative capacity and ability to restore homeostasis after stress. Mouse models have been invaluable in studying this process due to their shorter lifespan and the ability to explore genetic, treatment, and environmental influences on aging. However, not all aspects of aging are mirrored between species. This review compares three key aging biomarkers in the hematopoietic systems of mice and humans: myeloid bias, telomere attrition, and epigenetic clocks. Myeloid bias, marked by an increased fraction of myeloid cells and decreased lymphoid cells, is a significant aging marker in mice but is scarcely observed in humans after childhood. Conversely, telomere length is a robust aging biomarker in humans, whereas mice exhibit significantly different telomere dynamics, making telomere length less reliable in the murine system. Epigenetic clocks, based on DNA methylation changes at specific genomic regions, provide precise estimates of chronologic age in both mice and humans. Notably, age-associated regions in mice and humans occur at homologous genomic locations. Epigenetic clocks, depending on the epigenetic signatures used, also capture aspects of biological aging, offering powerful tools to assess genetic and environmental impacts on aging. Taken together, not all blood aging biomarkers are transferable between mice and humans. When using murine models to extrapolate human aging, it may be advantageous to focus on aging phenomena observed in both species. In conclusion, although mouse models offer significant insights, selecting appropriate biomarkers is crucial for translating findings to human aging.
衰老会严重影响造血系统,降低其再生能力和应激后恢复平衡的能力。小鼠模型的寿命较短,而且能够探索遗传、治疗和环境对衰老的影响,因此在研究这一过程中具有非常重要的价值。然而,衰老的所有方面并非都能在物种间相互反映。这篇综述比较了小鼠和人类造血系统中的三个关键衰老生物标志物:髓样蛋白偏倚、端粒损耗和表观遗传时钟。髓系偏向以髓系细胞比例增加和淋巴细胞比例减少为标志,是小鼠的一个重要衰老标志,但在童年后的人类中却很少被观察到。相反,端粒长度在人类中是一个强有力的衰老生物标志物,而小鼠的端粒动态却有很大不同,因此端粒长度在小鼠系统中的可靠性较低。表观遗传时钟基于特定基因组区域的 DNA 甲基化变化,可精确估计小鼠和人类的实际年龄。值得注意的是,小鼠和人类的年龄相关区域出现在同源基因组位置。表观遗传时钟(取决于所使用的表观遗传特征)还能捕捉生物衰老的各个方面,为评估遗传和环境对衰老的影响提供了强有力的工具。总之,并非所有的血液衰老生物标志物都能在小鼠和人类之间转移。在使用小鼠模型推断人类衰老时,将重点放在在两种物种中观察到的衰老现象上可能会更有优势。总之,虽然小鼠模型提供了重要的见解,但选择适当的生物标志物对于将研究结果转化为人类衰老至关重要。
{"title":"Biomarkers for aging of blood – how transferable are they between mice and humans?","authors":"Vithurithra Tharmapalan , Wolfgang Wagner","doi":"10.1016/j.exphem.2024.104600","DOIUrl":"10.1016/j.exphem.2024.104600","url":null,"abstract":"<div><div>Aging significantly impacts the hematopoietic system, reducing its regenerative capacity and ability to restore homeostasis after stress. Mouse models have been invaluable in studying this process due to their shorter lifespan and the ability to explore genetic, treatment, and environmental influences on aging. However, not all aspects of aging are mirrored between species. This review compares three key aging biomarkers in the hematopoietic systems of mice and humans: myeloid bias, telomere attrition, and epigenetic clocks. Myeloid bias, marked by an increased fraction of myeloid cells and decreased lymphoid cells, is a significant aging marker in mice but is scarcely observed in humans after childhood. Conversely, telomere length is a robust aging biomarker in humans, whereas mice exhibit significantly different telomere dynamics, making telomere length less reliable in the murine system. Epigenetic clocks, based on DNA methylation changes at specific genomic regions, provide precise estimates of chronologic age in both mice and humans. Notably, age-associated regions in mice and humans occur at homologous genomic locations. Epigenetic clocks, depending on the epigenetic signatures used, also capture aspects of biological aging, offering powerful tools to assess genetic and environmental impacts on aging. Taken together, not all blood aging biomarkers are transferable between mice and humans. When using murine models to extrapolate human aging, it may be advantageous to focus on aging phenomena observed in both species. In conclusion, although mouse models offer significant insights, selecting appropriate biomarkers is crucial for translating findings to human aging.</div></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"140 ","pages":"Article 104600"},"PeriodicalIF":2.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.exphem.2024.104588
Célina Nielsen , Youzhong Liu , Fleur Leguay , Hernán A. Tirado , Nicolas Dauguet , Nick van Gastel
Blood cell production arises from the activity of hematopoietic stem cells (HSCs), defined by their self-renewal capacity and ability to give rise to all mature blood cell types. The mouse remains one of the most studied species in hematological research, and markers to define and isolate mouse HSCs are well-established. Given the very low frequency of HSCs in the bone marrow, stem cell pre-enrichment by red blood cell lysis and magnetic cell separation is often performed as part of the isolation process to reduce sorting times. Several pre-enrichment strategies are available, differing in their speed, degree of enrichment, final cell yield, and cost. In the current study, we performed a side-by-side comparison and provide a decision tree to help researchers select a pre-enrichment strategy for mouse HSC isolation depending on their downstream application. We then compared different pre-enrichment techniques in combination with metabolomics analysis of HSCs, where speed, yield and temperature during pre-enrichment are crucial factors, and found that the choice of pre-enrichment strategy significantly impacts the number of metabolites detected and levels of individual metabolites in HSCs.
{"title":"Optimization of pre-enrichment strategies for mouse hematopoietic stem cell isolation and metabolomic analysis","authors":"Célina Nielsen , Youzhong Liu , Fleur Leguay , Hernán A. Tirado , Nicolas Dauguet , Nick van Gastel","doi":"10.1016/j.exphem.2024.104588","DOIUrl":"10.1016/j.exphem.2024.104588","url":null,"abstract":"<div><p>Blood cell production arises from the activity of hematopoietic stem cells (HSCs), defined by their self-renewal capacity and ability to give rise to all mature blood cell types. The mouse remains one of the most studied species in hematological research, and markers to define and isolate mouse HSCs are well-established. Given the very low frequency of HSCs in the bone marrow, stem cell pre-enrichment by red blood cell lysis and magnetic cell separation is often performed as part of the isolation process to reduce sorting times. Several pre-enrichment strategies are available, differing in their speed, degree of enrichment, final cell yield, and cost. In the current study, we performed a side-by-side comparison and provide a decision tree to help researchers select a pre-enrichment strategy for mouse HSC isolation depending on their downstream application. We then compared different pre-enrichment techniques in combination with metabolomics analysis of HSCs, where speed, yield and temperature during pre-enrichment are crucial factors, and found that the choice of pre-enrichment strategy significantly impacts the number of metabolites detected and levels of individual metabolites in HSCs.</p></div>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":"139 ","pages":"Article 104588"},"PeriodicalIF":2.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301472X24004478/pdfft?md5=ff6edb64a7b6884a702ea1d4edb428e5&pid=1-s2.0-S0301472X24004478-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}