Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) can recapitulate the properties of human cardiomyocyte and exhibit disease phenotypes in vitro, attributable to their healthy- or patient-specific genetic backgrounds. Therefore, hiPSC-CMs are a crucial tool for developing therapeutic agents for cardiovascular diseases, and regenerative medicine using hiPSC-CMs is expected to be an alternative therapy to heart transplantation. Moreover, the development of organoid models has been advanced to replicate the complex structure of heart tissue in vitro, thereby effectively facilitating drug discovery. On the other hand, current methods for advancing drug discovery using hiPSC-CMs face limitations, including the difficulty of quantifying characteristics such as cell structure and predicting the risk and efficacy of candidate drug in clinical practice. In the field of regenerative medicine, challenges include quality control and the verification of safety of transplanted cells in human. In silico model, including artificial intelligence (AI) and simulation, have been developed in the field of drug discovery using hiPSC-CMs. These advancements encompass phenotype scoring via AI and risk prediction through simulations. This review outlines the current status and challenges of drug discovery using hiPSC-CMs and in silico model, based on the published reports.
{"title":"[Drug discovery using iPS cells and in silico model].","authors":"Yuya Fujiwara, Yoshinori Yoshida","doi":"10.1254/fpj.24046","DOIUrl":"https://doi.org/10.1254/fpj.24046","url":null,"abstract":"<p><p>Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) can recapitulate the properties of human cardiomyocyte and exhibit disease phenotypes in vitro, attributable to their healthy- or patient-specific genetic backgrounds. Therefore, hiPSC-CMs are a crucial tool for developing therapeutic agents for cardiovascular diseases, and regenerative medicine using hiPSC-CMs is expected to be an alternative therapy to heart transplantation. Moreover, the development of organoid models has been advanced to replicate the complex structure of heart tissue in vitro, thereby effectively facilitating drug discovery. On the other hand, current methods for advancing drug discovery using hiPSC-CMs face limitations, including the difficulty of quantifying characteristics such as cell structure and predicting the risk and efficacy of candidate drug in clinical practice. In the field of regenerative medicine, challenges include quality control and the verification of safety of transplanted cells in human. In silico model, including artificial intelligence (AI) and simulation, have been developed in the field of drug discovery using hiPSC-CMs. These advancements encompass phenotype scoring via AI and risk prediction through simulations. This review outlines the current status and challenges of drug discovery using hiPSC-CMs and in silico model, based on the published reports.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"13-17"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Age-related macular degeneration (AMD) is one of the most common neuroinflammatory diseases that is the leading cause of blindness worldwide. AMD is caused by not only mutations in immune-related genes such as Cfh (complement factor H) but also the accumulation of environmental factors such as obesity and other inflammatory triggers with age. Our study found that the past histories of obesity can lead to immunological reprogramming in the innate immune system and affect the development of AMD in later life. This reveals a new link in the role of innate immune memory in neuroinflammatory diseases such as AMD, and intervention in innate immune memory may be a new therapeutic strategy.
{"title":"[Past history of obesity and immune memory in age-related macular degeneration].","authors":"Masayuki Hata","doi":"10.1254/fpj.24069","DOIUrl":"https://doi.org/10.1254/fpj.24069","url":null,"abstract":"<p><p>Age-related macular degeneration (AMD) is one of the most common neuroinflammatory diseases that is the leading cause of blindness worldwide. AMD is caused by not only mutations in immune-related genes such as Cfh (complement factor H) but also the accumulation of environmental factors such as obesity and other inflammatory triggers with age. Our study found that the past histories of obesity can lead to immunological reprogramming in the innate immune system and affect the development of AMD in later life. This reveals a new link in the role of innate immune memory in neuroinflammatory diseases such as AMD, and intervention in innate immune memory may be a new therapeutic strategy.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"23-25"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The delay and loss of drugs are serious problems in Japan. To overcome this issue, it is important to strengthen drug development capabilities. For drug development, the establishment and advancement of non-clinical testing methods are necessary for safe and effective clinical trials. Recently, the movement toward alternatives to animal testing has accelerated internationally. New Approach Methodologies (NAMs), such as human inducible pluripotent stem cell (hiPSC) technology and in silico modeling & simulation, are considered valuable for drug development. It has been demonstrated that hiPSC-derived cardiomyocytes (hiPSC-CMs) are useful tools to assess drug-induced cardiotoxicity, including arrhythmia and cardiac contractile dysfunction, leading to the use of hiPSC-CMs in the drug review process. Advancing hiPSC technologies have enabled the generation of mature hiPSC-CMs and engineered heart tissues, which are expected to provide novel information in drug safety and efficacy evaluation. Furthermore, it would be possible to establish the non-clinical evaluation that takes into account individual differences by developing hiPSCs bearing characteristics specific to certain populations, such as pediatrics or rare disease patients. Here, we present the recent findings and future perspectives on non-clinical evaluation using hiPSC technology.
{"title":"[Safety and efficacy assessments using human iPS cell-derived cardiomyocytes].","authors":"Hiroyuki Kawagishi, Yasunari Kanda","doi":"10.1254/fpj.24043","DOIUrl":"https://doi.org/10.1254/fpj.24043","url":null,"abstract":"<p><p>The delay and loss of drugs are serious problems in Japan. To overcome this issue, it is important to strengthen drug development capabilities. For drug development, the establishment and advancement of non-clinical testing methods are necessary for safe and effective clinical trials. Recently, the movement toward alternatives to animal testing has accelerated internationally. New Approach Methodologies (NAMs), such as human inducible pluripotent stem cell (hiPSC) technology and in silico modeling & simulation, are considered valuable for drug development. It has been demonstrated that hiPSC-derived cardiomyocytes (hiPSC-CMs) are useful tools to assess drug-induced cardiotoxicity, including arrhythmia and cardiac contractile dysfunction, leading to the use of hiPSC-CMs in the drug review process. Advancing hiPSC technologies have enabled the generation of mature hiPSC-CMs and engineered heart tissues, which are expected to provide novel information in drug safety and efficacy evaluation. Furthermore, it would be possible to establish the non-clinical evaluation that takes into account individual differences by developing hiPSCs bearing characteristics specific to certain populations, such as pediatrics or rare disease patients. Here, we present the recent findings and future perspectives on non-clinical evaluation using hiPSC technology.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"4-8"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, a variety of anticancer agents are used in the treatment of cancer. Since anticancer agents are used continuously over a long time, they carry the risk of side effects. One of the major side effects is cardiac dysfunction. For example, doxorubicin, an anthracycline-type anticancer agent, is clinically restricted because of its dose-dependent cardiotoxicity. Cardiotoxicity includes decreased ejection fraction, arrhythmias, and congestive heart failure, all of which are associated with high mortality rates. Therefore, it is important to assess the risk of cardiotoxicity of anticancer agents in advance. Cardiomyocytes require energy to beat and retain an abundance of mitochondria. We established quantitative measurements of mitochondrial length and respiratory activities using cardiomyocytes. We found that exposure of human iPS cell-derived cardiomyocytes (hiPSC-CMs) to anticancer agents with reported cardiotoxicity enhanced mitochondrial hyperfission and the oxygen consumption rate was significantly reduced. Knockdown of dynamin-related protein 1 (Drp1), mitochondrial fission-accelerating GTP-binding protein, suppressed mitochondrial hyperfission in hiPSC-CMs. This indicates that visualizing mitochondrial functions in hiPSC-CMs will be helpful in assessing the risk of cardiotoxicity caused by anticancer agents and that maintaining mitochondrial quality will become a new strategy to reduce anticancer agents-induced cardiotoxicity. In this review, we present the evaluation of cardiotoxicity targeting mitochondrial quality in anticancer agents, using osimertinib, a non-small cell lung cancer drug, as an example.
{"title":"[Cardiotoxicity risk assessment of anticancer drugs by focusing on mitochondrial quality of human iPS cell-derived cardiomyocytes].","authors":"Yuri Kato, Yuya Nakamura, Moe Kondo, Yasunari Kanda, Motohiro Nishida","doi":"10.1254/fpj.24056","DOIUrl":"https://doi.org/10.1254/fpj.24056","url":null,"abstract":"<p><p>Currently, a variety of anticancer agents are used in the treatment of cancer. Since anticancer agents are used continuously over a long time, they carry the risk of side effects. One of the major side effects is cardiac dysfunction. For example, doxorubicin, an anthracycline-type anticancer agent, is clinically restricted because of its dose-dependent cardiotoxicity. Cardiotoxicity includes decreased ejection fraction, arrhythmias, and congestive heart failure, all of which are associated with high mortality rates. Therefore, it is important to assess the risk of cardiotoxicity of anticancer agents in advance. Cardiomyocytes require energy to beat and retain an abundance of mitochondria. We established quantitative measurements of mitochondrial length and respiratory activities using cardiomyocytes. We found that exposure of human iPS cell-derived cardiomyocytes (hiPSC-CMs) to anticancer agents with reported cardiotoxicity enhanced mitochondrial hyperfission and the oxygen consumption rate was significantly reduced. Knockdown of dynamin-related protein 1 (Drp1), mitochondrial fission-accelerating GTP-binding protein, suppressed mitochondrial hyperfission in hiPSC-CMs. This indicates that visualizing mitochondrial functions in hiPSC-CMs will be helpful in assessing the risk of cardiotoxicity caused by anticancer agents and that maintaining mitochondrial quality will become a new strategy to reduce anticancer agents-induced cardiotoxicity. In this review, we present the evaluation of cardiotoxicity targeting mitochondrial quality in anticancer agents, using osimertinib, a non-small cell lung cancer drug, as an example.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 1","pages":"9-12"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}